| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
| |
llvm-svn: 356498
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SelectionDAGBuilder::visitSelect
These changes are related to PR37743 and include:
SelectionDAGBuilder::visitSelect handles the unary SelectPatternFlavor::SPF_ABS case to build ABS node.
Delete the redundant recognizer of the integer ABS pattern from the DAGCombiner.
Add promoting the integer ABS node in the LegalizeIntegerType.
Expand-based legalization of integer result for the ABS nodes.
Expand-based legalization of ABS vector operations.
Add some integer abs testcases for different typesizes for Thumb arch
Add the custom ABS expanding and change the SAD pattern recognizer for X86 arch: The i64 result of the ABS is expanded to:
tmp = (SRA, Hi, 31)
Lo = (UADDO tmp, Lo)
Hi = (XOR tmp, (ADDCARRY tmp, hi, Lo:1))
Lo = (XOR tmp, Lo)
The "detectZextAbsDiff" function is changed for the recognition of pattern with the ABS node. Given a ABS node, detect the following pattern:
(ABS (SUB (ZERO_EXTEND a), (ZERO_EXTEND b))).
Change integer abs testcases for codegen with the ABS node support for AArch64.
Indicate that the ABS is legal for the i64 type when the NEON is supported.
Change the integer abs testcases to show changing of codegen.
Add combine and legalization of ABS nodes for Thumb arch.
Extend 'matchSelectPattern' to recognize the ABS patterns with ICMP_SGE condition.
For discussion, see https://bugs.llvm.org/show_bug.cgi?id=37743
Patch by: @ikulagin (Ivan Kulagin)
Differential Revision: https://reviews.llvm.org/D49837
llvm-svn: 356468
|
|
|
|
|
|
|
|
|
|
|
| |
This allows better code size for aarch64 floating point materialization
in a future patch.
Reviewers: evandro
Differential Revision: https://reviews.llvm.org/D58690
llvm-svn: 356389
|
|
|
|
|
|
|
|
| |
The PowerPC code generator currently scalarizes vector truncates that would fit in a vector register, resulting in vector extracts, scalar operations, and vector merges. This patch custom lowers a vector truncate that would fit in a register to a vector shuffle instead.
Differential Revision: https://reviews.llvm.org/D56507
llvm-svn: 353724
|
|
|
|
|
|
|
|
|
| |
Move the CC analysis implementation to its own .cpp file instead of
duplicating it and artificually using functions in PPCISelLowering.cpp
and PPCFastISel.cpp. Follow-up to the same change done for X86, ARM, and
AArch64.
llvm-svn: 352444
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
that bad machine code
Summary:
For SDAG, we pretend patchpoints aren't special at all until we emit the code for the pseudo.
Then the verifier runs and it seems like we have a use of an undefined register (the register will
be reserved later, but the verifier doesn't know that).
So this patch call setUsesTOCBasePtr before emit the code for the pseudo, so verifier can know
X2 is a reserved register.
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D56148
llvm-svn: 350165
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A recent patch has added custom legalization of vector conversions of
v2i16 -> v2f64. This just rounds it out for other types where the input vector
has an illegal (narrower) type than the result vector. Specifically, this will
handle the following conversions:
v2i8 -> v2f64
v4i8 -> v4f32
v4i16 -> v4f32
Differential revision: https://reviews.llvm.org/D54663
llvm-svn: 350155
|
|
|
|
| |
llvm-svn: 350114
|
|
|
|
|
|
|
|
|
|
|
|
| |
causes mismatched register class
For atomic value operand which less than 4 bytes need to be masked.
And the related operation to calculate the newvalue can be done in 32 bit gprc.
So just use gprc for mask and value calculation.
Differential Revision: https://reviews.llvm.org/D56077
llvm-svn: 350113
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch is to fix the bug imported by rL341634.
In above submit , the the return type of ISD::ADDE is
14224: SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i64),
but in fact, the second return type of ISD::ADDE should be
MVT::Glue not MVT::i64.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D55977
llvm-svn: 350061
|
|
|
|
|
|
| |
Continues the work started by @bogner in rL340594 to remove uses of the KnownBits output paramater version.
llvm-svn: 349903
|
|
|
|
|
|
|
|
|
|
|
|
| |
For type v4i32/v8ii16/v16i8, do following transforms:
(vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) -> (vabsd a, b)
(vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) -> (vabsd a, b)
(vselect (setcc a, b, setult), (sub b, a), (sub a, b)) -> (vabsd a, b)
(vselect (setcc a, b, setule), (sub b, a), (sub a, b)) -> (vabsd a, b)
Differential Revision: https://reviews.llvm.org/D55812
llvm-svn: 349599
|
|
|
|
|
|
|
|
|
|
| |
Improve the current vec_abs support on P9, generate ISD::ABS node for vector types,
combine ABS node to VABSD node for some special cases to make use of P9 VABSD* insns,
do custom lowering to vsub(vneg later)+vmax if it has no combination opportunity.
Differential Revision: https://reviews.llvm.org/D54783
llvm-svn: 349437
|
|
|
|
|
|
|
|
|
|
|
| |
is accessed as got-indirect or not.
In theory, we should let the PPC target to determine how to lower the TOC Entry for globals.
And the PPCTargetLowering requires this query to do some optimization for TOC_Entry.
Differential Revision: https://reviews.llvm.org/D54925
llvm-svn: 348108
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We have efficient codegen on P9 for lowering bswap that involves moving
the value into a vector reg and moving it back. However, the check under
which we custom lowered it did not adequately reflect the actual requirements.
It required only that the subtarget be an implementation of ISA 3.0 since all
compliant implementations have to provide the vector instructions.
However, the kernel builds have a valid use case for -mno-altivec -mcpu=pwr9
(i.e. don't emit vector code, don't have to save vector regs for context
switch). So we should require the correct features for this lowering.
Fixes https://bugs.llvm.org/show_bug.cgi?id=39334
llvm-svn: 347376
|
|
|
|
|
|
|
|
|
|
| |
Turns out that there was no check for a store that truncates down
to a single byte when combining a (store (bswap...)) into a byte-swapping
store. This patch just adds that check.
Fixes https://bugs.llvm.org/show_bug.cgi?id=39478.
llvm-svn: 347288
|
|
|
|
|
|
|
|
|
|
| |
To make ISD::VSELECT available(legal) so long as there are altivec instruction, otherwise it's default behavior is expanding,
which is legalized at type-legalization phase. Use xxsel to match vselect if vsx is open, or use vsel.
Differential Revision: https://reviews.llvm.org/D49531
llvm-svn: 346824
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch should not introduce any behavior changes. It consists of
mostly one of two changes:
1. Replacing fall through comments with the LLVM_FALLTHROUGH macro
2. Inserting 'break' before falling through into a case block consisting
of only 'break'.
We were already using this warning with GCC, but its warning behaves
slightly differently. In this patch, the following differences are
relevant:
1. GCC recognizes comments that say "fall through" as annotations, clang
doesn't
2. GCC doesn't warn on "case N: foo(); default: break;", clang does
3. GCC doesn't warn when the case contains a switch, but falls through
the outer case.
I will enable the warning separately in a follow-up patch so that it can
be cleanly reverted if necessary.
Reviewers: alexfh, rsmith, lattner, rtrieu, EricWF, bollu
Differential Revision: https://reviews.llvm.org/D53950
llvm-svn: 345882
|
|
|
|
|
|
|
|
|
|
| |
From the gcc manual, we can see that the specific limit of wi inline asm is “FP or VSX register to hold 64-bit integers for VSX insns or NO_REGS”. The link is https://gcc.gnu.org/onlinedocs/gcc-8.2.0/gcc/Machine-Constraints.html#Machine-Constraints. We should accept this constraint.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D53265
llvm-svn: 345810
|
|
|
|
|
|
|
|
|
|
|
| |
For both operands are bool, short, int, long, long long, add the following optimization.
1. 0-x == y --> x+y ==0
2. 0-x != y --> x+y != 0
Review: nemanjai
Differential Revision: https://reviews.llvm.org/D53360
llvm-svn: 345366
|
|
|
|
|
|
|
|
|
|
|
|
| |
At present a v2i16 -> v2f64 convert is implemented by extracts to scalar,
scalar converts, and merge back into a vector. Use vector converts instead,
with the int data permuted into the proper position and extended if necessary.
Patch by RolandF.
Differential revision: https://reviews.llvm.org/D53346
llvm-svn: 345361
|
|
|
|
|
|
|
|
|
| |
Add support to allow bit-casting from f128 to i128 and then
extracting 64 bits from the result.
Differential Revision: https://reviews.llvm.org/D49507
llvm-svn: 345053
|
|
|
|
|
|
|
|
|
|
| |
For ISD::SIGN_EXTEND_INREG operation of v2i16 and v2i8 types will cause assert because they are registered as custom operation.
So that the type legalization phase will enter the custom hook, which do not handle ISD::SIGN_EXTEND_INREG operation and fall throw into unreachable assert.
Patch By: wuzish (Zixuan Wu)
Differential Revision: https://reviews.llvm.org/D52449
llvm-svn: 344109
|
|
|
|
|
|
|
|
|
|
| |
This is the PPC-specific non-controversial part of
https://reviews.llvm.org/D44548 that simply enables this combine for PPC
since PPC has these instructions.
This commit will allow the target-independent portion to be truly target
independent.
llvm-svn: 344077
|
|
|
|
|
|
|
|
|
|
| |
Building a vector out of multiple loads can be converted to a load of the vector type if the loads are consecutive.
But the special condition is that the element number is 1, such as <1 x i128>. So just early exit to fix the assert.
Patch By: wuzish (Zixuan Wu)
Differential Revision: https://reviews.llvm.org/D52072
llvm-svn: 342611
|
|
|
|
|
|
|
|
| |
This patch fixes calculating address of label for non-pic ppc64.
Differential Revision: https://reviews.llvm.org/D50965
llvm-svn: 342368
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Integer types smaller than i32 must be extended to i32 by default.
The feature "crbits" introduced at r202451 handles i1 as a special case,
but it did not extend properly.
The caller was, therefore, passing i1 stack arguments by writing 0/1 to
the first byte of the 4-byte stack object and callee was
reading the first byte for the value.
"crbits" is enabled if the optimization level is greater than 1,
which is very common in "release builds".
Such discrepancies with ABI specification also introduces
potential incompatibility with programs or libraries
built with other compilers e.g. GCC.
Fixes PR38661
Reviewers: hfinkel, cuviper
Subscribers: sylvestre.ledru, glaubitz, nagisa, nemanjai, kbarton, llvm-commits
Differential Revision: https://reviews.llvm.org/D51108
llvm-svn: 342288
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On the ppc64le platform, if ir has the following form,
define i64 @addze1(i64 %x, i64 %z) local_unnamed_addr #0 {
entry:
%cmp = icmp ne i64 %z, CONSTANT (-32767 <= CONSTANT <= 32768)
%conv1 = zext i1 %cmp to i64
%add = add nsw i64 %conv1, %x
ret i64 %add
}
we can optimize it to the form below.
when C == 0
--> addze X, (addic Z, -1))
/
add X, (zext(setne Z, C))--
\ when -32768 <= -C <= 32767 && C != 0
--> addze X, (addic (addi Z, -C), -1)
Patch By: HLJ2009 (Li Jia He)
Differential Revision: https://reviews.llvm.org/D51403
Reviewed By: Nemanjai
llvm-svn: 341634
|
|
|
|
|
|
|
| |
This commit has caused failures in some internal benchmarks. Temporarily
reverting this patch until the issue can be diagnosed and fixed.
llvm-svn: 340740
|
|
|
|
|
|
|
|
| |
The internal benchmark failure reported by Google was due to a missing
check for the result type for the sign-extend and shift DAG. This commit
adds the check and re-commits the patch.
llvm-svn: 340734
|
|
|
|
|
|
|
|
| |
immediate instruction" due to it causing a compiler crash on valid.
This reverts commit r340016, testcase forthcoming.
llvm-svn: 340315
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch addresses:
- Implementation within PPCISelLowering.cpp to check if we should use direct
load into vector instructions (such as lxsd/lfd ) when the scalar_to_vector
function is used; which will allow us to catch as many cases of the
scalar_to_vector uses as possible to translate the ld->mtvsrd sequence into
lxsd.
- Test cases to exhibit the behaviour of emitting lxsd/lfd.
Patch by amyk
Differential revision: https://reviews.llvm.org/D49698
llvm-svn: 340037
|
|
|
|
|
|
|
|
|
|
|
| |
Add a DAG combine for the PowerPC code generator to generate the Power9 extswsli
extend sign and shift immediate instruction.
Patch by RolandF.
Differential revision: https://reviews.llvm.org/D49879
llvm-svn: 340016
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
a generically extensible collection of extra info attached to
a `MachineInstr`.
The primary change here is cleaning up the APIs used for setting and
manipulating the `MachineMemOperand` pointer arrays so chat we can
change how they are allocated.
Then we introduce an extra info object that using the trailing object
pattern to attach some number of MMOs but also other extra info. The
design of this is specifically so that this extra info has a fixed
necessary cost (the header tracking what extra info is included) and
everything else can be tail allocated. This pattern works especially
well with a `BumpPtrAllocator` which we use here.
I've also added the basic scaffolding for putting interesting pointers
into this, namely pre- and post-instruction symbols. These aren't used
anywhere yet, they're just there to ensure I've actually gotten the data
structure types correct. I'll flesh out support for these in
a subsequent patch (MIR dumping, parsing, the works).
Finally, I've included an optimization where we store any single pointer
inline in the `MachineInstr` to avoid the allocation overhead. This is
expected to be the overwhelmingly most common case and so should avoid
any memory usage growth due to slightly less clever / dense allocation
when dealing with >1 MMO. This did require several ergonomic
improvements to the `PointerSumType` to reasonably support the various
usage models.
This also has a side effect of freeing up 8 bits within the
`MachineInstr` which could be repurposed for something else.
The suggested direction here came largely from Hal Finkel. I hope it was
worth it. ;] It does hopefully clear a path for subsequent extensions
w/o nearly as much leg work. Lots of thanks to Reid and Justin for
careful reviews and ideas about how to do all of this.
Differential Revision: https://reviews.llvm.org/D50701
llvm-svn: 339940
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
To make ISD::VSELECT available(legal) so long as there are altivec instruction,
otherwise it's default behavior is expanding.
Use xxsel to match vselect if vsx is open, or use vsel.
In order to do not write many patterns in td file, promote (for vector it's
bitcast) all other type into v4i32 and only pattern match vselect of v4i32 into
vsel or xxsel.
Patch by wuzish
Differential revision: https://reviews.llvm.org/D49531
llvm-svn: 339779
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When trying to combine a DAG that builds a vector out of sign-extensions of
vector extracts, the code assumes legal input types. Due to that, we have to
disable this combine prior to legalization.
In some cases, the DAG will look slightly different after legalization so
account for that in the matching code.
This is a fix for https://bugs.llvm.org/show_bug.cgi?id=38087
Differential Revision: https://reviews.llvm.org/D49080
llvm-svn: 339769
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch aims to improve the codegen for vector loads involving the
scalar_to_vector (load X) sequence. Initially, ld->mv instructions were used
for scalar_to_vector (load X), so this patch allows scalar_to_vector (load X)
to utilize:
LXSD and LXSDX for i64 and f64
LXSIWAX for i32 (sign extension to i64)
LXSIWZX for i32 and f64
Committing on behalf of Amy Kwan.
Differential Revision: https://reviews.llvm.org/D48950
llvm-svn: 339260
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Adding the FP_ROUND nodes when combining FP_TO_[SU]INT of elements
feeding a BUILD_VECTOR into an FP_TO_[SU]INT of the built vector
loses precision. This patch removes the code that adds these nodes
to true f64 operands. It also adds patterns required to ensure
the code is still vectorized rather than converting individual
elements and inserting into a vector.
Fixes https://bugs.llvm.org/show_bug.cgi?id=38342
Differential Revision: https://reviews.llvm.org/D50121
llvm-svn: 338658
|
|
|
|
|
|
|
|
| |
BuildSDIV/BuildUDIV/etc.
The vector contains the SDNodes that these functions create. The number of nodes is always a small number so we should use SmallVector to avoid a heap allocation.
llvm-svn: 338329
|
|
|
|
|
|
| |
BuildSDIVPow2.
llvm-svn: 338303
|
|
|
|
|
|
|
|
| |
This seems like a pretty glaring omission, and AMDGPU
wants to treat kernels differently from other calling
conventions.
llvm-svn: 338194
|
|
|
|
|
|
|
|
|
|
|
| |
* Delete a no-longer-used override, and mark the other
getRegisterTypeForCallingConv() as override.
* SPE only supports i32, not i64, as the internal type, so simply remove
the type check, so that DestReg and Opc are provably always set.
GCC 6.4 did not warn about either of the above.
llvm-svn: 337350
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The Signal Processing Engine (SPE) is found on NXP/Freescale e500v1,
e500v2, and several e200 cores. This adds support targeting the e500v2,
as this is more common than the e500v1, and is in SoCs still on the
market.
This patch is very intrusive because the SPE is binary incompatible with
the traditional FPU. After discussing with others, the cleanest
solution was to make both SPE and FPU features on top of a base PowerPC
subset, so all FPU instructions are now wrapped with HasFPU predicates.
Supported by this are:
* Code generation following the SPE ABI at the LLVM IR level (calling
conventions)
* Single- and Double-precision math at the level supported by the APU.
Still to do:
* Vector operations
* SPE intrinsics
As this changes the Callee-saved register list order, one test, which
tests the precise generated code, was updated to account for the new
register order.
Reviewed by: nemanjai
Differential Revision: https://reviews.llvm.org/D44830
llvm-svn: 337347
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D44828
llvm-svn: 337345
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Added __float128 support for a number of rounding operations:
trunc
rint
nearbyint
round
floor
ceil
Differential Revision: https://reviews.llvm.org/D48415
llvm-svn: 336601
|
|
|
|
|
|
|
|
| |
Added handling for the select f128.
Differential Revision: https://reviews.llvm.org/D48294
llvm-svn: 336548
|
|
|
|
|
|
|
|
| |
Power 9 does not have a hardware instruction for frem but we can call fmodf128.
Differential Revision: https://reviews.llvm.org/D48552
llvm-svn: 336406
|
|
|
|
|
|
|
|
|
|
|
| |
instructions
Map the following instructions to the proper float128 lib calls:
pow[i], exp[2], log[2|10], sin, cos, fmin, fmax
Differential Revision: https://reviews.llvm.org/D48544
llvm-svn: 336361
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Non-homogenous aggregates are passed in consecutive GPRs, in GPRs and in memory,
or in memory. This patch ensures that float128 members of non-homogenous
aggregates are passed via VSX registers.
This is done via custom lowering a bitcast of a build_pari(i64,i64) to float128
to a new PPCISD node, BUILD_FP128.
Differential Revision: https://reviews.llvm.org/D48308
llvm-svn: 336310
|