| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
| |
intrinsics. NFC
llvm-svn: 286961
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Summary: This is needed to be able to use this flags in InstrMappings.
Reviewers: tstellarAMD, vpykhtin
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, tony-tye
Differential Revision: https://reviews.llvm.org/D26666
llvm-svn: 286960
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Fix a case where the overflow value of type i1, which is legal on AVX512, was assigned to a VK1 register class.
We always want this value to be assigned to a GPR since the overflow return value is lowered to a SETO instruction.
Fixes pr30981.
Reviewers: mkuper, igorb, craig.topper, guyblank, qcolombet
Subscribers: qcolombet, llvm-commits
Differential Revision: https://reviews.llvm.org/D26620
llvm-svn: 286958
|
| |
|
|
|
|
| |
This commit is used to test commit access.
llvm-svn: 286957
|
| |
|
|
|
|
|
|
|
|
|
| |
For 64bit ABIs it is common practice to use relative Jump Tables with
potentially different relocation bases. As the logic for the jump table
itself doesn't depend on the relocation base, make it easier for targets
to use the generic logic. Start by dropping the now redundant MIPS logic.
Differential Revision: https://reviews.llvm.org/D26578
llvm-svn: 286951
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds the Sched Machine Model for Cortex-R52.
Details of the pipeline and descriptions are in comments
in file ARMScheduleR52.td included in this patch.
Reviewers: rengolin, jmolloy
Differential Revision: https://reviews.llvm.org/D26500
llvm-svn: 286949
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
bugzilla:
https://llvm.org/bugs/show_bug.cgi?id=29002
pr29002
Differential Revision: https://reviews.llvm.org/D26449
llvm-svn: 286938
|
| |
|
|
| |
llvm-svn: 286936
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Add basic functionality to support call lowering for X86.
Currently only supports functions which return void and take zero arguments.
Inspired by commit 286573.
Reviewers: ab, qcolombet, t.p.northover
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26593
llvm-svn: 286935
|
| |
|
|
|
|
|
|
|
|
| |
age tracking.
One day we'd like to remove some of this autoupgrade support and it will be easier if we know how long some of it has been around.
Differential Revision: https://reviews.llvm.org/D26321
llvm-svn: 286933
|
| |
|
|
| |
llvm-svn: 286931
|
| |
|
|
|
|
| |
This patch defines a memcmp-ish helper function to simplify identify_magic.
llvm-svn: 286928
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch gets a DWARF parsing speed improvement by having DWARFAbbreviationDeclaration instances know if they have a fixed byte size. If an abbreviation has a fixed byte size that can be calculated given a DWARFUnit, then parsing a DIE becomes two steps: parse ULEB128 abbrev code, and then add constant size to the offset.
This patch also adds a fixed byte size to each DWARFAbbreviationDeclaration::AttributeSpec so that attributes can quickly skip their values if needed without the need to lookup the fixed for size.
Notable improvements:
- DWARFAbbreviationDeclaration::findAttributeIndex() now returns an Optional<uint32_t> instead of a uint32_t and we no longer have to look for the magic -1U return value
- Optional<uint32_t> DWARFAbbreviationDeclaration::findAttributeIndex(dwarf::Attribute attr) const;
- DWARFAbbreviationDeclaration now has a getAttributeValue() function that extracts an attribute value given a DIE offset that takes advantage of the DWARFAbbreviationDeclaration::AttributeSpec::ByteSize
- bool DWARFAbbreviationDeclaration::getAttributeValue(const uint32_t DIEOffset, const dwarf::Attribute Attr, const DWARFUnit &U, DWARFFormValue &FormValue) const;
- A DWARFAbbreviationDeclaration instance can return a fixed byte size for itself so DWARF parsing is faster:
- Optional<size_t> DWARFAbbreviationDeclaration::getFixedAttributesByteSize(const DWARFUnit &U) const;
- Any functions that used to take a "const DWARFUnit *U" that would crash if U was NULL now take a "const DWARFUnit &U" and are only called with a valid DWARFUnit
Differential Revision: https://reviews.llvm.org/D26567
llvm-svn: 286924
|
| |
|
|
| |
llvm-svn: 286920
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This patch makes it possible to identify object files created by CL.exe
with /GL option. Such file contains Microsoft proprietary intermediate
code instead of target machine code to do LTO.
I need this to print out user-friendly error message from LLD.
Differential Revision: https://reviews.llvm.org/D26645
llvm-svn: 286919
|
| |
|
|
|
|
|
| |
This doesn't solve any problems I know about, but this should have
more conservative assumptions about the operands'
llvm-svn: 286913
|
| |
|
|
| |
llvm-svn: 286912
|
| |
|
|
|
|
|
|
|
|
| |
Reviewers: qcolombet, MatzeB
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D26573
llvm-svn: 286911
|
| |
|
|
|
|
|
|
|
|
| |
Implement the Newton series for square root, its reciprocal and reciprocal
natively using the specialized instructions in AArch64 to perform each
series iteration.
Differential revision: https://reviews.llvm.org/D26518
llvm-svn: 286907
|
| |
|
|
|
|
|
|
|
|
|
| |
This was causing us to create duplicate metadata on global variables.
Debug info test case by Adrian Prantl, additional test cases by me.
Fixes PR31012.
Differential Revision: https://reviews.llvm.org/D26622
llvm-svn: 286905
|
| |
|
|
|
|
|
|
|
|
| |
Reviewers: qcolombet, MatzeB
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D26572
llvm-svn: 286895
|
| |
|
|
|
|
|
|
|
|
| |
during unwinding), LLVM part
This adds support for TSan C++ exception handling, where we need to add extra calls to __tsan_func_exit when a function is exitted via exception mechanisms. Otherwise the shadow stack gets corrupted (leaked). This patch moves and enhances the existing implementation of EscapeEnumerator that finds all possible function exit points, and adds extra EH cleanup blocks where needed.
Differential Revision: https://reviews.llvm.org/D26177
llvm-svn: 286893
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The philosophy of the error checking in libObject for Mach-O files
is that the constructor will check the load commands so for their
tables the offsets and sizes are properly contained in the file.
But there is no checking of the entries of any of the tables.
For the contents of the tables themselves the methods accessing
the contents of the entries return errors as needed. In some
cases this however makes it difficult or cumbersome to produce
a good error message which would include the tool name, file name,
archive member, and name of the architecture of a slice of a universal file
the error occurred in.
So idea is that there will be a method to check a table which can
be called up front before using it allowing a good error message
to be produced before a table is used. And if only verification of
the Mach-O file and its tables are wanted a new possible method
checkAllTables() could be added to call all of the methods to
check all the tables at some time when such methods exist.
The checkSymbolTable() is the first of such methods to check
one of the Mach-O file tables. This method initially will used in
llvm-objdump’s DisassembleMachO() routine before it gets the
section and symbol information. As if there are problems with
the symbol table currently the error is first encountered by the
bool operator() in the SymbolSorter() struct which passed to
std::sort(). In this case there is no context as to the file name
the symbol which results a poor error message:
LLVM ERROR: truncated or malformed object (bad string index: 22 for symbol at index 1)
with the added call to the checkSymbolTable() method the
error message includes the tool name and file name:
llvm-objdump: 'macho-invalid-symbol-strx': truncated or malformed object (bad string table index: 22 past the end of string table, for symbol at index 1)
llvm-svn: 286887
|
| |
|
|
|
|
|
| |
Change "orisadd" to "IsOrAdd" to follow the naming conventions, and
change "isOrAdd" in the C++ code to "isOrEquivalentToAdd".
llvm-svn: 286886
|
| |
|
|
| |
llvm-svn: 286882
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For example we were producing
push {r8, r10, r11, r4, r5, r7, lr}
This is misleading (r4, r5 and r7 are actually pushed before the rest), and
other components (stack folding recently) often forget to deal with the extra
complexity coming from the different order, leading to miscompiles. Finally, we
warn about our own code in -no-integrated-as mode without this, which is really
not a good idea.
Fixed usage of std::sort so that we (hopefully) use instantiations that
actually exist in GCC 4.8.
llvm-svn: 286881
|
| |
|
|
|
|
| |
Follow-up change to r286875.
llvm-svn: 286879
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Replace a splat of zeros to a vector store by scalar stores of WZR/XZR.
The load store optimizer pass will merge them to store pair stores.
This should be better than a movi to create the vector zero followed by
a vector store if the zero constant is not re-used, since one
instructions and one register live range will be removed.
For example, the final generated code should be:
stp xzr, xzr, [x0]
instead of:
movi v0.2d, #0
str q0, [x0]
Reviewers: t.p.northover, mcrosier, MatzeB, jmolloy
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D26561
llvm-svn: 286875
|
| |
|
|
| |
llvm-svn: 286874
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
We have always speculatively promoted all renamable local values
(except const non-address taken variables) for both the exporting
and importing module. We would then internalize them back based on
the ThinLink results if they weren't actually exported. This is
inefficient, and results in unnecessary renames. It also meant we
had to check the non-renamability of a value in the summary, which
was already checked during function importing analysis in the ThinLink.
Made renameModuleForThinLTO (which does the promotion/renaming) instead
use the index when exporting, to avoid unnecessary renames/promotions.
For importing modules, we can simply promoted all values as any local
we import by definition is exported and needs promotion.
This required changes to the method used by the FunctionImport pass
(only invoked from 'opt' for testing) and when invoked from llvm-link,
since neither does a ThinLink. We simply conservatively mark all locals
in the index as promoted, which preserves the current aggressive
promotion behavior.
I also needed to change an llvm-lto based test where we had previously
been aggressively promoting values that weren't importable (aliasees),
but now will not promote.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26467
llvm-svn: 286871
|
| |
|
|
| |
llvm-svn: 286870
|
| |
|
|
| |
llvm-svn: 286869
|
| |
|
|
| |
llvm-svn: 286868
|
| |
|
|
|
|
|
| |
This reverts commit 286866. It broke a bot, something to do with exactly which
templates std::sort accepts.
llvm-svn: 286867
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
For example we were producing
push {r8, r10, r11, r4, r5, r7, lr}
This is misleading (r4, r5 and r7 are actually pushed before the rest), and
other components (stack folding recently) often forget to deal with the extra
complexity coming from the different order, leading to miscompiles. Finally, we
warn about our own code in -no-integrated-as mode without this, which is really
not a good idea.
llvm-svn: 286866
|
| |
|
|
|
|
|
|
|
| |
add an intrinsic to expose the 'VSX Scalar Convert Half-Precision to
Single-Precision' instruction.
Differential review: https://reviews.llvm.org/D26536
llvm-svn: 286862
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Extend image intrinsics to support data types of V1F32 and V2F32.
TODO: we should define a mapping table to change the opcode for data type of V2F32 but just one channel is active,
even though such case should be very rare.
Reviewers:
tstellarAMD
Differential Revision:
http://reviews.llvm.org/D26472
llvm-svn: 286860
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Darwin's backtrace() function does not work with sigaltstack (which was
enabled when available with r270395) — it does a sanity check to make
sure that the current frame pointer is within the expected stack area
(which it is not when using an alternate stack) and gives up otherwise.
The alternative of _Unwind_Backtrace seems to work fine on macOS, so use
that when backtrace() fails. Note that we then use backtrace_symbols_fd()
with the addresses from _Unwind_Backtrace, but I’ve tested that and it
also seems to work fine. rdar://problem/28646552
llvm-svn: 286851
|
| |
|
|
| |
llvm-svn: 286845
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This restores the rest of r286297 (part was restored in r286475).
Specifically, it restores the part requiring adding a dependency from
the Analysis to Object library (downstream use changed to correctly
model split BitReader vs BitWriter libraries).
Original description of this part of patch follows:
Module level asm may also contain defs of values. We need to prevent
export of any refs to local values defined in module level asm (e.g. a
ref in normal IR), since that also requires renaming/promotion of the
local. To do that, the summary index builder looks at all values in the
module level asm string that are not marked Weak or Global, which is
exactly the set of locals that are defined. A summary is created for
each of these local defs and flagged as NoRename.
This required adding handling to the BitcodeWriter to look at GV
declarations to see if they have a summary (rather than skipping them
all).
Finally, added an assert to IRObjectFile::CollectAsmUndefinedRefs to
ensure that an MCAsmParser is available, otherwise the module asm parse
would silently fail. Initialized the asm parser in the opt tool for use
in testing this fix.
Fixes PR30610.
llvm-svn: 286844
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The Stack slot coloring pass removes a store that is followed by a load
that deal with the same stack slot. The function isLoadFromStackSlot
is supposed to consider the loads that have no side-effects. This
patch fixed the issue by removing the unsafe loads from this function
Eg:
%vreg0<def> = L2_loadruh_io <fi#15>, 0
S2_storeri_io <fi#15>, 0, %vreg0
In this case, we load an unsigned extended half word and store this in to
the same stack slot. The Stack slot coloring pass considers safe to remove
the store. This patch marked all the non-vector byte and half word loads as
unsafe.
llvm-svn: 286843
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The change in r285513 to prevent exporting of locals used in
inline asm added all locals in the llvm.used set to the reference
set of functions containing inline asm. Since these locals were marked
NoRename, this automatically prevented importing of the function.
Unfortunately, this caused an explosion in the summary reference lists
in some cases. In my particular example, it happened for a large protocol
buffer generated C++ file, where many of the generated functions
contained an inline asm call. It was exacerbated when doing a ThinLTO
PGO instrumentation build, where the PGO instrumentation included
thousands of private __profd_* values that were added to llvm.used.
We really only need to include a single llvm.used local (NoRename) value
in the reference list of a function containing inline asm to block it
being imported. However, it seems cleaner to add a flag to the summary
that explicitly describes this situation, which is what this patch does.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26402
llvm-svn: 286840
|
| |
|
|
|
|
| |
More realistic v16i8/v32i8/v64i8 MUL costs - we have to extend to vXi16, use PMULLW and then truncate the result
llvm-svn: 286838
|
| |
|
|
|
|
|
|
| |
Add explicit v16i16/v32i8 ADD/SUB costs, matching the costs of v4i64/v8i32 - they were missing for some reason.
This has side effects on the LV max bandwidth tests (AVX1 now prefers 128-bit vectors vs AVX2 which still prefers 256-bit)
llvm-svn: 286832
|
| |
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D26272
llvm-svn: 286829
|
| |
|
|
|
|
| |
We were already testing is the op was not a leaf, so need to then test if it was a leaf (added it to the assert instead).
llvm-svn: 286817
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When calculating the cost of a call instruction we were applying a heuristic penalty as well as the cost of the instruction itself.
However, when calculating the benefit from inlining we weren't discounting the equivalent penalty for the call instruction that would be removed! This caused skew in the calculation and meant we wouldn't inline in the following, trivial case:
int g() {
h();
}
int f() {
g();
}
llvm-svn: 286814
|
| |
|
|
|
|
|
|
|
|
| |
'A || (!A && B)' is equivalent to 'A || B':
(LoopCycle > DefCycle) || (LoopCycle <= DefCycle && LoopStage <= DefStage)
-->
(LoopCycle > DefCycle) || (LoopStage <= DefStage)
llvm-svn: 286811
|
| |
|
|
| |
llvm-svn: 286808
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Unfolding selects was previously done with the help of a vector
of pointers that was then sorted to be able to remove duplicates.
As this sorting depends on the memory addresses, it was
non-deterministic. A SetVector is used now so that duplicates are
removed without the need of sorting first.
Reviewers: mgrang, efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26450
llvm-svn: 286807
|