1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
|
/* Copyright 2013-2014 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <asm-utils.h>
#include <asm-offsets.h>
#include <mem-map.h>
#include <processor.h>
#include <opal-api.h>
#include <stack.h>
#define EPAPR_MAGIC 0x65504150
/* Power management instructions */
#define PPC_INST_NAP .long 0x4c000364
#define PPC_INST_SLEEP .long 0x4c0003a4
#define PPC_INST_RVWINKLE .long 0x4c0003e4
#define GET_STACK(stack_reg,pir_reg) \
sldi stack_reg,pir_reg,STACK_SHIFT; \
addis stack_reg,stack_reg,CPU_STACKS_OFFSET@ha; \
addi stack_reg,stack_reg,CPU_STACKS_OFFSET@l;
#define GET_CPU() \
clrrdi %r13,%r1,STACK_SHIFT
#define SAVE_GPR(reg,sp) std %r##reg,STACK_GPR##reg(sp)
#define REST_GPR(reg,sp) ld %r##reg,STACK_GPR##reg(sp)
.section ".head","ax"
. = 0
.global __head
__head:
/*
* When booting a P7 machine in OPAL mode this pointer is used to
* find the opal variant of the NACA. Unused on other machines.
*/
.llong opal_naca
/* This entry point is used when booting with a flat device-tree
* pointer in r3
*/
. = 0x10
.global fdt_entry
fdt_entry:
mr %r27,%r3
b boot_entry
/* This is a pointer to a descriptor used by debugging tools
* on the service processor to get to various trace buffers
*/
. = 0x80
.llong debug_descriptor
/* This is our boot semaphore used for CPUs to sync, it has to be
* at an easy to locate address (without relocation) since we
* need to get at it very early, before we apply our relocs
*/
. = 0xf0
boot_sem:
.long 0
/* And this is a boot flag used to kick secondaries into the
* main code.
*/
boot_flag:
.long 0
/* This is used to trigger an assert() and in turn an ATTN
* in skiboot when a special sequence is written at this
* address. For testing purposes only.
*/
. = 0xf8
.global attn_trigger
attn_trigger:
.long 0
/* This is the host initiated reset trigger for test */
. = 0xfc
.global hir_trigger
hir_trigger:
.long 0
/*
* At 0x100 and 0x180 reside our entry points. Once started,
* we will ovewrite them with our actual 0x100 exception handler
* used for recovering from rvw or nap mode
*/
. = 0x100
/* BML entry, load up r3 with device tree location */
li %r3, 0
oris %r3, %r3, 0xa
b fdt_entry /* hack for lab boot */
/* Entry point set by the FSP */
.= 0x180
hdat_entry:
li %r27,0
b boot_entry
#define EXCEPTION(nr) \
.= nr ;\
mtsprg0 %r3 ;\
mfspr %r3,SPR_CFAR ;\
mtsprg1 %r4 ;\
li %r4,nr ;\
b _exception
/* More exception stubs */
EXCEPTION(0x200)
EXCEPTION(0x300)
EXCEPTION(0x380)
EXCEPTION(0x400)
EXCEPTION(0x480)
EXCEPTION(0x500)
EXCEPTION(0x600)
EXCEPTION(0x700)
EXCEPTION(0x800)
EXCEPTION(0x900)
EXCEPTION(0x980)
EXCEPTION(0xa00)
EXCEPTION(0xb00)
EXCEPTION(0xc00)
EXCEPTION(0xd00)
EXCEPTION(0xe00)
EXCEPTION(0xe20)
EXCEPTION(0xe40)
EXCEPTION(0xe60)
EXCEPTION(0xe80)
EXCEPTION(0xf00)
EXCEPTION(0xf20)
EXCEPTION(0xf40)
EXCEPTION(0xf60)
EXCEPTION(0xf80)
EXCEPTION(0x1000)
EXCEPTION(0x1100)
EXCEPTION(0x1200)
EXCEPTION(0x1300)
EXCEPTION(0x1400)
EXCEPTION(0x1500)
EXCEPTION(0x1600)
.= 0x1e00
_exception:
stdu %r1,-STACK_FRAMESIZE(%r1)
std %r3,STACK_CFAR(%r1)
std %r4,STACK_TYPE(%r1)
mfsprg0 %r3
mfsprg1 %r4
SAVE_GPR(0,%r1)
SAVE_GPR(1,%r1)
SAVE_GPR(2,%r1)
SAVE_GPR(3,%r1)
SAVE_GPR(4,%r1)
SAVE_GPR(5,%r1)
SAVE_GPR(6,%r1)
SAVE_GPR(7,%r1)
SAVE_GPR(8,%r1)
SAVE_GPR(9,%r1)
SAVE_GPR(10,%r1)
SAVE_GPR(11,%r1)
SAVE_GPR(12,%r1)
SAVE_GPR(13,%r1)
SAVE_GPR(14,%r1)
SAVE_GPR(15,%r1)
SAVE_GPR(16,%r1)
SAVE_GPR(17,%r1)
SAVE_GPR(18,%r1)
SAVE_GPR(19,%r1)
SAVE_GPR(20,%r1)
SAVE_GPR(21,%r1)
SAVE_GPR(22,%r1)
SAVE_GPR(23,%r1)
SAVE_GPR(24,%r1)
SAVE_GPR(25,%r1)
SAVE_GPR(26,%r1)
SAVE_GPR(27,%r1)
SAVE_GPR(28,%r1)
SAVE_GPR(29,%r1)
SAVE_GPR(30,%r1)
SAVE_GPR(31,%r1)
mfcr %r3
mfxer %r4
mfctr %r5
mflr %r6
stw %r3,STACK_CR(%r1)
stw %r4,STACK_XER(%r1)
stw %r5,STACK_CTR(%r1)
stw %r5,STACK_LR(%r1)
mfspr %r3,SPR_SRR0
mfspr %r4,SPR_SRR1
mfspr %r5,SPR_HSRR0
mfspr %r6,SPR_HSRR1
std %r3,STACK_SRR0(%r1)
std %r4,STACK_SRR1(%r1)
std %r5,STACK_HSRR0(%r1)
std %r6,STACK_HSRR1(%r1)
mr %r3,%r1
LOAD_IMM64(%r4, SKIBOOT_BASE)
LOAD_IMM32(%r5, exception_entry_foo - __head)
add %r4,%r4,%r5
mtctr %r4
bctrl
b .
exception_entry_foo:
b exception_entry
.= 0x2000
/* This is the OPAL branch table. It's populated at boot time
* with function pointers to the various OPAL functions from
* the content of the .opal_table section, indexed by Token.
*/
.global opal_branch_table
opal_branch_table:
.space 8 * (OPAL_LAST + 1)
/* Stores the offset we were started from. Used later on if we want to
* read any unrelocated code/data such as the built-in kernel image
*/
.global boot_offset
boot_offset:
.llong 0
/*
*
* Boot time entry point from FSP
*
* All CPUs come here
*
* Boot code NV register usage:
*
* r31 : Boot PIR
* r30 : Current running offset
* r29 : Target address
* r28 : PVR
* r27 : DTB pointer (or NULL)
* r26 : PIR thread mask
*/
.global boot_entry
boot_entry:
/* Check PVR and set some CR bits */
mfspr %r28,SPR_PVR
li %r26,3 /* Default to SMT4 */
srdi %r3,%r28,16
cmpwi cr0,%r3,PVR_TYPE_P7
beq 1f
cmpwi cr0,%r3,PVR_TYPE_P7P
beq 1f
cmpwi cr0,%r3,PVR_TYPE_P8
beq 2f
cmpwi cr0,%r3,PVR_TYPE_P8E
beq 2f
cmpwi cr0,%r3,PVR_TYPE_P8NVL
beq 2f
cmpwi cr0,%r3,PVR_TYPE_P9
beq 1f
attn /* Unsupported CPU type... what do we do ? */
/* P8 -> 8 threads */
2: li %r26,7
/* Get our reloc offset into r30 */
1: bcl 20,31,$+4
1: mflr %r30
subi %r30,%r30,(1b - __head)
/* Store reloc offset in boot_offset */
LOAD_IMM32(%r3, boot_offset - __head)
add %r3,%r3,%r30
std %r30,0(%r3)
/* Get ourselves a TOC & relocate it to our target address */
LOAD_IMM32(%r2,__toc_start - __head)
LOAD_IMM64(%r29, SKIBOOT_BASE)
add %r2,%r2,%r29
/* Fixup our MSR (remove TA) */
LOAD_IMM64(%r3, (MSR_HV | MSR_SF))
mtmsrd %r3,0
/* Check our PIR, avoid threads */
mfspr %r31,SPR_PIR
and. %r0,%r31,%r26
bne secondary_wait
/* Initialize per-core SPRs */
bl init_shared_sprs
/* Pick a boot CPU, cpu index in r31 */
LOAD_IMM32(%r3, boot_sem - __head)
add %r3,%r3,%r30
1: lwarx %r4,0,%r3
addi %r0,%r4,1
stwcx. %r0,0,%r3
bne 1b
isync
cmpwi cr0,%r4,0
bne secondary_wait
/* Make sure we are in SMT medium */
smt_medium
/* Initialize thread SPRs */
bl init_replicated_sprs
/* Save the initial offset. The secondary threads will spin on boot_flag
* before relocation so we need to keep track of its location to wake
* them up.
*/
mr %r15,%r30
/* Check if we need to copy ourselves up and update %r30 to
* be our new offset
*/
cmpd %r29,%r30
beq 2f
LOAD_IMM32(%r3, _sbss - __head)
srdi %r3,%r3,3
mtctr %r3
mr %r4,%r30
mr %r30,%r29
/* copy the skiboot image to the new offset */
1: ld %r0,0(%r4)
std %r0,0(%r29)
addi %r29,%r29,8
addi %r4,%r4,8
bdnz 1b
/* flush caches, etc */
sync
icbi 0,%r29
sync
isync
/* branch to the new image location and continue */
LOAD_IMM32(%r3, 2f - __head)
add %r3,%r3,%r30
mtctr %r3
bctr
/* Get ready for C code: get a stack */
2: GET_STACK(%r1,%r31)
/* Clear up initial frame */
li %r3,0
std %r3,0(%r1)
std %r3,8(%r1)
std %r3,16(%r1)
/* Relocate ourselves */
bl call_relocate
/* Tell secondaries to move to second stage (relocated) spin loop */
LOAD_IMM32(%r3, boot_flag - __head)
add %r3,%r3,%r15
li %r0,1
stw %r0,0(%r3)
/* Clear BSS */
li %r0,0
LOAD_ADDR_FROM_TOC(%r3, _sbss)
LOAD_ADDR_FROM_TOC(%r4, _ebss)
subf %r4,%r3,%r4
srdi %r4,%r4,3
mtctr %r4
1: std %r0,0(%r3)
addi %r3,%r3,8
bdnz 1b
/* Get our per-cpu pointer into r13 */
GET_CPU()
#ifdef STACK_CHECK_ENABLED
/* Initialize stack bottom mark to 0, it will be updated in C code */
li %r0,0
std %r0,CPUTHREAD_STACK_BOT_MARK(%r13)
#endif
/* Jump to C */
mr %r3,%r27
bl main_cpu_entry
b .
/* Secondary CPUs wait here r31 is PIR */
secondary_wait:
/* The primary might be in the middle of relocating us,
* so first we spin on the boot_flag
*/
LOAD_IMM32(%r3, boot_flag - __head)
add %r3,%r3,%r30
1: smt_very_low
lwz %r0,0(%r3)
cmpdi %r0,0
beq 1b
/* Init some registers */
bl init_replicated_sprs
/* Switch to new runtime address */
mr %r30,%r29
LOAD_IMM32(%r3, 1f - __head)
add %r3,%r3,%r30
mtctr %r3
isync
bctr
1:
/* Now wait for cpu_secondary_start to be set */
LOAD_ADDR_FROM_TOC(%r3, cpu_secondary_start)
1: smt_very_low
ld %r0,0(%r3)
cmpdi %r0,0
beq 1b
smt_medium
/* Check our PIR is in bound */
LOAD_ADDR_FROM_TOC(%r5, cpu_max_pir)
lwz %r5,0(%r5)
cmpw %r31,%r5
bgt- secondary_not_found
/* Get our stack, cpu thread, and jump to C */
GET_STACK(%r1,%r31)
li %r0,0
std %r0,0(%r1)
std %r0,16(%r1)
GET_CPU()
bl secondary_cpu_entry
b .
/* Not found... what to do ? set some global error ? */
secondary_not_found:
smt_very_low
b .
call_relocate:
mflr %r14
LOAD_IMM32(%r4,__dynamic_start - __head)
LOAD_IMM32(%r5,__rela_dyn_start - __head)
add %r4,%r4,%r30
add %r5,%r5,%r30
mr %r3,%r30
bl relocate
cmpwi %r3,0
bne 1f
mtlr %r14
blr
1: /* Fatal relocate failure */
attn
#define FIXUP_ENDIAN \
tdi 0,0,0x48; /* Reverse endian of b . + 8 */ \
b $+36; /* Skip trampoline if endian is good */ \
.long 0x05009f42; /* bcl 20,31,$+4 */ \
.long 0xa602487d; /* mflr r10 */ \
.long 0x1c004a39; /* addi r10,r10,28 */ \
.long 0xa600607d; /* mfmsr r11 */ \
.long 0x01006b69; /* xori r11,r11,1 */ \
.long 0xa6035a7d; /* mtsrr0 r10 */ \
.long 0xa6037b7d; /* mtsrr1 r11 */ \
.long 0x2400004c /* rfid */
.global enter_pm_state
enter_pm_state:
/* Before entering map or rvwinkle, we create a stack frame
* and save our non-volatile registers.
*
* We also save these SPRs:
*
* - HSPRG0 in GPR0 slot
* - HSPRG1 in GPR1 slot
*
* - xxx TODO: HIDs
* - TODO: Mask MSR:ME during the process
*
* On entry, r3 indicates:
*
* 0 = nap
* 1 = rvwinkle
*/
mflr %r0
std %r0,16(%r1)
stdu %r1,-STACK_FRAMESIZE(%r1)
SAVE_GPR(2,%r1)
SAVE_GPR(14,%r1)
SAVE_GPR(15,%r1)
SAVE_GPR(16,%r1)
SAVE_GPR(17,%r1)
SAVE_GPR(18,%r1)
SAVE_GPR(19,%r1)
SAVE_GPR(20,%r1)
SAVE_GPR(21,%r1)
SAVE_GPR(22,%r1)
SAVE_GPR(23,%r1)
SAVE_GPR(24,%r1)
SAVE_GPR(25,%r1)
SAVE_GPR(26,%r1)
SAVE_GPR(27,%r1)
SAVE_GPR(28,%r1)
SAVE_GPR(29,%r1)
SAVE_GPR(30,%r1)
SAVE_GPR(31,%r1)
mfcr %r4
mfxer %r5
mfspr %r6,SPR_HSPRG0
mfspr %r7,SPR_HSPRG1
stw %r4,STACK_CR(%r1)
stw %r5,STACK_XER(%r1)
std %r6,STACK_GPR0(%r1)
std %r7,STACK_GPR1(%r1)
/* Save stack pointer in struct cpu_thread */
std %r1,CPUTHREAD_SAVE_R1(%r13)
/* Winkle or nap ? */
cmpli %cr0,0,%r3,0
bne 1f
/* nap sequence */
ptesync
0: ld %r0,CPUTHREAD_SAVE_R1(%r13)
cmpd cr0,%r0,%r0
bne 0b
PPC_INST_NAP
b .
/* rvwinkle sequence */
1: ptesync
0: ld %r0,CPUTHREAD_SAVE_R1(%r13)
cmpd cr0,%r0,%r0
bne 0b
PPC_INST_RVWINKLE
b .
/* This is a little piece of code that is copied down to
* 0x100 for handling power management wakeups
*/
.global reset_patch_start
reset_patch_start:
FIXUP_ENDIAN
smt_medium
LOAD_IMM64(%r30, SKIBOOT_BASE)
LOAD_IMM32(%r3, reset_wakeup - __head)
add %r3,%r30,%r3
mtctr %r3
bctr
.global reset_patch_end
reset_patch_end:
reset_wakeup:
/* Get PIR */
mfspr %r31,SPR_PIR
/* Get that CPU stack base and use it to restore r13 */
GET_STACK(%r1,%r31)
GET_CPU()
/* Restore original stack pointer */
ld %r3,CPUTHREAD_SAVE_R1(%r13)
/* If it's 0, we are doing a fast reboot */
cmpldi %r3,0
beq fast_reset_entry
mr %r1,%r3
/* Restore more stuff */
lwz %r3,STACK_CR(%r1)
lwz %r4,STACK_XER(%r1)
ld %r5,STACK_GPR0(%r1)
ld %r6,STACK_GPR1(%r1)
mtcr %r3
mtxer %r4
mtspr SPR_HSPRG0,%r5
mtspr SPR_HSPRG1,%r6
REST_GPR(2,%r1)
REST_GPR(14,%r1)
REST_GPR(15,%r1)
REST_GPR(16,%r1)
REST_GPR(17,%r1)
REST_GPR(18,%r1)
REST_GPR(19,%r1)
REST_GPR(20,%r1)
REST_GPR(21,%r1)
REST_GPR(22,%r1)
REST_GPR(23,%r1)
REST_GPR(24,%r1)
REST_GPR(25,%r1)
REST_GPR(26,%r1)
REST_GPR(27,%r1)
REST_GPR(28,%r1)
REST_GPR(29,%r1)
REST_GPR(30,%r1)
REST_GPR(31,%r1)
/* Get LR back, pop stack and return */
addi %r1,%r1,STACK_FRAMESIZE
ld %r0,16(%r1)
mtlr %r0
blr
/* Fast reset code. We clean up the TLB and a few SPRs and
* return to C code. All CPUs do that, the CPU triggering the
* reset does it to itself last. The C code will sort out who
* the master is. We come from the trampoline above with
* r30 containing SKIBOOT_BASE
*/
fast_reset_entry:
/* Clear out SLB */
li %r6,0
slbmte %r6,%r6
slbia
ptesync
/* Dummy stack frame */
li %r3,0
std %r3,0(%r1)
std %r3,8(%r1)
std %r3,16(%r1)
/* Get our TOC */
addis %r2,%r30,(__toc_start - __head)@ha
addi %r2,%r2,(__toc_start - __head)@l
/* Go to C ! */
bl fast_reboot_entry
b .
.global cleanup_tlb
cleanup_tlb:
/* Clean the TLB */
li %r3,512
mtctr %r3
li %r4,0xc00 /* IS field = 0b11 */
ptesync
1: tlbiel %r4
addi %r4,%r4,0x1000
bdnz 1b
ptesync
blr
/* Functions to initialize replicated and shared SPRs to sane
* values. This is called at boot and on soft-reset
*/
.global init_shared_sprs
init_shared_sprs:
li %r0,0
mtspr SPR_SDR1, %r0
mtspr SPR_AMOR, %r0
mfspr %r3,SPR_PVR
srdi %r3,%r3,16
cmpwi cr0,%r3,PVR_TYPE_P7
beq 1f
cmpwi cr0,%r3,PVR_TYPE_P7P
beq 2f
cmpwi cr0,%r3,PVR_TYPE_P8E
beq 3f
cmpwi cr0,%r3,PVR_TYPE_P8
beq 3f
cmpwi cr0,%r3,PVR_TYPE_P8NVL
beq 3f
/* Unsupported CPU type... what do we do ? */
b 9f
1: /* P7 */
/* TSCR: Value from pHyp */
LOAD_IMM32(%r3,0x880DE880)
mtspr SPR_TSCR, %r3
b 9f
2: /* P7+ */
/* TSCR: Recommended value by HW folks */
LOAD_IMM32(%r3,0x88CDE880)
mtspr SPR_TSCR, %r3
b 9f
3: /* P8E/P8 */
/* TSCR: Recommended value by HW folks */
LOAD_IMM32(%r3,0x8ACC6880)
mtspr SPR_TSCR, %r3
mfspr %r3,SPR_LPCR
rldicr %r3,%r3,12,60
ori %r3,%r3,4
rldicr %r3,%r3,52,63
mtspr SPR_LPCR,%r3
sync
isync
/* HID0: Clear bit 13 (enable core recovery)
* Clear bit 19 (HILE)
*/
mfspr %r3,SPR_HID0
li %r0,1
sldi %r4,%r0,(63-13)
sldi %r5,%r0,(63-19)
or %r0,%r4,%r5,
andc %r3,%r3,%r0
sync
mtspr SPR_HID0,%r3
mfspr %r3,SPR_HID0
mfspr %r3,SPR_HID0
mfspr %r3,SPR_HID0
mfspr %r3,SPR_HID0
mfspr %r3,SPR_HID0
mfspr %r3,SPR_HID0
isync
/* HMEER: Enable HMIs for core recovery and TOD errors. */
LOAD_IMM64(%r0,SPR_HMEER_HMI_ENABLE_MASK)
mfspr %r3,SPR_HMEER
or %r3,%r3,%r0
sync
mtspr SPR_HMEER,%r3
isync
/* RPR (per-LPAR but let's treat it as replicated for now) */
LOAD_IMM64(%r3,0x00000103070F1F3F)
mtspr SPR_RPR,%r3
9: blr
.global init_replicated_sprs
init_replicated_sprs:
/* LPCR: sane value */
LOAD_IMM64(%r3,0x0070000000000004)
mtspr SPR_LPCR, %r3
/* XXX TODO: Add more */
blr
.global enter_nap
enter_nap:
std %r0,0(%r1)
ptesync
ld %r0,0(%r1)
1: cmp %cr0,0,%r0,%r0
bne 1b
nap
b .
/*
*
* NACA structure, accessed by the FPS to find the SPIRA
*
*/
. = 0x4000
.global naca
naca:
.llong spirah /* 0x0000 : SPIRA-H */
.llong 0 /* 0x0008 : Reserved */
.llong 0 /* 0x0010 : Reserved */
.llong hv_release_data /* 0x0018 : HV release data */
.llong 0 /* 0x0020 : Reserved */
.llong 0 /* 0x0028 : Reserved */
.llong spira /* 0x0030 : SP Interface Root */
.llong hv_lid_load_table /* 0x0038 : LID load table */
.llong 0 /* 0x0040 : Reserved */
.space 68
.long 0 /* 0x008c : Reserved */
.space 16
.long SPIRA_ACTUAL_SIZE /* 0x00a0 : Actual size of SPIRA */
.space 28
.llong 0 /* 0x00c0 : resident module loadmap */
.space 136
.llong 0 /* 0x0150 : reserved */
.space 40
.llong 0 /* 0x0180 : reserved */
.space 36
.long 0 /* 0x01ac : control flags */
.byte 0 /* 0x01b0 : reserved */
.space 4
.byte 0 /* 0x01b5 : default state for SW attn */
.space 1
.byte 0x01 /* 0x01b7 : PCIA format */
.llong hdat_entry /* 0x01b8 : Primary thread entry */
.llong hdat_entry /* 0x01c0 : Secondary thread entry */
.space 0xe38
.balign 0x10
hv_release_data:
.space 58
.llong 0x666 /* VRM ? */
.balign 0x10
hv_lid_load_table:
.long 0x10
.long 0x10
.long 0
.long 0
/*
*
* OPAL variant of NACA. This is only used when booting a P7 in OPAL mode.
*
*/
.global opal_naca
opal_naca:
.llong opal_boot_trampoline /* Primary entry (used ?) */
.llong opal_boot_trampoline /* Secondary entry (used ?) */
.llong spira /* Spira pointer */
.llong 0 /* Load address */
.llong opal_boot_trampoline /* 0x180 trampoline */
.llong 0 /* More stuff as seen in objdump ...*/
.llong 0
.llong 0
.llong 0
/* The FSP seems to ignore our primary/secondary entry
* points and instead copy that bit down to 0x180 and
* patch the first instruction to get our expected
* boot CPU number. We ignore that patching for now and
* got to the same entry we use for pHyp and FDT HB.
*/
opal_boot_trampoline:
li %r27,-1
ba boot_entry - __head
/*
*
* OPAL entry point from operating system
*
* Register usage:
*
* r0: Token
* r2: OPAL Base
* r3..r10: Args
* r12: Scratch
* r13..r31: Preserved
*
*/
.balign 0x10
.global opal_entry
opal_entry:
/* Get our per CPU stack */
mfspr %r12,SPR_PIR
GET_STACK(%r12,%r12)
stdu %r12,-STACK_FRAMESIZE(%r12)
/* Save caller r1, establish new r1 */
std %r1,STACK_GPR1(%r12)
mr %r1,%r12
/* May save arguments for tracing */
#ifdef OPAL_TRACE_ENTRY
std %r3,STACK_GPR3(%r1)
std %r4,STACK_GPR4(%r1)
std %r5,STACK_GPR5(%r1)
std %r6,STACK_GPR6(%r1)
std %r7,STACK_GPR7(%r1)
std %r8,STACK_GPR8(%r1)
std %r9,STACK_GPR9(%r1)
std %r10,STACK_GPR10(%r1)
#endif
/* Save Token (r0), LR and r13 */
mflr %r12
std %r0,STACK_GPR0(%r1)
std %r13,STACK_GPR13(%r1)
std %r12,STACK_LR(%r1)
/* Get the CPU thread */
GET_CPU()
/* Store token in CPU thread */
std %r0,CPUTHREAD_CUR_TOKEN(%r13)
/* Mark the stack frame */
li %r12,STACK_ENTRY_OPAL_API
std %r12,STACK_TYPE(%r1)
/* Get our TOC */
addis %r2,%r2,(__toc_start - __head)@ha
addi %r2,%r2,(__toc_start - __head)@l
/* Check for a reboot in progress */
LOAD_ADDR_FROM_TOC(%r12, reboot_in_progress)
lbz %r12,0(%r12)
cmpwi %r12,0
bne 3f
#ifdef OPAL_TRACE_ENTRY
mr %r3,%r1
bl opal_trace_entry
ld %r0,STACK_GPR0(%r1)
ld %r3,STACK_GPR3(%r1)
ld %r4,STACK_GPR4(%r1)
ld %r5,STACK_GPR5(%r1)
ld %r6,STACK_GPR6(%r1)
ld %r7,STACK_GPR7(%r1)
ld %r8,STACK_GPR8(%r1)
ld %r9,STACK_GPR9(%r1)
ld %r10,STACK_GPR10(%r1)
#endif /* OPAL_TRACE_ENTRY */
/* Convert our token into a table entry and get the
* function pointer. Also check the token.
* For ELFv2 ABI, the local entry point is used so no need for r12.
*/
cmpldi %r0,OPAL_LAST
bgt- 2f
sldi %r0,%r0,3
LOAD_ADDR_FROM_TOC(%r12, opal_branch_table)
ldx %r0,%r12,%r0
cmpldi %r0,0
beq- 2f
mtctr %r0
/* Jump ! */
bctrl
1: ld %r12,STACK_LR(%r1)
mtlr %r12
ld %r13,STACK_GPR13(%r1)
ld %r1,STACK_GPR1(%r1)
blr
2: /* Bad token */
ld %r3,STACK_GPR0(%r1)
bl opal_bad_token
b 1b
3: /* Reboot in progress, reject all calls */
li %r3,OPAL_BUSY
b 1b
.global start_kernel
start_kernel:
sync
icbi 0,%r3
sync
isync
mtctr %r3
mr %r3,%r4
LOAD_IMM64(%r8,SKIBOOT_BASE);
LOAD_IMM32(%r10, opal_entry - __head)
add %r9,%r8,%r10
LOAD_IMM32(%r6, EPAPR_MAGIC)
addi %r7,%r5,1
li %r4,0
li %r5,0
bctr
.global start_kernel32
start_kernel32:
mfmsr %r10
clrldi %r10,%r10,1
mtmsrd %r10,0
sync
isync
b start_kernel
.global start_kernel_secondary
start_kernel_secondary:
sync
isync
mtctr %r3
mfspr %r3,SPR_PIR
bctr
|