| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
| |
If the branch was on a read-undef of vcc, passes that used
analyzeBranch to invert the branch condition wouldn't preserve
the undef flag resulting in a verifier error.
Fixes verifier failures in a future commit.
Also fix verifier error when inserting copy for vccz
corruption bug.
llvm-svn: 286133
|
|
|
|
|
|
| |
Separate the subregister splitting logic to re-use later.
llvm-svn: 286118
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The post-RA scheduler occasionally uses additional implicit operands when
the vector implicit operand as a whole is killed, but some subregisters
are still live because they are directly referenced later. Unfortunately,
this seems incredibly subtle to reproduce.
Fixes piglit spec/glsl-110/execution/variable-indexing/vs-temp-array-mat2-index-wr.shader_test
and others.
Reviewers: arsenm, tstellarAMD
Subscribers: kzhuravl, wdng, yaxunl, tony-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D25656
llvm-svn: 285835
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the conservatively correct way because it's easy to
move or replace a scalar immediate. This was incorrect in the case
when the register class wasn't known from the static instruction
definition, but still needed to be an SGPR. The main example of this
is inlineasm has an SGPR constraint.
Also start verifying the register classes of inlineasm operands.
llvm-svn: 285762
|
|
|
|
|
|
|
|
|
|
| |
Instructions with a 32-bit base encoding with an optional
32-bit literal encoded after them report their size as 4
for the disassembler. Consider these when computing the
MachineInstr size. This fixes problems caused by size estimate
consistency in BranchRelaxation.
llvm-svn: 285743
|
|
|
|
|
|
| |
I'm guessing at how it is supposed to be printed
llvm-svn: 285490
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Flat instruction can return out of order, so we need always need to wait
for all the outstanding flat operations.
Reviewers: tony-tye, arsenm
Subscribers: kzhuravl, wdng, nhaehnle, llvm-commits, yaxunl
Differential Revision: https://reviews.llvm.org/D25998
llvm-svn: 285479
|
|
|
|
|
|
|
|
|
|
| |
Also add glc bit to the scalar loads since they exist on VI
and change the caching behavior.
This currently has an assembler bug where the glc bit is incorrectly
accepted on SI/CI which do not have it.
llvm-svn: 285463
|
|
|
|
|
|
|
|
|
|
|
| |
It's possible to have a use of the private resource descriptor or
scratch wave offset registers even though there are no allocated
stack objects. This would result in continuing to use the maximum
number reserved registers. This could go over the number of SGPRs
available on VI, or violate the SGPR limit requested by
the function attributes.
llvm-svn: 285435
|
|
|
|
| |
llvm-svn: 285202
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The v_movreld machine instruction is used with three operands that are
in a sense tied to each other (the explicit VGPR_32 def and the implicit
VGPR_NN def and use). There is no way to express that using the currently
available operand bits, and indeed there are cases where the Two Address
instructions pass does the wrong thing.
This patch introduces a new set of pseudo instructions that are identical
in intended semantics as v_movreld, but they only have two tied operands.
Having to add a new set of pseudo instructions is admittedly annoying, but
it's a fairly straightforward and solid approach. The only alternative I
see is to try to teach the Two Address instructions pass about Three Address
instructions, and I'm afraid that's trickier and is going to end up more
fragile.
Note that v_movrels does not suffer from this problem, and so this patch
does not touch it.
This fixes several GL45-CTS.shaders.indexing.* tests.
Reviewers: tstellarAMD, arsenm
Subscribers: kzhuravl, wdng, yaxunl, llvm-commits, tony-tye
Differential Revision: https://reviews.llvm.org/D25633
llvm-svn: 284980
|
|
|
|
|
|
|
|
| |
and global address space variables
Differential Revision: https://reviews.llvm.org/D25562
llvm-svn: 284196
|
|
|
|
|
|
|
|
|
|
|
| |
This is the most basic handling of the indirect access
pseudos using GPR indexing mode. This currently only enables
the mode for a single v_mov_b32 and then disables it.
This is much more complicated to use than the movrel instructions,
so a new optimization pass is probably needed to fold the access
into the uses and keep the mode enabled for them.
llvm-svn: 284031
|
|
|
|
|
|
|
| |
AMDGPU needs to expand unconditional branches in a new
block with an indirect branch.
llvm-svn: 283464
|
|
|
|
|
|
|
|
|
|
| |
For some reason there are both of these available, except
for scalar 64-bit compares which only has u64. I'm not sure
why there are both (I'm guessing it's for the one bit inputs we
don't use), but for consistency always using the
unsigned one.
llvm-svn: 282832
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fixes to allow spilling all registers at the end of the block
work with exec modifications. Don't emit s_and_saveexec_b64 for
if lowering, and instead emit copies. Mark control flow mask
instructions as terminators to get correct spill code placement
with fast regalloc, and then have a separate optimization pass
form the saveexec.
This should work if SGPRs are spilled to VGPRs, but
will likely fail in the case that an SGPR spills to memory
and no workitem takes a divergent branch.
llvm-svn: 282667
|
|
|
|
|
|
| |
VI added eq/ne for i64, so use them.
llvm-svn: 281800
|
|
|
|
| |
llvm-svn: 281780
|
|
|
|
| |
llvm-svn: 281535
|
|
|
|
|
|
|
| |
analyzeBranch was renamed to use lowercase first, rename
the related set to match.
llvm-svn: 281506
|
|
|
|
|
|
|
|
|
| |
The main change is to return the code size from
InsertBranch/RemoveBranch.
Patch mostly by Tim Northover
llvm-svn: 281505
|
|
|
|
| |
llvm-svn: 281369
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: arsenm, tstellarAMD, mareko
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: http://reviews.llvm.org/D22198
llvm-svn: 281230
|
|
|
|
| |
llvm-svn: 281128
|
|
|
|
|
|
|
|
|
|
| |
If the literal is being folded into src0, it doesn't matter
if it's an SGPR because it's being replaced with the literal.
Also fixes initially selecting 32-bit versions of some instructions
which also confused commuting.
llvm-svn: 281117
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Prevously assembler parsed all literals as either 32-bit integers or 32-bit floating-point values. Because of this we couldn't support f64 literals.
E.g. in instruction "v_fract_f64 v[0:1], 0.5", literal 0.5 was encoded as 32-bit literal 0x3f000000, which is incorrect and will be interpreted as 3.0517578125E-5 instead of 0.5. Correct encoding is inline constant 240 (optimal) or 32-bit literal 0x3FE00000 at least.
With this change the way immediate literals are parsed is changed. All literals are always parsed as 64-bit values either integer or floating-point. Then we convert parsed literals to correct form based on information about type of operand parsed (was literal floating or binary) and type of expected instruction operands (is this f32/64 or b32/64 instruction).
Here are rules how we convert literals:
- We parsed fp literal:
- Instruction expects 64-bit operand:
- If parsed literal is inlinable (e.g. v_fract_f64_e32 v[0:1], 0.5)
- then we do nothing this literal
- Else if literal is not-inlinable but instruction requires to inline it (e.g. this is e64 encoding, v_fract_f64_e64 v[0:1], 1.5)
- report error
- Else literal is not-inlinable but we can encode it as additional 32-bit literal constant
- If instruction expect fp operand type (f64)
- Check if low 32 bits of literal are zeroes (e.g. v_fract_f64 v[0:1], 1.5)
- If so then do nothing
- Else (e.g. v_fract_f64 v[0:1], 3.1415)
- report warning that low 32 bits will be set to zeroes and precision will be lost
- set low 32 bits of literal to zeroes
- Instruction expects integer operand type (e.g. s_mov_b64_e32 s[0:1], 1.5)
- report error as it is unclear how to encode this literal
- Instruction expects 32-bit operand:
- Convert parsed 64 bit fp literal to 32 bit fp. Allow lose of precision but not overflow or underflow
- Is this literal inlinable and are we required to inline literal (e.g. v_trunc_f32_e64 v0, 0.5)
- do nothing
- Else report error
- Do nothing. We can encode any other 32-bit fp literal (e.g. v_trunc_f32 v0, 10000000.0)
- Parsed binary literal:
- Is this literal inlinable (e.g. v_trunc_f32_e32 v0, 35)
- do nothing
- Else, are we required to inline this literal (e.g. v_trunc_f32_e64 v0, 35)
- report error
- Else, literal is not-inlinable and we are not required to inline it
- Are high 32 bit of literal zeroes or same as sign bit (32 bit)
- do nothing (e.g. v_trunc_f32 v0, 0xdeadbeef)
- Else
- report error (e.g. v_trunc_f32 v0, 0x123456789abcdef0)
For this change it is required that we know operand types of instruction (are they f32/64 or b32/64). I added several new register operands (they extend previous register operands) and set operand types to corresponding types:
'''
enum OperandType {
OPERAND_REG_IMM32_INT,
OPERAND_REG_IMM32_FP,
OPERAND_REG_INLINE_C_INT,
OPERAND_REG_INLINE_C_FP,
}
'''
This is not working yet:
- Several tests are failing
- Problems with predicate methods for inline immediates
- LLVM generated assembler parts try to select e64 encoding before e32.
More changes are required for several AsmOperands.
Reviewers: vpykhtin, tstellarAMD
Subscribers: arsenm, kzhuravl, artem.tamazov
Differential Revision: https://reviews.llvm.org/D22922
llvm-svn: 281050
|
|
|
|
|
|
|
| |
This will confuse later passes which try to look at the
immediate value and don't truncate first.
llvm-svn: 280974
|
|
|
|
| |
llvm-svn: 280970
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Implemented amdgpu-flat-work-group-size attribute
- Implemented amdgpu-num-active-waves-per-eu attribute
- Implemented amdgpu-num-sgpr attribute
- Implemented amdgpu-num-vgpr attribute
- Dynamic LDS constraints are in a separate patch
Patch by Tom Stellard and Konstantin Zhuravlyov
Differential Revision: https://reviews.llvm.org/D21562
llvm-svn: 280747
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
I put this code here, because I want to re-use it in a few other places.
This supersedes some of the immediate folding code we have in SIFoldOperands.
I think the peephole optimizers is probably a better place for folding
immediates into copies, since it does some register coalescing in the same time.
This will also make it easier to transition SIFoldOperands into a smarter pass,
where it looks at all uses of instruction at once to determine the optimal way to
fold operands. Right now, the pass just considers one operand at a time.
Reviewers: arsenm
Subscribers: wdng, nhaehnle, arsenm, llvm-commits, kzhuravl
Differential Revision: https://reviews.llvm.org/D23402
llvm-svn: 280744
|
|
|
|
| |
llvm-svn: 280595
|
|
|
|
|
|
|
|
|
| |
readlane/writelane do not support using m0 as the output/input.
Constrain the register class of spill vregs to try to avoid this,
but also handle spilling of the physreg when necessary by inserting
an additional copy to a normal SGPR.
llvm-svn: 280584
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The SILoadStoreOptimizer will need to use AliasAnalysis here in order to
move it before scheduling.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: https://reviews.llvm.org/D23813
llvm-svn: 279963
|
|
|
|
|
|
|
|
| |
There's only one use of this for the convenience
of a pattern. I think v_mov_b64_pseudo should also be
moved, but SIFoldOperands does currently make use of it.
llvm-svn: 279901
|
|
|
|
|
|
|
| |
This is a mechanical change of comments in switches like fallthrough,
fall-through, or fall-thru to use the LLVM_FALLTHROUGH macro instead.
llvm-svn: 278902
|
|
|
|
| |
llvm-svn: 278590
|
|
|
|
| |
llvm-svn: 278274
|
|
|
|
|
|
|
| |
getFrameInfo() never returns nullptr so we should use a reference
instead of a pointer.
llvm-svn: 277017
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
We were using reserved VGPRs for SGPR spilling and this was causing
some programs with a workgroup size of 1024 to use more than 64
registers, which is illegal.
Reviewers: arsenm, mareko, nhaehnle
Subscribers: nhaehnle, arsenm, llvm-commits, kzhuravl
Differential Revision: https://reviews.llvm.org/D22032
llvm-svn: 276980
|
|
|
|
|
|
|
|
|
| |
ABIArgOffset is a problem because properly fsetting the
KernArgSize requires that the reserved area before the
real kernel arguments be correctly aligned, which requires
fixing clover.
llvm-svn: 276766
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is to help moveSILowerControlFlow to before regalloc.
There are a couple of tradeoffs with this. The complete CFG
is visible to more passes, the loop body avoids an extra copy of m0,
vcc isn't required, and immediate offsets can be shrunk into s_movk_i32.
The disadvantage is the register allocator doesn't understand that
the single lane's vector is dead within the loop body, so an extra
register is used to outlive the loop block when expanding the
VGPR -> m0 loop. This also now results in worse waitcnt insertion
before the loop instead of after for pending operations at the point
of the indexing, but that should be fixed by future improvements to
cross block waitcnt insertion.
v_movreld_b32's operands are now modeled more correctly since vdst
is not a true output. This is kind of a hack to treat vdst as a
use operand. Extra checking is required in the verifier since
I can't seem to get tablegen to emit an implicit operand for a
virtual register.
llvm-svn: 275934
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In this situation:
%VGPR2<def> = BUFFER_LOAD_DWORD_OFFSET %SGPR8_SGPR9_SGPR10_SGPR11,
%VGPR7<def,tied3> = V_MAC_F32_e32 %VGPR0<undef>, %VGPR1<kill>, %VGPR7<kill,tied0>, %EXEC<imp-use>
%VGPR3_VGPR4_VGPR5_VGPR6<def> = COPY %VGPR0_VGPR1_VGPR2_VGPR3
%VGPR4<def> = COPY %VGPR2
The copy for VGPR1 -> VGPR4 was an error from reading undefined VGPR1,
but VGPR4 is defined immediately after this copy.
llvm-svn: 275635
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: NFC. Rename AnalyzeBranch/AnalyzeBranchPredicate to analyzeBranch/analyzeBranchPredicate to follow LLVM coding style and be consistent with TargetInstrInfo's analyzeCompare and analyzeSelect.
Reviewers: tstellarAMD, mcrosier
Subscribers: mcrosier, jholewinski, jfb, arsenm, dschuff, jyknight, dsanders, nemanjai
Differential Revision: https://reviews.llvm.org/D22409
llvm-svn: 275564
|
|
|
|
| |
llvm-svn: 275133
|
|
|
|
| |
llvm-svn: 274979
|
|
|
|
| |
llvm-svn: 274954
|
|
|
|
| |
llvm-svn: 274953
|
|
|
|
|
|
|
|
|
|
|
| |
Remove remaining implicit conversions from MachineInstrBundleIterator to
MachineInstr* from the AMDGPU backend. In most cases, I made them less
attractive by preferring MachineInstr& or using a ranged-based for loop.
Once all the backends are fixed I'll make the operator explicit so that
this doesn't bitrot back.
llvm-svn: 274906
|
|
|
|
|
|
|
|
|
|
| |
Because of the special immediate operand, the constant
bus is already used so SGPRs are never useful.
r263212 changed the name of the immediate operand, which
broke the verifier check for the restriction.
llvm-svn: 274564
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is mostly a mechanical change to make TargetInstrInfo API take
MachineInstr& (instead of MachineInstr* or MachineBasicBlock::iterator)
when the argument is expected to be a valid MachineInstr. This is a
general API improvement.
Although it would be possible to do this one function at a time, that
would demand a quadratic amount of churn since many of these functions
call each other. Instead I've done everything as a block and just
updated what was necessary.
This is mostly mechanical fixes: adding and removing `*` and `&`
operators. The only non-mechanical change is to split
ARMBaseInstrInfo::getOperandLatencyImpl out from
ARMBaseInstrInfo::getOperandLatency. Previously, the latter took a
`MachineInstr*` which it updated to the instruction bundle leader; now,
the latter calls the former either with the same `MachineInstr&` or the
bundle leader.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
Note: I updated WebAssembly, Lanai, and AVR (despite being
off-by-default) since it turned out to be easy. I couldn't run tests
for AVR since llc doesn't link with it turned on.
llvm-svn: 274189
|