1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
|
/* Copyright 2013-2014 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* TODO: Index array by PIR to be able to catch them easily
* from assembly such as machine checks etc...
*/
#include <skiboot.h>
#include <cpu.h>
#include <device.h>
#include <mem_region.h>
#include <opal.h>
#include <stack.h>
#include <trace.h>
#include <affinity.h>
#include <chip.h>
#include <timebase.h>
#include <interrupts.h>
#include <ccan/str/str.h>
#include <ccan/container_of/container_of.h>
#include <xscom.h>
/* The cpu_threads array is static and indexed by PIR in
* order to speed up lookup from asm entry points
*/
struct cpu_stack {
union {
uint8_t stack[STACK_SIZE];
struct cpu_thread cpu;
};
} __align(STACK_SIZE);
static struct cpu_stack *cpu_stacks = (struct cpu_stack *)CPU_STACKS_BASE;
unsigned int cpu_thread_count;
unsigned int cpu_max_pir;
struct cpu_thread *boot_cpu;
static struct lock reinit_lock = LOCK_UNLOCKED;
static bool hile_supported;
static unsigned long hid0_hile;
static unsigned long hid0_attn;
static bool pm_enabled;
unsigned long cpu_secondary_start __force_data = 0;
struct cpu_job {
struct list_node link;
void (*func)(void *data);
void *data;
const char *name;
bool complete;
bool no_return;
};
/* attribute const as cpu_stacks is constant. */
unsigned long __attrconst cpu_stack_bottom(unsigned int pir)
{
return ((unsigned long)&cpu_stacks[pir]) +
sizeof(struct cpu_thread) + STACK_SAFETY_GAP;
}
unsigned long __attrconst cpu_stack_top(unsigned int pir)
{
/* This is the top of the MC stack which is above the normal
* stack, which means a SP between cpu_stack_bottom() and
* cpu_stack_top() can either be a normal stack pointer or
* a Machine Check stack pointer
*/
return ((unsigned long)&cpu_stacks[pir]) +
NORMAL_STACK_SIZE - STACK_TOP_GAP;
}
static void cpu_wake(struct cpu_thread *cpu)
{
/* Is it idle ? If not, no need to wake */
sync();
if (!cpu->in_idle)
return;
/* Poke IPI */
icp_kick_cpu(cpu);
}
static struct cpu_thread *cpu_find_job_target(void)
{
struct cpu_thread *cpu, *best, *me = this_cpu();
uint32_t best_count;
/* We try to find a target to run a job. We need to avoid
* a CPU that has a "no return" job on its queue as it might
* never be able to process anything.
*
* Additionally we don't check the list but the job count
* on the target CPUs, since that is decremented *after*
* a job has been completed.
*/
/* First we scan all available primary threads
*/
for_each_available_cpu(cpu) {
if (cpu == me || !cpu_is_thread0(cpu) || cpu->job_has_no_return)
continue;
if (cpu->job_count)
continue;
lock(&cpu->job_lock);
if (!cpu->job_count)
return cpu;
unlock(&cpu->job_lock);
}
/* Now try again with secondary threads included and keep
* track of the one with the less jobs queued up. This is
* done in a racy way, but it's just an optimization in case
* we are overcommitted on jobs. Could could also just pick
* a random one...
*/
best = NULL;
best_count = -1u;
for_each_available_cpu(cpu) {
if (cpu == me || cpu->job_has_no_return)
continue;
if (!best || cpu->job_count < best_count) {
best = cpu;
best_count = cpu->job_count;
}
if (cpu->job_count)
continue;
lock(&cpu->job_lock);
if (!cpu->job_count)
return cpu;
unlock(&cpu->job_lock);
}
/* We haven't found anybody, do we have a bestie ? */
if (best) {
lock(&best->job_lock);
return best;
}
/* Go away */
return NULL;
}
struct cpu_job *__cpu_queue_job(struct cpu_thread *cpu,
const char *name,
void (*func)(void *data), void *data,
bool no_return)
{
struct cpu_job *job;
#ifdef DEBUG_SERIALIZE_CPU_JOBS
if (cpu == NULL)
cpu = this_cpu();
#endif
if (cpu && !cpu_is_available(cpu)) {
prerror("CPU: Tried to queue job on unavailable CPU 0x%04x\n",
cpu->pir);
return NULL;
}
job = zalloc(sizeof(struct cpu_job));
if (!job)
return NULL;
job->func = func;
job->data = data;
job->name = name;
job->complete = false;
job->no_return = no_return;
/* Pick a candidate. Returns with target queue locked */
if (cpu == NULL)
cpu = cpu_find_job_target();
else if (cpu != this_cpu())
lock(&cpu->job_lock);
else
cpu = NULL;
/* Can't be scheduled, run it now */
if (cpu == NULL) {
func(data);
job->complete = true;
return job;
}
/* That's bad, the job will never run */
if (cpu->job_has_no_return) {
prlog(PR_WARNING, "WARNING ! Job %s scheduled on CPU 0x%x"
" which has a no-return job on its queue !\n",
job->name, cpu->pir);
backtrace();
}
list_add_tail(&cpu->job_queue, &job->link);
if (no_return)
cpu->job_has_no_return = true;
else
cpu->job_count++;
if (pm_enabled)
cpu_wake(cpu);
unlock(&cpu->job_lock);
return job;
}
bool cpu_poll_job(struct cpu_job *job)
{
lwsync();
return job->complete;
}
void cpu_wait_job(struct cpu_job *job, bool free_it)
{
unsigned long time_waited = 0;
if (!job)
return;
while (!job->complete) {
/* This will call OPAL pollers for us */
time_wait_ms(10);
time_waited += 10;
lwsync();
}
lwsync();
if (time_waited > msecs_to_tb(1000))
prlog(PR_DEBUG, "cpu_wait_job(%s) for %lu\n",
job->name, tb_to_msecs(time_waited));
if (free_it)
free(job);
}
bool cpu_check_jobs(struct cpu_thread *cpu)
{
return !list_empty_nocheck(&cpu->job_queue);
}
void cpu_process_jobs(void)
{
struct cpu_thread *cpu = this_cpu();
struct cpu_job *job = NULL;
void (*func)(void *);
void *data;
sync();
if (!cpu_check_jobs(cpu))
return;
lock(&cpu->job_lock);
while (true) {
bool no_return;
job = list_pop(&cpu->job_queue, struct cpu_job, link);
if (!job)
break;
func = job->func;
data = job->data;
no_return = job->no_return;
unlock(&cpu->job_lock);
prlog(PR_TRACE, "running job %s on %x\n", job->name, cpu->pir);
if (no_return)
free(job);
func(data);
lock(&cpu->job_lock);
if (!no_return) {
cpu->job_count--;
lwsync();
job->complete = true;
}
}
unlock(&cpu->job_lock);
}
static void cpu_idle_default(enum cpu_wake_cause wake_on __unused)
{
/* Maybe do something better for simulators ? */
cpu_relax();
cpu_relax();
cpu_relax();
cpu_relax();
}
static void cpu_idle_p8(enum cpu_wake_cause wake_on)
{
uint64_t lpcr = mfspr(SPR_LPCR) & ~SPR_LPCR_P8_PECE;
struct cpu_thread *cpu = this_cpu();
if (!pm_enabled) {
cpu_idle_default(wake_on);
return;
}
/* If we are waking on job, whack DEC to highest value */
if (wake_on == cpu_wake_on_job)
mtspr(SPR_DEC, 0x7fffffff);
/* Clean up ICP, be ready for IPIs */
icp_prep_for_pm();
/* Setup wakup cause in LPCR */
lpcr |= SPR_LPCR_P8_PECE2 | SPR_LPCR_P8_PECE3;
mtspr(SPR_LPCR, lpcr);
/* Synchronize with wakers */
if (wake_on == cpu_wake_on_job) {
/* Mark ourselves in idle so other CPUs know to send an IPI */
cpu->in_idle = true;
sync();
/* Check for jobs again */
if (cpu_check_jobs(cpu) || !pm_enabled)
goto skip_sleep;
} else {
/* Mark outselves sleeping so cpu_set_pm_enable knows to
* send an IPI
*/
cpu->in_sleep = true;
sync();
/* Check if PM got disabled */
if (!pm_enabled)
goto skip_sleep;
}
/* Enter nap */
enter_pm_state(false);
skip_sleep:
/* Restore */
sync();
cpu->in_idle = false;
cpu->in_sleep = false;
reset_cpu_icp();
}
void cpu_set_pm_enable(bool enabled)
{
struct cpu_thread *cpu;
prlog(PR_INFO, "CPU: %sing power management\n",
enabled ? "enabl" : "disabl");
if (proc_gen != proc_gen_p8)
return;
pm_enabled = enabled;
if (enabled)
return;
/* If disabling, take everybody out of PM */
sync();
for_each_available_cpu(cpu) {
while (cpu->in_sleep || cpu->in_idle) {
icp_kick_cpu(cpu);
cpu_relax();
}
}
}
void cpu_idle(enum cpu_wake_cause wake_on)
{
switch(proc_gen) {
case proc_gen_p8:
cpu_idle_p8(wake_on);
break;
default:
cpu_idle_default(wake_on);
break;
}
}
void cpu_process_local_jobs(void)
{
struct cpu_thread *cpu = first_available_cpu();
while (cpu) {
if (cpu != this_cpu())
return;
cpu = next_available_cpu(cpu);
}
if (!cpu)
cpu = first_available_cpu();
/* No CPU to run on, just run synchro */
if (cpu == this_cpu()) {
prlog_once(PR_DEBUG, "Processing jobs synchronously\n");
cpu_process_jobs();
opal_run_pollers();
}
}
struct dt_node *get_cpu_node(u32 pir)
{
struct cpu_thread *t = find_cpu_by_pir(pir);
return t ? t->node : NULL;
}
/* This only covers primary, active cpus */
struct cpu_thread *find_cpu_by_chip_id(u32 chip_id)
{
struct cpu_thread *t;
for_each_available_cpu(t) {
if (t->is_secondary)
continue;
if (t->chip_id == chip_id)
return t;
}
return NULL;
}
struct cpu_thread *find_cpu_by_node(struct dt_node *cpu)
{
struct cpu_thread *t;
for_each_available_cpu(t) {
if (t->node == cpu)
return t;
}
return NULL;
}
struct cpu_thread *find_cpu_by_pir(u32 pir)
{
if (pir > cpu_max_pir)
return NULL;
return &cpu_stacks[pir].cpu;
}
struct cpu_thread *find_cpu_by_server(u32 server_no)
{
struct cpu_thread *t;
for_each_cpu(t) {
if (t->server_no == server_no)
return t;
}
return NULL;
}
struct cpu_thread *next_cpu(struct cpu_thread *cpu)
{
struct cpu_stack *s = container_of(cpu, struct cpu_stack, cpu);
unsigned int index;
if (cpu == NULL)
index = 0;
else
index = s - cpu_stacks + 1;
for (; index <= cpu_max_pir; index++) {
cpu = &cpu_stacks[index].cpu;
if (cpu->state != cpu_state_no_cpu)
return cpu;
}
return NULL;
}
struct cpu_thread *first_cpu(void)
{
return next_cpu(NULL);
}
struct cpu_thread *next_available_cpu(struct cpu_thread *cpu)
{
do {
cpu = next_cpu(cpu);
} while(cpu && !cpu_is_available(cpu));
return cpu;
}
struct cpu_thread *first_available_cpu(void)
{
return next_available_cpu(NULL);
}
struct cpu_thread *next_present_cpu(struct cpu_thread *cpu)
{
do {
cpu = next_cpu(cpu);
} while(cpu && !cpu_is_present(cpu));
return cpu;
}
struct cpu_thread *first_present_cpu(void)
{
return next_present_cpu(NULL);
}
u8 get_available_nr_cores_in_chip(u32 chip_id)
{
struct cpu_thread *core;
u8 nr_cores = 0;
for_each_available_core_in_chip(core, chip_id)
nr_cores++;
return nr_cores;
}
struct cpu_thread *next_available_core_in_chip(struct cpu_thread *core,
u32 chip_id)
{
do {
core = next_cpu(core);
} while(core && (!cpu_is_available(core) ||
core->chip_id != chip_id ||
core->is_secondary));
return core;
}
struct cpu_thread *first_available_core_in_chip(u32 chip_id)
{
return next_available_core_in_chip(NULL, chip_id);
}
uint32_t cpu_get_core_index(struct cpu_thread *cpu)
{
return pir_to_core_id(cpu->pir);
}
void cpu_remove_node(const struct cpu_thread *t)
{
struct dt_node *i;
/* Find this cpu node */
dt_for_each_node(dt_root, i) {
const struct dt_property *p;
if (!dt_has_node_property(i, "device_type", "cpu"))
continue;
p = dt_find_property(i, "ibm,pir");
if (!p)
continue;
if (dt_property_get_cell(p, 0) == t->pir) {
dt_free(i);
return;
}
}
prerror("CPU: Could not find cpu node %i to remove!\n", t->pir);
abort();
}
void cpu_disable_all_threads(struct cpu_thread *cpu)
{
unsigned int i;
for (i = 0; i <= cpu_max_pir; i++) {
struct cpu_thread *t = &cpu_stacks[i].cpu;
if (t->primary == cpu->primary)
t->state = cpu_state_disabled;
}
/* XXX Do something to actually stop the core */
}
static void init_cpu_thread(struct cpu_thread *t,
enum cpu_thread_state state,
unsigned int pir)
{
init_lock(&t->job_lock);
list_head_init(&t->job_queue);
t->state = state;
t->pir = pir;
#ifdef STACK_CHECK_ENABLED
t->stack_bot_mark = LONG_MAX;
#endif
assert(pir == container_of(t, struct cpu_stack, cpu) - cpu_stacks);
}
static void enable_attn(void)
{
unsigned long hid0;
hid0 = mfspr(SPR_HID0);
hid0 |= hid0_attn;
set_hid0(hid0);
}
static void disable_attn(void)
{
unsigned long hid0;
hid0 = mfspr(SPR_HID0);
hid0 &= ~hid0_attn;
set_hid0(hid0);
}
extern void __trigger_attn(void);
void trigger_attn(void)
{
enable_attn();
__trigger_attn();
}
void init_hid(void)
{
/* attn is enabled even when HV=0, so make sure it's off */
disable_attn();
}
void __nomcount pre_init_boot_cpu(void)
{
struct cpu_thread *cpu = this_cpu();
memset(cpu, 0, sizeof(struct cpu_thread));
}
void init_boot_cpu(void)
{
unsigned int i, pir, pvr;
pir = mfspr(SPR_PIR);
pvr = mfspr(SPR_PVR);
/* Get CPU family and other flags based on PVR */
switch(PVR_TYPE(pvr)) {
case PVR_TYPE_P7:
case PVR_TYPE_P7P:
proc_gen = proc_gen_p7;
break;
case PVR_TYPE_P8E:
case PVR_TYPE_P8:
proc_gen = proc_gen_p8;
hile_supported = PVR_VERS_MAJ(mfspr(SPR_PVR)) >= 2;
hid0_hile = SPR_HID0_POWER8_HILE;
hid0_attn = SPR_HID0_POWER8_ENABLE_ATTN;
break;
case PVR_TYPE_P8NVL:
proc_gen = proc_gen_p8;
hile_supported = true;
hid0_hile = SPR_HID0_POWER8_HILE;
hid0_attn = SPR_HID0_POWER8_ENABLE_ATTN;
break;
case PVR_TYPE_P9:
proc_gen = proc_gen_p9;
hile_supported = true;
hid0_hile = SPR_HID0_POWER9_HILE;
hid0_attn = SPR_HID0_POWER9_ENABLE_ATTN;
break;
default:
proc_gen = proc_gen_unknown;
}
/* Get a CPU thread count and an initial max PIR based on family */
switch(proc_gen) {
case proc_gen_p7:
cpu_thread_count = 4;
cpu_max_pir = SPR_PIR_P7_MASK;
prlog(PR_INFO, "CPU: P7 generation processor"
"(max %d threads/core)\n", cpu_thread_count);
break;
case proc_gen_p8:
cpu_thread_count = 8;
cpu_max_pir = SPR_PIR_P8_MASK;
prlog(PR_INFO, "CPU: P8 generation processor"
"(max %d threads/core)\n", cpu_thread_count);
break;
case proc_gen_p9:
cpu_thread_count = 4;
cpu_max_pir = SPR_PIR_P9_MASK;
prlog(PR_INFO, "CPU: P9 generation processor"
"(max %d threads/core)\n", cpu_thread_count);
break;
default:
prerror("CPU: Unknown PVR, assuming 1 thread\n");
cpu_thread_count = 1;
cpu_max_pir = mfspr(SPR_PIR);
}
prlog(PR_DEBUG, "CPU: Boot CPU PIR is 0x%04x PVR is 0x%08x\n",
pir, pvr);
prlog(PR_DEBUG, "CPU: Initial max PIR set to 0x%x\n", cpu_max_pir);
/*
* Adjust top of RAM to include CPU stacks. While we *could* have
* less RAM than this... during early boot, it's enough of a check
* until we start parsing device tree / hdat and find out for sure
*/
top_of_ram += (cpu_max_pir + 1) * STACK_SIZE;
/* Clear the CPU structs */
for (i = 0; i <= cpu_max_pir; i++)
memset(&cpu_stacks[i].cpu, 0, sizeof(struct cpu_thread));
/* Setup boot CPU state */
boot_cpu = &cpu_stacks[pir].cpu;
init_cpu_thread(boot_cpu, cpu_state_active, pir);
init_boot_tracebuf(boot_cpu);
assert(this_cpu() == boot_cpu);
init_hid();
}
static void enable_large_dec(bool on)
{
u64 lpcr = mfspr(SPR_LPCR);
if (on)
lpcr |= SPR_LPCR_P9_LD;
else
lpcr &= ~SPR_LPCR_P9_LD;
mtspr(SPR_LPCR, lpcr);
}
#define HIGH_BIT (1ull << 63)
static int find_dec_bits(void)
{
int bits = 65; /* we always decrement once */
u64 mask = ~0ull;
if (proc_gen < proc_gen_p9)
return 32;
/* The ISA doesn't specify the width of the decrementer register so we
* need to discover it. When in large mode (LPCR.LD = 1) reads from the
* DEC SPR are sign extended to 64 bits and writes are truncated to the
* physical register width. We can use this behaviour to detect the
* width by starting from an all 1s value and left shifting until we
* read a value from the DEC with it's high bit cleared.
*/
enable_large_dec(true);
do {
bits--;
mask = mask >> 1;
mtspr(SPR_DEC, mask);
} while (mfspr(SPR_DEC) & HIGH_BIT);
enable_large_dec(false);
prlog(PR_DEBUG, "CPU: decrementer bits %d\n", bits);
return bits;
}
void init_all_cpus(void)
{
struct dt_node *cpus, *cpu;
unsigned int thread, new_max_pir = 0;
int dec_bits = find_dec_bits();
cpus = dt_find_by_path(dt_root, "/cpus");
assert(cpus);
/* Iterate all CPUs in the device-tree */
dt_for_each_child(cpus, cpu) {
unsigned int pir, server_no, chip_id;
enum cpu_thread_state state;
const struct dt_property *p;
struct cpu_thread *t, *pt;
/* Skip cache nodes */
if (strcmp(dt_prop_get(cpu, "device_type"), "cpu"))
continue;
server_no = dt_prop_get_u32(cpu, "reg");
/* If PIR property is absent, assume it's the same as the
* server number
*/
pir = dt_prop_get_u32_def(cpu, "ibm,pir", server_no);
/* We should always have an ibm,chip-id property */
chip_id = dt_get_chip_id(cpu);
/* Only use operational CPUs */
if (!strcmp(dt_prop_get(cpu, "status"), "okay"))
state = cpu_state_present;
else
state = cpu_state_unavailable;
prlog(PR_INFO, "CPU: CPU from DT PIR=0x%04x Server#=0x%x"
" State=%d\n", pir, server_no, state);
/* Setup thread 0 */
assert(pir <= cpu_max_pir);
t = pt = &cpu_stacks[pir].cpu;
if (t != boot_cpu) {
init_cpu_thread(t, state, pir);
/* Each cpu gets its own later in init_trace_buffers */
t->trace = boot_cpu->trace;
}
t->server_no = server_no;
t->primary = t;
t->node = cpu;
t->chip_id = chip_id;
t->icp_regs = NULL; /* Will be set later */
t->core_hmi_state = 0;
t->core_hmi_state_ptr = &t->core_hmi_state;
t->thread_mask = 1;
/* Add associativity properties */
add_core_associativity(t);
/* Add the decrementer width property */
dt_add_property_cells(cpu, "ibm,dec-bits", dec_bits);
/* Adjust max PIR */
if (new_max_pir < (pir + cpu_thread_count - 1))
new_max_pir = pir + cpu_thread_count - 1;
/* Iterate threads */
p = dt_find_property(cpu, "ibm,ppc-interrupt-server#s");
if (!p)
continue;
for (thread = 1; thread < (p->len / 4); thread++) {
prlog(PR_TRACE, "CPU: secondary thread %d found\n",
thread);
t = &cpu_stacks[pir + thread].cpu;
init_cpu_thread(t, state, pir + thread);
t->trace = boot_cpu->trace;
t->server_no = ((const u32 *)p->prop)[thread];
t->is_secondary = true;
t->primary = pt;
t->node = cpu;
t->chip_id = chip_id;
t->core_hmi_state_ptr = &pt->core_hmi_state;
t->thread_mask = 1 << thread;
}
prlog(PR_INFO, "CPU: %d secondary threads\n", thread);
}
cpu_max_pir = new_max_pir;
prlog(PR_DEBUG, "CPU: New max PIR set to 0x%x\n", new_max_pir);
adjust_cpu_stacks_alloc();
}
void cpu_bringup(void)
{
struct cpu_thread *t;
uint32_t count = 0;
prlog(PR_INFO, "CPU: Setting up secondary CPU state\n");
op_display(OP_LOG, OP_MOD_CPU, 0x0000);
/* Tell everybody to chime in ! */
prlog(PR_INFO, "CPU: Calling in all processors...\n");
cpu_secondary_start = 1;
sync();
op_display(OP_LOG, OP_MOD_CPU, 0x0002);
for_each_cpu(t) {
if (t->state != cpu_state_present &&
t->state != cpu_state_active)
continue;
/* Add a callin timeout ? If so, call cpu_remove_node(t). */
while (t->state != cpu_state_active) {
smt_very_low();
sync();
}
smt_medium();
count++;
}
prlog(PR_NOTICE, "CPU: All %d processors called in...\n", count);
op_display(OP_LOG, OP_MOD_CPU, 0x0003);
}
void cpu_callin(struct cpu_thread *cpu)
{
cpu->state = cpu_state_active;
cpu->job_has_no_return = false;
}
static void opal_start_thread_job(void *data)
{
cpu_give_self_os();
/* We do not return, so let's mark the job as
* complete
*/
start_kernel_secondary((uint64_t)data);
}
static int64_t opal_start_cpu_thread(uint64_t server_no, uint64_t start_address)
{
struct cpu_thread *cpu;
struct cpu_job *job;
if (!opal_addr_valid((void *)start_address))
return OPAL_PARAMETER;
cpu = find_cpu_by_server(server_no);
if (!cpu) {
prerror("OPAL: Start invalid CPU 0x%04llx !\n", server_no);
return OPAL_PARAMETER;
}
prlog(PR_DEBUG, "OPAL: Start CPU 0x%04llx (PIR 0x%04x) -> 0x%016llx\n",
server_no, cpu->pir, start_address);
lock(&reinit_lock);
if (!cpu_is_available(cpu)) {
unlock(&reinit_lock);
prerror("OPAL: CPU not active in OPAL !\n");
return OPAL_WRONG_STATE;
}
if (cpu->in_reinit) {
unlock(&reinit_lock);
prerror("OPAL: CPU being reinitialized !\n");
return OPAL_WRONG_STATE;
}
job = __cpu_queue_job(cpu, "start_thread",
opal_start_thread_job, (void *)start_address,
true);
unlock(&reinit_lock);
if (!job) {
prerror("OPAL: Failed to create CPU start job !\n");
return OPAL_INTERNAL_ERROR;
}
return OPAL_SUCCESS;
}
opal_call(OPAL_START_CPU, opal_start_cpu_thread, 2);
static int64_t opal_query_cpu_status(uint64_t server_no, uint8_t *thread_status)
{
struct cpu_thread *cpu;
if (!opal_addr_valid(thread_status))
return OPAL_PARAMETER;
cpu = find_cpu_by_server(server_no);
if (!cpu) {
prerror("OPAL: Query invalid CPU 0x%04llx !\n", server_no);
return OPAL_PARAMETER;
}
if (!cpu_is_available(cpu) && cpu->state != cpu_state_os) {
prerror("OPAL: CPU not active in OPAL nor OS !\n");
return OPAL_PARAMETER;
}
switch(cpu->state) {
case cpu_state_os:
*thread_status = OPAL_THREAD_STARTED;
break;
case cpu_state_active:
/* Active in skiboot -> inactive in OS */
*thread_status = OPAL_THREAD_INACTIVE;
break;
default:
*thread_status = OPAL_THREAD_UNAVAILABLE;
}
return OPAL_SUCCESS;
}
opal_call(OPAL_QUERY_CPU_STATUS, opal_query_cpu_status, 2);
static int64_t opal_return_cpu(void)
{
prlog(PR_DEBUG, "OPAL: Returning CPU 0x%04x\n", this_cpu()->pir);
__secondary_cpu_entry();
return OPAL_HARDWARE; /* Should not happen */
}
opal_call(OPAL_RETURN_CPU, opal_return_cpu, 0);
static void cpu_change_hile(void *hilep)
{
bool hile = *(bool *)hilep;
unsigned long hid0;
hid0 = mfspr(SPR_HID0);
if (hile)
hid0 |= hid0_hile;
else
hid0 &= ~hid0_hile;
prlog(PR_DEBUG, "CPU: [%08x] HID0 set to 0x%016lx\n",
this_cpu()->pir, hid0);
set_hid0(hid0);
this_cpu()->current_hile = hile;
}
static int64_t cpu_change_all_hile(bool hile)
{
struct cpu_thread *cpu;
prlog(PR_INFO, "CPU: Switching HILE on all CPUs to %d\n", hile);
for_each_available_cpu(cpu) {
if (cpu->current_hile == hile)
continue;
if (cpu == this_cpu()) {
cpu_change_hile(&hile);
continue;
}
cpu_wait_job(cpu_queue_job(cpu, "cpu_change_hile",
cpu_change_hile, &hile), true);
}
return OPAL_SUCCESS;
}
static int64_t opal_reinit_cpus(uint64_t flags)
{
struct cpu_thread *cpu;
int64_t rc = OPAL_SUCCESS;
int i;
prlog(PR_DEBUG, "OPAL: CPU re-init with flags: 0x%llx\n", flags);
if (flags & OPAL_REINIT_CPUS_HILE_LE)
prlog(PR_NOTICE, "OPAL: Switch to little-endian OS\n");
else if (flags & OPAL_REINIT_CPUS_HILE_BE)
prlog(PR_NOTICE, "OPAL: Switch to big-endian OS\n");
again:
lock(&reinit_lock);
for (cpu = first_cpu(); cpu; cpu = next_cpu(cpu)) {
if (cpu == this_cpu() || cpu->in_reinit)
continue;
if (cpu->state == cpu_state_os) {
unlock(&reinit_lock);
/*
* That might be a race with return CPU during kexec
* where we are still, wait a bit and try again
*/
for (i = 0; (i < 1000) &&
(cpu->state == cpu_state_os); i++) {
time_wait_ms(1);
}
if (cpu->state == cpu_state_os) {
prerror("OPAL: CPU 0x%x not in OPAL !\n", cpu->pir);
return OPAL_WRONG_STATE;
}
goto again;
}
cpu->in_reinit = true;
}
/*
* Now we need to mark ourselves "active" or we'll be skipped
* by the various "for_each_active_..." calls done by slw_reinit()
*/
this_cpu()->state = cpu_state_active;
this_cpu()->in_reinit = true;
unlock(&reinit_lock);
/*
* If the flags affect endianness and we are on P8 DD2 or later, then
* use the HID bit. We use the PVR (we could use the EC level in
* the chip but the PVR is more readily available).
*/
if (hile_supported &&
(flags & (OPAL_REINIT_CPUS_HILE_BE | OPAL_REINIT_CPUS_HILE_LE))) {
bool hile = !!(flags & OPAL_REINIT_CPUS_HILE_LE);
flags &= ~(OPAL_REINIT_CPUS_HILE_BE | OPAL_REINIT_CPUS_HILE_LE);
rc = cpu_change_all_hile(hile);
}
/* If we have a P7, error out for LE switch, do nothing for BE */
if (proc_gen < proc_gen_p8) {
if (flags & OPAL_REINIT_CPUS_HILE_LE)
rc = OPAL_UNSUPPORTED;
flags &= ~(OPAL_REINIT_CPUS_HILE_BE | OPAL_REINIT_CPUS_HILE_LE);
}
/* Any flags left ? */
if (flags != 0 && proc_gen == proc_gen_p8)
rc = slw_reinit(flags);
else if (flags != 0)
rc = OPAL_UNSUPPORTED;
/* And undo the above */
lock(&reinit_lock);
this_cpu()->state = cpu_state_os;
for (cpu = first_cpu(); cpu; cpu = next_cpu(cpu))
cpu->in_reinit = false;
unlock(&reinit_lock);
return rc;
}
opal_call(OPAL_REINIT_CPUS, opal_reinit_cpus, 1);
#define NMMU_XLAT_CTL_PTCR 0xb
static int64_t nmmu_set_ptcr(uint64_t chip_id, struct dt_node *node, uint64_t ptcr)
{
uint32_t nmmu_base_addr;
nmmu_base_addr = dt_get_address(node, 0, NULL);
return xscom_write(chip_id, nmmu_base_addr + NMMU_XLAT_CTL_PTCR, ptcr);
}
/*
* Setup the the Nest MMU PTCR register for all chips in the system or
* the specified chip id.
*
* The PTCR value may be overwritten so long as all users have been
* quiesced. If it is set to an invalid memory address the system will
* checkstop if anything attempts to use it.
*
* Returns OPAL_UNSUPPORTED if no nest mmu was found.
*/
static int64_t opal_nmmu_set_ptcr(uint64_t chip_id, uint64_t ptcr)
{
struct dt_node *node;
int64_t rc = OPAL_UNSUPPORTED;
if (chip_id == -1ULL)
dt_for_each_compatible(dt_root, node, "ibm,power9-nest-mmu") {
chip_id = dt_get_chip_id(node);
if ((rc = nmmu_set_ptcr(chip_id, node, ptcr)))
return rc;
}
else
dt_for_each_compatible_on_chip(dt_root, node, "ibm,power9-nest-mmu", chip_id)
if ((rc = nmmu_set_ptcr(chip_id, node, ptcr)))
return rc;
return rc;
}
opal_call(OPAL_NMMU_SET_PTCR, opal_nmmu_set_ptcr, 2);
|