| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds the following instructions:
MUL - multiply vectors, e.g.
mul z0.h, p0/m, z0.h, z1.h
- multiply with immediate, e.g.
mul z0.h, z0.h, #127
SMULH - signed multiply returning high half, e.g.
smulh z0.h, p0/m, z0.h, z1.h
UMULH - unsigned multiply returning high half, e.g.
umulh z0.h, p0/m, z0.h, z1.h
llvm-svn: 337358
|
| |
|
|
|
|
|
|
| |
using VMOVLPS with a modified address.
This required an annoying amount of tablegen multiclass changes to make only VUNPCKHPDZ128rr commutable.
llvm-svn: 337357
|
| |
|
|
| |
llvm-svn: 337351
|
| |
|
|
|
|
|
|
|
|
|
| |
* Delete a no-longer-used override, and mark the other
getRegisterTypeForCallingConv() as override.
* SPE only supports i32, not i64, as the internal type, so simply remove
the type check, so that DestReg and Opc are provably always set.
GCC 6.4 did not warn about either of the above.
llvm-svn: 337350
|
| |
|
|
|
|
| |
The X86ISD::MOVLHPS/MOVHLPS should now only be emitted in SSE1 only. This means that the v2i64/v2f64 types would be illegal thus we don't need these patterns.
llvm-svn: 337349
|
| |
|
|
|
|
|
|
|
|
|
|
| |
X86ISD::MOVLHPS/MOVHLPS for unary v2f64 {0,0} and {1,1} shuffles with SSE2.
I'm trying to restrict the MOVLHPS/MOVHLPS ISD nodes to SSE1 only. With SSE2 we can use unpcks. I believe this will allow some patterns to be cleaned up to require fewer bitcasts.
I've put in an odd isel hack to still select MOVHLPS instruction from the unpckh node to avoid changing tests and because movhlps is a shorter encoding. Ideally we'd do execution domain switching on this, but the operands are in the wrong order and are tied. We might be able to try a commute in the domain switching using custom code.
We already support domain switching for UNPCKLPD and MOVLHPS.
llvm-svn: 337348
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The Signal Processing Engine (SPE) is found on NXP/Freescale e500v1,
e500v2, and several e200 cores. This adds support targeting the e500v2,
as this is more common than the e500v1, and is in SoCs still on the
market.
This patch is very intrusive because the SPE is binary incompatible with
the traditional FPU. After discussing with others, the cleanest
solution was to make both SPE and FPU features on top of a base PowerPC
subset, so all FPU instructions are now wrapped with HasFPU predicates.
Supported by this are:
* Code generation following the SPE ABI at the LLVM IR level (calling
conventions)
* Single- and Double-precision math at the level supported by the APU.
Still to do:
* Vector operations
* SPE intrinsics
As this changes the Callee-saved register list order, one test, which
tests the precise generated code, was updated to account for the new
register order.
Reviewed by: nemanjai
Differential Revision: https://reviews.llvm.org/D44830
llvm-svn: 337347
|
| |
|
|
|
|
|
|
|
| |
This is the lead-up to having SPE codegen. Add the rest of the
instructions, along with MC tests.
Differential Revision: https://reviews.llvm.org/D44829
llvm-svn: 337346
|
| |
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D44828
llvm-svn: 337345
|
| |
|
|
|
|
|
|
|
| |
This reverts r337190 (and a few follow-up commits), which caused the
Chromium build to fail. See
https://bugs.llvm.org/show_bug.cgi?id=38204 and
https://crbug.com/864832
llvm-svn: 337344
|
| |
|
|
|
|
|
|
|
|
| |
variables.
The presence of these symbols in the symbol table can cause symbol type
mismatch errors (or undefined symbol errors on emulated TLS targets)
and they can't be ICF'd anyway.
llvm-svn: 337338
|
| |
|
|
|
|
|
|
| |
r337320.
The resulting instruction will only load 64 bits so alignment isn't required.
llvm-svn: 337334
|
| |
|
|
|
|
|
|
| |
address-significant symbols.
Differential Revision: https://reviews.llvm.org/D48143
llvm-svn: 337331
|
| |
|
|
|
|
|
|
|
| |
Part of the address-significance tables proposal:
http://lists.llvm.org/pipermail/llvm-dev/2018-May/123514.html
Differential Revision: https://reviews.llvm.org/D47744
llvm-svn: 337328
|
| |
|
|
|
|
| |
SSE1 only.
llvm-svn: 337320
|
| |
|
|
| |
llvm-svn: 337318
|
| |
|
|
| |
llvm-svn: 337317
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
These are all methods that, while not currently used in the
Itanium demangler, are generally useful enough that it's
likely the itanium demangler could find a use for them. More
importantly, they are all necessary for the Microsoft demangler
which is up and coming in a subsequent patch. Rather than
combine these into a single monolithic patch, I think it makes
sense to commit this utility code first since it is very simple,
this way it won't detract from the substance of the MS demangler
patch.
llvm-svn: 337316
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
InstCombine has a cast transform that matches a cast-of-select:
Orig = cast (Src = select Cond TV FV)
And tries to replace it with a select which has the cast folded in:
NewSel = select Cond (cast TV) (cast FV)
The combiner does RAUW(Orig, NewSel), so any debug values for Orig would
survive the transform. But debug values for Src would be lost.
This patch teaches InstCombine to replace all debug uses of Src with
NewSel (taking care of doing any necessary DIExpression rewriting).
Differential Revision: https://reviews.llvm.org/D49270
llvm-svn: 337310
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
feedback from Craig.
Summary:
The only thing he suggested that I've skipped here is the double-wide
multiply instructions. Multiply is an area I'm nervous about there being
some hidden data-dependent behavior, and it doesn't seem important for
any benchmarks I have, so skipping it and sticking with the minimal
multiply support that matches what I know is widely used in existing
crypto libraries. We can always add double-wide multiply when we have
clarity from vendors about its behavior and guarantees.
I've tried to at least cover the fundamentals here with tests, although
I've not tried to cover every width or permutation. I can add more tests
where folks think it would be helpful.
Reviewers: craig.topper
Subscribers: sanjoy, mcrosier, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D49413
llvm-svn: 337308
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
compilation
Previously we were assuming whole program compilation. Now that
separate compilation is a thing we need to update this pass.
Firstly, it can no longer assert on the existence of malloc and free.
This functions might not be in the current translation unit. If we
need them then we will generate not imports for them.
Secondly the global helper function we create should be marked as
weak since we will be generating a separate copy in each translation
unit.
Finally the names of the symbols used must be unique and fixed since
they need to agree across translation units.
Differential Revision: https://reviews.llvm.org/D49263
llvm-svn: 337301
|
| |
|
|
|
|
|
|
| |
instruction definitions.
Previously we passed 'null_frag' into the instruction definition. The multiclass is shared with MOVHPD which doesn't use null_frag. It turns out by passing X86Movsd it produces patterns equivalent to some standalone patterns.
llvm-svn: 337299
|
| |
|
|
|
|
|
|
|
|
| |
This patch adds support for the following instructions:
MLA mul-add, writing addend (Zda = Zda + Zn * Zm)
MLS mul-sub, writing addend (Zda = Zda + -Zn * Zm)
MAD mul-add, writing multiplicant (Zdn = Za + Zdn * Zm)
MSB mul-sub, writing multiplicant (Zdn = Za + -Zdn * Zm)
llvm-svn: 337293
|
| |
|
|
|
|
|
|
|
|
|
| |
The Mips FastISel back-end does not extend i1 values while lowering icmp.
Ensure that we bail into DAG ISel when handling this case.
Patch by Dragan Mladjenovic.
Differential Revision: https://reviews.llvm.org/D49290
llvm-svn: 337288
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Once we resolved an undef in a function we can run Solve, which could
lead to finding a constant return value for the function, which in turn
could turn undefs into constants in other functions that call it, before
resolving undefs there.
Computationally the amount of work we are doing stays the same, just the
order we process things is slightly different and potentially there are
a few less undefs to resolve.
We are still relying on the order of functions in the IR, which means
depending on the order, we are able to resolve the optimal undef first
or not. For example, if @test1 comes before @testf, we find the constant
return value of @testf too late and we cannot use it while solving
@test1.
This on its own does not lead to more constants removed in the
test-suite, probably because currently we have to be very lucky to visit
applicable functions in the right order.
Maybe we manage to come up with a better way of resolving undefs in more
'profitable' functions first.
Reviewers: efriedma, mssimpso, davide
Reviewed By: efriedma, davide
Differential Revision: https://reviews.llvm.org/D49385
llvm-svn: 337283
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds support for the following instructions:
FMLA mul-add, writing addend (Zda = Zda + Zn * Zm)
FNMLA negated mul-add, writing addend (Zda = -Zda + -Zn * Zm)
FMLS mul-sub, writing addend (Zda = Zda + -Zn * Zm)
FNMLS negated mul-sub, writing addend (Zda = -Zda + Zn * Zm)
FMAD mul-add, writing multiplicant (Zdn = Za + Zdn * Zm)
FNMAD negated mul-add, writing multiplicant (Zdn = -Za + -Zdn * Zm)
FMSB mul-sub, writing multiplicant (Zdn = Za + -Zdn * Zm)
FNMSB negated mul-sub, writing multiplicant (Zdn = -Za + Zdn * Zm)
llvm-svn: 337282
|
| |
|
|
|
|
| |
TTI::getMinMaxReductionCost typically can't handle pointer types - until this is changed its better to limit horizontal reduction to integer/float vector types only.
llvm-svn: 337280
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Part of the adjustCopiesBackFrom method wasn't correctly dealing with SubRange
intervals when updating.
2 changes. The first to ensure that bogus SubRange Segments aren't propagated when
encountering Segments of the form [1234r, 1234d:0) when preparing to merge value
numbers. These can be removed in this case.
The second forces a shrinkToUses call if SubRanges end on the copy index
(instead of just the parent register).
V2: Addressed review comments, plus MIR test instead of ll test
Subscribers: MatzeB, qcolombet, nhaehnle
Differential Revision: https://reviews.llvm.org/D40308
Change-Id: I1d2b2b4beea802fce11da01edf71feb2064aab05
llvm-svn: 337273
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch completes support for the following floating point
instructions that take FP immediates:
FADD* (addition)
FSUB (subtract)
FSUBR (subtract reverse form)
FMUL* (multiplication)
FMAX* (maximum)
FMAXNM (maximum number)
FMIN (maximum)
FMINNM (maximum number)
All operations are predicated and take a FP immediate operand,
e.g.
fadd z0.h, p0/m, z0.h, #0.5
fmin z0.s, p0/m, z0.s, #1.0
^___________^ (tied)
* Instructions added in a previous patch.
llvm-svn: 337272
|
| |
|
|
|
|
| |
Avoids tautological compare warnings on 32bit platforms.
llvm-svn: 337269
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Similarly to rL336736, at least one more C API function does not
properly get declared as extern "C" due to a missing header, causing
name mangling and linking errors.
This patch fixes calls to LLVMAddAggressiveInstCombinerPass().
Differential Revision: https://reviews.llvm.org/D49416
Reviewed By: whitequark
llvm-svn: 337264
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
rL333307 was introduced to remove automatic target triple
normalization when calling sys::getDefaultTargetTriple(), arguing
that users of the latter already called Triple::normalize()
if necessary. However, users of the C API currently have no way of
doing target triple normalization.
This patch introduces an LLVMNormalizeTargetTriple function to
the C API which wraps Triple::normalize() and can be used on
the result of LLVMGetDefaultTargetTriple to achieve the same effect.
Differential Revision: https://reviews.llvm.org/D49414
Reviewed By: whitequark
llvm-svn: 337263
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds support for the following floating point
instructions:
FABD (absolute difference)
FADD (addition)
FSUB (subtract)
FSUBR (subtract reverse form)
FDIV (divide)
FDIVR (divide reverse form)
FMAX (maximum)
FMAXNM (maximum number)
FMIN (minimum)
FMINNM (minimum number)
FSCALE (adjust exponent)
FMULX (multiply extended)
All operations are predicated and binary form, e.g.
fadd z0.h, p0/m, z0.h, z1.h
^___________^ (tied)
Supporting 16, 32 and 64-bit FP elements.
llvm-svn: 337259
|
| |
|
|
|
|
|
|
| |
If we are only extracting vector elements via EXTRACT_VECTOR_ELT(s) we may be able to use SimplifyDemandedVectorElts to avoid unnecessary vector ops.
Differential Revision: https://reviews.llvm.org/D49262
llvm-svn: 337258
|
| |
|
|
| |
llvm-svn: 337257
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The SPLICE instruction splices two vectors into one vector using a
predicate. It copies the active elements from the first vector, and
then fills the remaining elements with the low-numbered elements from
the second vector.
The instruction has the following form, e.g.
splice z0.b, p0, z0.b, z1.b
for 8-bit elements. It also supports 16, 32 and
64-bit elements.
llvm-svn: 337253
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds an instruction that allows extracting
a vector from a pair of vectors, given an immediate index
that describes the element position to extract from.
The instruction has the following assembly:
ext z0.b, z0.b, z1.b, #imm
where #imm is an immediate between 0 and 255.
llvm-svn: 337251
|
| |
|
|
|
|
| |
These are integer versions of patterns that I already fixed for floating point.
llvm-svn: 337240
|
| |
|
|
|
|
|
|
|
|
| |
The ta instruction will always trap, regardless of the value
of the integer condition codes. TRAPri is marked as using icc,
so we cannot use a pattern for TRAPri to implement ta 1, as
verify-machineinstrs can complain that icc is not defined.
Instead we implement ta 1 the same way as ta 5.
llvm-svn: 337236
|
| |
|
|
|
|
|
|
| |
into rndscale with loads, broadcast, and masking.
This amounts to pretty ridiculous number of patterns. Ideally we'd canonicalize the X86ISD::VRNDSCALE earlier to reuse those patterns. I briefly looked into doing that, but some strict FP operations could still get converted to rint and nearbyint during isel. It's probably still worthwhile to look into. This patch is meant as a starting point to work from.
llvm-svn: 337234
|
| |
|
|
|
|
| |
This allows us to use 231 form to fold an insertelement on the add input to the fma. There is technically no software intrinsic that can use this until AVX512F, but it can be manually built up from other intrinsics.
llvm-svn: 337223
|
| |
|
|
|
|
|
|
|
| |
This support was partial and temporary. Now that we have
wasm object file support its no longer needed.
Differential Revision: https://reviews.llvm.org/D48744
llvm-svn: 337222
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As discussed here:
http://lists.llvm.org/pipermail/llvm-dev/2018-May/123292.html
http://lists.llvm.org/pipermail/llvm-dev/2018-July/124400.html
We want to add rotate intrinsics because the IR expansion of that pattern is 4+ instructions,
and we can lose pieces of the pattern before it gets to the backend. Generalizing the operation
by allowing 2 different input values (plus the 3rd shift/rotate amount) gives us a "funnel shift"
operation which may also be a single hardware instruction.
Initially, I thought we needed to define new DAG nodes for these ops, and I spent time working
on that (much larger patch), but then I concluded that we don't need it. At least as a first
step, we have all of the backend support necessary to match these ops...because it was required.
And shepherding these through the IR optimizer is the primary concern, so the IR intrinsics are
likely all that we'll ever need.
There was also a question about converting the intrinsics to the existing ROTL/ROTR DAG nodes
(along with improving the oversized shift documentation). Again, I don't think that's strictly
necessary (as the test results here prove). That can be an efficiency improvement as a small
follow-up patch.
So all we're left with is documentation, definition of the IR intrinsics, and DAG builder support.
Differential Revision: https://reviews.llvm.org/D49242
llvm-svn: 337221
|
| |
|
|
| |
llvm-svn: 337218
|
| |
|
|
|
|
|
|
|
|
|
|
| |
In a followup I'm looking to add a Microsoft demangler. Doing
so needs a lot of the same utility classes and feature test
macros which are already implemented in ItaniumDemangle.cpp.
So move all of these things into header files so that they
can be re-used by a new demangler.
Differential Revision: https://reviews.llvm.org/D49399
llvm-svn: 337217
|
| |
|
|
| |
llvm-svn: 337200
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Optimize fma((float)S0.x, (float)S1.x fma((float)S0.y, (float)S1.y, z))
-> fdot2((v2f16)S0, (v2f16)S1, (float)z)
Author: FarhanaAleen
Reviewed By: rampitec, b-sumner
Subscribers: AMDGPU
Differential Revision: https://reviews.llvm.org/D49146
llvm-svn: 337198
|
| |
|
|
| |
llvm-svn: 337192
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
[[ https://bugs.llvm.org/show_bug.cgi?id=38149 | PR38149 ]]
As discussed in https://reviews.llvm.org/D49179#1158957 and later,
the IR for 'check for [no] signed truncation' pattern can be improved:
https://rise4fun.com/Alive/gBf
^ that pattern will be produced by Implicit Integer Truncation sanitizer,
https://reviews.llvm.org/D48958 https://bugs.llvm.org/show_bug.cgi?id=21530
in signed case, therefore it is probably a good idea to improve it.
Proofs for this transform: https://rise4fun.com/Alive/mgu
This transform is surprisingly frustrating.
This does not deal with non-splat shift amounts, or with undef shift amounts.
I've outlined what i think the solution should be:
```
// Potential handling of non-splats: for each element:
// * if both are undef, replace with constant 0.
// Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
// * if both are not undef, and are different, bailout.
// * else, only one is undef, then pick the non-undef one.
```
The DAGCombine will reverse this transform, see
https://reviews.llvm.org/D49266
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: JDevlieghere, rkruppe, llvm-commits
Differential Revision: https://reviews.llvm.org/D49320
llvm-svn: 337190
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
trivially rematerializable.
We run into a case where machineLICM hoists a large number of live ranges
outside of a big loop because it thinks those live ranges are trivially
rematerializable. In regalloc, global splitting is tried out first for those
live ranges before they are spilled and rematerialized. Because the global
splitting algorithm is quadratic, increasing a lot of global splitting
candidates causes huge compile time increase (50s to 1400s on my local
machine when compiling a module).
However, we think for live ranges which are very large and are trivially
rematerialiable, it is better to just skip global splitting so as to save
compile time with little chance of sacrificing performance. We uses the
segment size of live range to indirectly evaluate whether the global
splitting of the live range can introduce high cost, and use an option
as a knob to adjust the size limit threshold.
Differential Revision: https://reviews.llvm.org/D49353
llvm-svn: 337186
|