| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
For builds with LLVM_BUILD_LLVM_DYLIB=ON and BUILD_SHARED_LIBS=OFF
this change makes all symbols in the target specific libraries hidden
by default.
A new macro called LLVM_EXTERNAL_VISIBILITY has been added to mark symbols in these
libraries public, which is mainly needed for the definitions of the
LLVMInitialize* functions.
This patch reduces the number of public symbols in libLLVM.so by about
25%. This should improve load times for the dynamic library and also
make abi checker tools, like abidiff require less memory when analyzing
libLLVM.so
One side-effect of this change is that for builds with
LLVM_BUILD_LLVM_DYLIB=ON and LLVM_LINK_LLVM_DYLIB=ON some unittests that
access symbols that are no longer public will need to be statically linked.
Before and after public symbol counts (using gcc 8.2.1, ld.bfd 2.31.1):
nm before/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
36221
nm after/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
26278
Reviewers: chandlerc, beanz, mgorny, rnk, hans
Reviewed By: rnk, hans
Subscribers: merge_guards_bot, luismarques, smeenai, ldionne, lenary, s.egerton, pzheng, sameer.abuasal, MaskRay, wuzish, echristo, Jim, hiraditya, michaelplatings, chapuni, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, kristina, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D54439
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
which is the default TLS model for non-PIC objects. This allows large/
many thread local variables or a compact/fast code in an executable.
Specification is same as that of GCC. For example, the code model
option precedes the TLS size option.
TLS access models other than local-exec are not changed. It means
supoort of the large code model is only in the local exec TLS model.
Patch By KAWASHIMA Takahiro (kawashima-fj <t-kawashima@fujitsu.com>)
Reviewers: dmgreen, mstorsjo, t.p.northover, peter.smith, ostannard
Reviewd By: peter.smith
Committed by: peter.smith
Differential Revision: https://reviews.llvm.org/D71688
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Coaleascer should be coalescer.
Reviewers: qcolombet, Jim
Reviewed By: Jim
Subscribers: Jim, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70731
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D69434
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Inserting BTI instructions can push branch destinations out of range.
The branch relaxation pass itself cannot insert indirect branches since `TargetInstrInfo::insertIndirecrtBranch` is not implemented for AArch64 (guess +/-128 MB direct branch range is more than enough in practice).
Testing this is a bit tricky.
The original test case we have is 155kloc/6.1M. I've generated a test case using this program:
```
int main() {
std::cout << R"src(int test();
void g0(), g1(), g2(), g3(), g4(), e();
void f(int v) {
if ((test() & 2) == 0) {
switch (v) {
case 0:
g0();
case 1:
g1();
case 2:
g2();
case 3:
g3();
}
)src";
const int N = 8176;
for (int i = 0; i < N; ++i)
std::cout << " void h" << i << "();\n";
for (int i = 0; i < N; ++i)
std::cout << " h" << i << "();\n";
std::cout << R"src(
} else {
e();
}
}
)src";
}
```
which is still a bit too much to commit as a regression test, IMHO.
Reviewers: t.p.northover, ostannard
Reviewed By: ostannard
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69118
Change-Id: Ide5c922bcde08ff4cf635da5e52365525a997a0a
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
A new function pass (Transforms/CFGuard/CFGuard.cpp) inserts CFGuard checks on
indirect function calls, using either the check mechanism (X86, ARM, AArch64) or
or the dispatch mechanism (X86-64). The check mechanism requires a new calling
convention for the supported targets. The dispatch mechanism adds the target as
an operand bundle, which is processed by SelectionDAG. Another pass
(CodeGen/CFGuardLongjmp.cpp) identifies and emits valid longjmp targets, as
required by /guard:cf. This feature is enabled using the `cfguard` CC1 option.
Reviewers: thakis, rnk, theraven, pcc
Subscribers: ychen, hans, metalcanine, dmajor, tomrittervg, alex, mehdi_amini, mgorny, javed.absar, kristof.beyls, hiraditya, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D65761
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
AArch64 GlobalISel doesn't support MachO's large code model, so this patch
adds a check for that combination before implicitly enabling it.
Reviewers: paquette
Subscribers: kristof.beyls, ributzka, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67724
llvm-svn: 372256
|
|
|
|
|
|
|
|
| |
This is the main CodeGen patch to support the arm64_32 watchOS ABI in LLVM.
FastISel is mostly disabled for now since it would generate incorrect code for
ILP32.
llvm-svn: 371722
|
|
|
|
|
|
|
|
|
|
|
| |
Loosely based on DAGCombiner version, but this part is slightly simpler in
GlobalIsel because all address calculation is performed by G_GEP. That makes
the inc/dec distinction moot so there's just pre/post to think about.
No targets can handle it yet so testing is via a special flag that overrides
target hooks.
llvm-svn: 371384
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Despite the fact that the localizer's original motivation was to fix horrendous
constant spilling at -O0, shortening live ranges still has net benefits even
with optimizations enabled.
On an -Os build of CTMark, doing this improves code size by 0.5% geomean.
There are a few regressions, bullet increasing in size by 0.5%. One example from
bullet where code size increased slightly was due to GlobalISel actually now
generating the same code as SelectionDAG. So we actually have an opportunity
in future to implement better heuristics for localization and therefore be
*better* than SDAG in some cases. In relation to other optimizations though that
one is relatively minor.
Differential Revision: https://reviews.llvm.org/D67303
llvm-svn: 371266
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
MTE allows memory access to bypass tag check iff the address argument
is [SP, #imm]. This change takes advantage of this to demote uses of
tagged addresses to regular FrameIndex operands, reducing register
pressure in large functions.
MO_TAGGED target flag is used to signal that the FrameIndex operand
refers to memory that might be tagged, and needs to be handled with
care. Such operand must be lowered to [SP, #imm] directly, without a
scratch register.
The transformation pass attempts to predict when the offset will be
out of range and disable the optimization.
AArch64RegisterInfo::eliminateFrameIndex has an escape hatch in case
this prediction has been wrong, but it is quite inefficient and should
be avoided.
Reviewers: pcc, vitalybuka, ostannard
Subscribers: mgorny, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66457
llvm-svn: 370490
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
MTE provides instructions to update memory tags and data at the same
time. This change makes use of those to generate more compact code for
stack variable tagging + initialization.
We collect memory store and memset instructions following an alloca or a
lifetime.start call, and replace them with the corresponding MTE
intrinsics. Since the intrinsics work on 16-byte aligned chunks, the
stored values are combined as necessary.
Reviewers: pcc, vitalybuka, ostannard
Subscribers: srhines, javed.absar, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66167
llvm-svn: 369297
|
|
|
|
|
|
|
|
| |
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Use MTE intrinsics to tag stack variables in functions with
sanitize_memtag attribute.
Reviewers: pcc, vitalybuka, hctim, ostannard
Subscribers: srhines, mgorny, javed.absar, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64173
llvm-svn: 366361
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Extern global merging is good for code-size. There's definitely potential for
performance too, but there's one regression in a benchmark that needs
investigating, so that's why we enable it only when we optimise for size for
now.
Patch by Ramakota Reddy and Sjoerd Meijer.
Differential Revision: https://reviews.llvm.org/D61947
llvm-svn: 363130
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts r362990 (git commit 374571301dc8e9bc9fdd1d70f86015de198673bd)
This was causing linker warnings on Darwin:
ld: warning: direct access in function 'llvm::initializeEvexToVexInstPassPass(llvm::PassRegistry&)'
from file '../../lib/libLLVMX86CodeGen.a(X86EvexToVex.cpp.o)' to global weak symbol
'void std::__1::__call_once_proxy<std::__1::tuple<void* (&)(llvm::PassRegistry&),
std::__1::reference_wrapper<llvm::PassRegistry>&&> >(void*)' from file '../../lib/libLLVMCore.a(Verifier.cpp.o)'
means the weak symbol cannot be overridden at runtime. This was likely caused by different translation
units being compiled with different visibility settings.
llvm-svn: 363028
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
For builds with LLVM_BUILD_LLVM_DYLIB=ON and BUILD_SHARED_LIBS=OFF
this change makes all symbols in the target specific libraries hidden
by default.
A new macro called LLVM_EXTERNAL_VISIBILITY has been added to mark symbols in these
libraries public, which is mainly needed for the definitions of the
LLVMInitialize* functions.
This patch reduces the number of public symbols in libLLVM.so by about
25%. This should improve load times for the dynamic library and also
make abi checker tools, like abidiff require less memory when analyzing
libLLVM.so
One side-effect of this change is that for builds with
LLVM_BUILD_LLVM_DYLIB=ON and LLVM_LINK_LLVM_DYLIB=ON some unittests that
access symbols that are no longer public will need to be statically linked.
Before and after public symbol counts (using gcc 8.2.1, ld.bfd 2.31.1):
nm before/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
36221
nm after/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
26278
Reviewers: chandlerc, beanz, mgorny, rnk, hans
Reviewed By: rnk, hans
Subscribers: Jim, hiraditya, michaelplatings, chapuni, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, kristina, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D54439
llvm-svn: 362990
|
|
|
|
|
|
|
|
| |
Move the declarations of getThe<Name>Target() functions into a new header in
TargetInfo and make users of these functions include this new header.
This fixes a layering problem.
llvm-svn: 360709
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
their own CSE configs.
Because CodeGen can't depend on GlobalISel, we need a way to encapsulate the CSE
configs that can be passed between TargetPassConfig and the targets' custom
pass configs. This CSEConfigBase allows targets to create custom CSE configs
which is then used by the GISel passes for the CSEMIRBuilder.
This support will be used in a follow up commit to allow constant-only CSE for
-O0 compiles in D60580.
llvm-svn: 358368
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
EK_LabelDifference32
Windows ARM64 has PIC relocation model and uses jump table kind
EK_LabelDifference32. This produces jump table entry as
".word LBB123 - LJTI1_2" which represents the distance between the block
and jump table.
A new relocation type (IMAGE_REL_ARM64_REL32) is needed to do the fixup
correctly if they are in different COFF section.
This change saves the jump table to the same COFF section as the
associated code. An ideal fix could be utilizing IMAGE_REL_ARM64_REL32
relocation type.
Patch by Tom Tan!
Differential Revision: https://reviews.llvm.org/D57277
llvm-svn: 352465
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The pass implements tracking of control flow miss-speculation into a "taint"
register. That taint register can then be used to mask off registers with
sensitive data when executing under miss-speculation, a.k.a. "transient
execution".
This pass is aimed at mitigating against SpectreV1-style vulnarabilities.
At the moment, it implements the tracking of miss-speculation of control
flow into a taint register, but doesn't implement a mechanism yet to then
use that taint register to mask off vulnerable data in registers (something
for a follow-on improvement). Possible strategies to mask out vulnerable
data that can be implemented on top of this are:
- speculative load hardening to automatically mask of data loaded
in registers.
- using intrinsics to mask of data in registers as indicated by the
programmer (see https://lwn.net/Articles/759423/).
For AArch64, the following implementation choices are made.
Some of these are different than the implementation choices made in
the similar pass implemented in X86SpeculativeLoadHardening.cpp, as
the instruction set characteristics result in different trade-offs.
- The speculation hardening is done after register allocation. With a
relative abundance of registers, one register is reserved (X16) to be
the taint register. X16 is expected to not clash with other register
reservation mechanisms with very high probability because:
. The AArch64 ABI doesn't guarantee X16 to be retained across any call.
. The only way to request X16 to be used as a programmer is through
inline assembly. In the rare case a function explicitly demands to
use X16/W16, this pass falls back to hardening against speculation
by inserting a DSB SYS/ISB barrier pair which will prevent control
flow speculation.
- It is easy to insert mask operations at this late stage as we have
mask operations available that don't set flags.
- The taint variable contains all-ones when no miss-speculation is detected,
and contains all-zeros when miss-speculation is detected. Therefore, when
masking, an AND instruction (which only changes the register to be masked,
no other side effects) can easily be inserted anywhere that's needed.
- The tracking of miss-speculation is done by using a data-flow conditional
select instruction (CSEL) to evaluate the flags that were also used to
make conditional branch direction decisions. Speculation of the CSEL
instruction can be limited with a CSDB instruction - so the combination of
CSEL + a later CSDB gives the guarantee that the flags as used in the CSEL
aren't speculated. When conditional branch direction gets miss-speculated,
the semantics of the inserted CSEL instruction is such that the taint
register will contain all zero bits.
One key requirement for this to work is that the conditional branch is
followed by an execution of the CSEL instruction, where the CSEL
instruction needs to use the same flags status as the conditional branch.
This means that the conditional branches must not be implemented as one
of the AArch64 conditional branches that do not use the flags as input
(CB(N)Z and TB(N)Z). This is implemented by ensuring in the instruction
selectors to not produce these instructions when speculation hardening
is enabled. This pass will assert if it does encounter such an instruction.
- On function call boundaries, the miss-speculation state is transferred from
the taint register X16 to be encoded in the SP register as value 0.
Future extensions/improvements could be:
- Implement this functionality using full speculation barriers, akin to the
x86-slh-lfence option. This may be more useful for the intrinsics-based
approach than for the SLH approach to masking.
Note that this pass already inserts the full speculation barriers if the
function for some niche reason makes use of X16/W16.
- no indirect branch misprediction gets protected/instrumented; but this
could be done for some indirect branches, such as switch jump tables.
Differential Revision: https://reviews.llvm.org/D54896
llvm-svn: 349456
|
|
|
|
|
|
|
|
|
| |
The Load/Store Optimizer runs before Machine Block Placement. At O3 the
Tail Duplication Threshold is set to 4 instructions and this can create
new opportunities for the Load/Store Optimizer. It seems worthwhile to
run it once again.
llvm-svn: 349338
|
|
|
|
|
|
|
|
|
|
|
| |
support them
Adds fatal errors for any target that does not support the Tiny or Kernel
codemodels by rejigging the getEffectiveCodeModel calls.
Differential Revision: https://reviews.llvm.org/D50141
llvm-svn: 348585
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Change meaning of TargetOptions::EnableGlobalISel. The flag was
previously set only when a target switched on GlobalISel but it is now
always set when the GlobalISel pipeline is enabled. This makes the flag
consistent with TargetOptions::EnableFastISel and allows its use in
other parts of the compiler to determine when GlobalISel is enabled.
The EnableGlobalISel flag had previouly only one use in
TargetPassConfig::isGlobalISelAbortEnabled(). The method used its value
to determine if GlobalISel was enabled by a target and returned false in
such a case. To preserve the current behaviour, a new flag
TargetOptions::GlobalISelAbort is introduced to separately record the
abort behaviour.
Differential Revision: https://reviews.llvm.org/D54518
llvm-svn: 347861
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch defines an interleaved-load-combine pass. The pass searches
for ShuffleVector instructions that represent interleaved loads. Matches are
converted such that they will be captured by the InterleavedAccessPass.
The pass extends LLVMs capabilities to use target specific instruction
selection of interleaved load patterns (e.g.: ld4 on Aarch64
architectures).
Differential Revision: https://reviews.llvm.org/D52653
llvm-svn: 347208
|
|
|
|
|
|
|
|
| |
In this context, usesWindowsCFI() is basically the same thing as
isOSWindows(), but it makes the relevant property of the target
more explicit.
llvm-svn: 346366
|
|
|
|
|
|
|
|
|
| |
Like the comment says, this isn't the most efficient fix in terms of
codesize, but it works.
Differential Revision: https://reviews.llvm.org/D54129
llvm-svn: 346358
|
|
|
|
| |
llvm-svn: 345188
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The Branch Target Identification extension, introduced to AArch64 in
Armv8.5-A, adds the BTI instruction, which is used to mark valid targets
of indirect branches. When enabled, the processor will trap if an
instruction in a protected page tries to perform an indirect branch to
any instruction other than a BTI. The BTI instruction uses encodings
which were NOPs in earlier versions of the architecture, so BTI-enabled
code will still run on earlier hardware, just without the extra
protection.
There are 3 variants of the BTI instruction, which are valid targets for
different kinds or branches:
- BTI C can be targeted by call instructions, and is inteneded to be
used at function entry points. These are the BLR instruction, as well
as BR with x16 or x17. These BR instructions are allowed for use in
PLT entries, and we can also use them to allow indirect tail-calls.
- BTI J can be targeted by BR only, and is intended to be used by jump
tables.
- BTI JC acts ab both a BTI C and a BTI J instruction, and can be
targeted by any BLR or BR instruction.
Note that RET instructions are not restricted by branch target
identification, the reason for this is that return addresses can be
protected more effectively using return address signing. Direct branches
and calls are also unaffected, as it is assumed that an attacker cannot
modify executable pages (if they could, they wouldn't need to do a
ROP/JOP attack).
This patch adds a MachineFunctionPass which:
- Adds a BTI C at the start of every function which could be indirectly
called (either because it is address-taken, or externally visible so
could be address-taken in another translation unit).
- Adds a BTI J at the start of every basic block which could be
indirectly branched to. This could be either done by a jump table, or
by taking the address of the block (e.g. the using GCC label values
extension).
We only need to use BTI JC when a function is indirectly-callable, and
takes the address of the entry block. I've not been able to trigger this
from C or IR, but I've included a MIR test just in case.
Using BTI C at function entries relies on the fact that no other code in
BTI-protected pages uses indirect tail-calls, unless they use x16 or x17
to hold the address. I'll add that code-generation restriction as a
separate patch.
Differential revision: https://reviews.llvm.org/D52867
llvm-svn: 343967
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
them in a pre-legalize combiner for AArch64
Summary: Depends on D45541
Reviewers: ab, aditya_nandakumar, bogner, rtereshin, volkan, rovka, javed.absar, aemerson
Subscribers: aemerson, rengolin, mgorny, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D45543
The previous commit failed portions of the test-suite on GreenDragon due to
duplicate COPY instructions and iterator invalidation. Both issues have now
been fixed. To assist with this, a helper (cloneVirtualRegister) has been added
to MachineRegisterInfo that can be used to get another register that has the same
type and class/bank as an existing one.
llvm-svn: 343654
|
|
|
|
|
|
|
|
|
|
| |
extending loads and use them in a pre-legalize combiner for AArch64
There's a strange assertion on two of the Green Dragon bots that goes away when
this is reverted. The assertion is in RegBankAlloc and if it is this commit then
-verify-machine-instrs should have caught it earlier in the pipeline.
llvm-svn: 343546
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
pre-legalize combiner for AArch64
Summary: Depends on D45541
Reviewers: ab, aditya_nandakumar, bogner, rtereshin, volkan, rovka, javed.absar, aemerson
Subscribers: aemerson, rengolin, mgorny, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D45543
llvm-svn: 343521
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds the plumbing for the Tiny code model for the AArch64 backend. This,
instead of loading addresses through the normal ADRP;ADD pair used in the Small
model, uses a single ADR. The 21 bit range of an ADR means that the code and
its statically defined symbols need to be within 1MB of each other.
This makes it mostly interesting for embedded applications where we want to fit
as much as we can in as small a space as possible.
Differential Revision: https://reviews.llvm.org/D49673
llvm-svn: 340397
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fixed the ASAN failure from before in r338148, so recommiting.
This patch enables the MachineOutliner by default in AArch64 under -Oz.
The MachineOutliner offers around a 4.5% improvement on the current -Oz code
size improvements.
We have done work into improving the debuggability of outlined code, so that
users of -Oz won't be surprised by the optimization. We have also been executing
the LLVM test suite and common external tests such as the SPEC suites
continuously with no issue. The outliner has a low compile-time overhead of
roughly 1%. At this point, the outliner would be a really good addition to the
-Oz pass pipeline!
llvm-svn: 338160
|
|
|
|
|
|
|
|
|
|
| |
It failed an Asan test on a bot:
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-fast/builds/21543/steps/check-llvm%20asan/logs/stdio
Fixing that before recommitting.
llvm-svn: 338136
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch enables the MachineOutliner by default in AArch64 under -Oz.
The MachineOutliner offers around a 4.5% improvement on the current -Oz code
size improvements.
We have done work into improving the debuggability of outlined code, so that
users of -Oz won't be surprised by the optimization. We have also been executing
the LLVM test suite and common external tests such as the SPEC suites
continuously with no issue. The outliner has a low compile-time overhead of
roughly 1%. At this point, the outliner would be a really good addition to the
-Oz pass pipeline!
llvm-svn: 338133
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Targets should be able to define whether or not they support the outliner
without the outliner being added to the pass pipeline. Before this, the
outliner pass would be added, and ask the target whether or not it supports the
outliner.
After this, it's possible to query the target in TargetPassConfig, before the
outliner pass is created. This ensures that passing -enable-machine-outliner
will not modify the pass pipeline of any target that does not support it.
https://reviews.llvm.org/D48683
llvm-svn: 335887
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add NoTrapAfterNoreturn target option which skips emission of traps
behind noreturn calls even if TrapUnreachable is enabled.
Enable the feature on Mach-O to save code size; Comments suggest it is
not possible to enable it for the other users of TrapUnreachable.
rdar://41530228
DifferentialRevision: https://reviews.llvm.org/D48674
llvm-svn: 335877
|
|
|
|
|
|
|
|
|
|
| |
extending loads and use them in a pre-legalize combiner for AArch64
Reverting this to see if the clang-cmake-aarch64-global-isel and
clang-cmake-aarch64-quick bots are failing because of this commit.
We know it wasn't r331819.
llvm-svn: 331846
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
pre-legalize combiner for AArch64
Summary: Depends on D45541
Reviewers: ab, aditya_nandakumar, bogner, rtereshin, volkan, rovka, javed.absar, aemerson
Reviewed By: aemerson
Subscribers: aemerson, rengolin, mgorny, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D45543
llvm-svn: 331816
|
|
|
|
|
|
|
| |
Debugability is more important than saving 4 bytes to let us to fall
through to nonense.
llvm-svn: 330073
|
|
|
|
|
|
|
|
| |
dependency
Thanks to echristo for the pointers on direction.
llvm-svn: 328737
|
|
|
|
|
|
|
| |
It's implemented in Target & include from other Target headers, so the
header should be in Target.
llvm-svn: 328392
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch adds a new target option in order to control GlobalISel.
This will allow the users to enable/disable GlobalISel prior to the
backend by calling `TargetMachine::setGlobalISel(bool Enable)`.
No test case as there is already a test to check GlobalISel
command line options.
See: CodeGen/AArch64/GlobalISel/gisel-commandline-option.ll.
Reviewers: qcolombet, aemerson, ab, dsanders
Reviewed By: qcolombet
Subscribers: rovka, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42137
llvm-svn: 322773
|
|
|
|
|
|
|
|
|
|
|
| |
Tests updated to explicitly use fast-isel at -O0 instead of implicitly.
This change also allows an explicit -fast-isel option to override an
implicitly enabled global-isel. Otherwise -fast-isel would have no effect at -O0.
Differential Revision: https://reviews.llvm.org/D41362
llvm-svn: 321655
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Re-land r321234. It had to be reverted because it broke the shared
library build. The shared library build broke because there was a
missing LLVMBuild dependency from lib/Passes (which calls
TargetMachine::getTargetIRAnalysis) to lib/Target. As far as I can
tell, this problem was always there but was somehow masked
before (perhaps because TargetMachine::getTargetIRAnalysis was a
virtual function).
Original commit message:
This makes the TargetMachine interface a bit simpler. We still need
the std::function in TargetIRAnalysis to avoid having to add a
dependency from Analysis to Target.
See discussion:
http://lists.llvm.org/pipermail/llvm-dev/2017-December/119749.html
I avoided adding all of the backend owners to this review since the
change is simple, but let me know if you feel differently about this.
Reviewers: echristo, MatzeB, hfinkel
Reviewed By: hfinkel
Subscribers: jholewinski, jfb, arsenm, dschuff, mcrosier, sdardis, nemanjai, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, llvm-commits
Differential Revision: https://reviews.llvm.org/D41464
llvm-svn: 321375
|
|
|
|
|
|
| |
This reverts commit r321234. It breaks the -DBUILD_SHARED_LIBS=ON build.
llvm-svn: 321243
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This makes the TargetMachine interface a bit simpler. We still need
the std::function in TargetIRAnalysis to avoid having to add a
dependency from Analysis to Target.
See discussion:
http://lists.llvm.org/pipermail/llvm-dev/2017-December/119749.html
I avoided adding all of the backend owners to this review since the
change is simple, but let me know if you feel differently about this.
Reviewers: echristo, MatzeB, hfinkel
Reviewed By: hfinkel
Subscribers: jholewinski, jfb, arsenm, dschuff, mcrosier, sdardis, nemanjai, nhaehnle, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, llvm-commits
Differential Revision: https://reviews.llvm.org/D41464
llvm-svn: 321234
|