diff options
-rw-r--r-- | Documentation/accounting/psi.txt | 64 | ||||
-rw-r--r-- | include/linux/psi.h | 28 | ||||
-rw-r--r-- | include/linux/psi_types.h | 92 | ||||
-rw-r--r-- | include/linux/sched.h | 10 | ||||
-rw-r--r-- | init/Kconfig | 15 | ||||
-rw-r--r-- | kernel/fork.c | 4 | ||||
-rw-r--r-- | kernel/sched/Makefile | 1 | ||||
-rw-r--r-- | kernel/sched/core.c | 12 | ||||
-rw-r--r-- | kernel/sched/psi.c | 657 | ||||
-rw-r--r-- | kernel/sched/sched.h | 2 | ||||
-rw-r--r-- | kernel/sched/stats.h | 86 | ||||
-rw-r--r-- | mm/compaction.c | 5 | ||||
-rw-r--r-- | mm/filemap.c | 15 | ||||
-rw-r--r-- | mm/page_alloc.c | 9 | ||||
-rw-r--r-- | mm/vmscan.c | 9 |
15 files changed, 1003 insertions, 6 deletions
diff --git a/Documentation/accounting/psi.txt b/Documentation/accounting/psi.txt new file mode 100644 index 000000000000..3753a82f1cf5 --- /dev/null +++ b/Documentation/accounting/psi.txt @@ -0,0 +1,64 @@ +================================ +PSI - Pressure Stall Information +================================ + +:Date: April, 2018 +:Author: Johannes Weiner <hannes@cmpxchg.org> + +When CPU, memory or IO devices are contended, workloads experience +latency spikes, throughput losses, and run the risk of OOM kills. + +Without an accurate measure of such contention, users are forced to +either play it safe and under-utilize their hardware resources, or +roll the dice and frequently suffer the disruptions resulting from +excessive overcommit. + +The psi feature identifies and quantifies the disruptions caused by +such resource crunches and the time impact it has on complex workloads +or even entire systems. + +Having an accurate measure of productivity losses caused by resource +scarcity aids users in sizing workloads to hardware--or provisioning +hardware according to workload demand. + +As psi aggregates this information in realtime, systems can be managed +dynamically using techniques such as load shedding, migrating jobs to +other systems or data centers, or strategically pausing or killing low +priority or restartable batch jobs. + +This allows maximizing hardware utilization without sacrificing +workload health or risking major disruptions such as OOM kills. + +Pressure interface +================== + +Pressure information for each resource is exported through the +respective file in /proc/pressure/ -- cpu, memory, and io. + +The format for CPU is as such: + +some avg10=0.00 avg60=0.00 avg300=0.00 total=0 + +and for memory and IO: + +some avg10=0.00 avg60=0.00 avg300=0.00 total=0 +full avg10=0.00 avg60=0.00 avg300=0.00 total=0 + +The "some" line indicates the share of time in which at least some +tasks are stalled on a given resource. + +The "full" line indicates the share of time in which all non-idle +tasks are stalled on a given resource simultaneously. In this state +actual CPU cycles are going to waste, and a workload that spends +extended time in this state is considered to be thrashing. This has +severe impact on performance, and it's useful to distinguish this +situation from a state where some tasks are stalled but the CPU is +still doing productive work. As such, time spent in this subset of the +stall state is tracked separately and exported in the "full" averages. + +The ratios are tracked as recent trends over ten, sixty, and three +hundred second windows, which gives insight into short term events as +well as medium and long term trends. The total absolute stall time is +tracked and exported as well, to allow detection of latency spikes +which wouldn't necessarily make a dent in the time averages, or to +average trends over custom time frames. diff --git a/include/linux/psi.h b/include/linux/psi.h new file mode 100644 index 000000000000..b0daf050de58 --- /dev/null +++ b/include/linux/psi.h @@ -0,0 +1,28 @@ +#ifndef _LINUX_PSI_H +#define _LINUX_PSI_H + +#include <linux/psi_types.h> +#include <linux/sched.h> + +#ifdef CONFIG_PSI + +extern bool psi_disabled; + +void psi_init(void); + +void psi_task_change(struct task_struct *task, int clear, int set); + +void psi_memstall_tick(struct task_struct *task, int cpu); +void psi_memstall_enter(unsigned long *flags); +void psi_memstall_leave(unsigned long *flags); + +#else /* CONFIG_PSI */ + +static inline void psi_init(void) {} + +static inline void psi_memstall_enter(unsigned long *flags) {} +static inline void psi_memstall_leave(unsigned long *flags) {} + +#endif /* CONFIG_PSI */ + +#endif /* _LINUX_PSI_H */ diff --git a/include/linux/psi_types.h b/include/linux/psi_types.h new file mode 100644 index 000000000000..2cf422db5d18 --- /dev/null +++ b/include/linux/psi_types.h @@ -0,0 +1,92 @@ +#ifndef _LINUX_PSI_TYPES_H +#define _LINUX_PSI_TYPES_H + +#include <linux/seqlock.h> +#include <linux/types.h> + +#ifdef CONFIG_PSI + +/* Tracked task states */ +enum psi_task_count { + NR_IOWAIT, + NR_MEMSTALL, + NR_RUNNING, + NR_PSI_TASK_COUNTS, +}; + +/* Task state bitmasks */ +#define TSK_IOWAIT (1 << NR_IOWAIT) +#define TSK_MEMSTALL (1 << NR_MEMSTALL) +#define TSK_RUNNING (1 << NR_RUNNING) + +/* Resources that workloads could be stalled on */ +enum psi_res { + PSI_IO, + PSI_MEM, + PSI_CPU, + NR_PSI_RESOURCES, +}; + +/* + * Pressure states for each resource: + * + * SOME: Stalled tasks & working tasks + * FULL: Stalled tasks & no working tasks + */ +enum psi_states { + PSI_IO_SOME, + PSI_IO_FULL, + PSI_MEM_SOME, + PSI_MEM_FULL, + PSI_CPU_SOME, + /* Only per-CPU, to weigh the CPU in the global average: */ + PSI_NONIDLE, + NR_PSI_STATES, +}; + +struct psi_group_cpu { + /* 1st cacheline updated by the scheduler */ + + /* Aggregator needs to know of concurrent changes */ + seqcount_t seq ____cacheline_aligned_in_smp; + + /* States of the tasks belonging to this group */ + unsigned int tasks[NR_PSI_TASK_COUNTS]; + + /* Period time sampling buckets for each state of interest (ns) */ + u32 times[NR_PSI_STATES]; + + /* Time of last task change in this group (rq_clock) */ + u64 state_start; + + /* 2nd cacheline updated by the aggregator */ + + /* Delta detection against the sampling buckets */ + u32 times_prev[NR_PSI_STATES] ____cacheline_aligned_in_smp; +}; + +struct psi_group { + /* Protects data updated during an aggregation */ + struct mutex stat_lock; + + /* Per-cpu task state & time tracking */ + struct psi_group_cpu __percpu *pcpu; + + /* Periodic aggregation state */ + u64 total_prev[NR_PSI_STATES - 1]; + u64 last_update; + u64 next_update; + struct delayed_work clock_work; + + /* Total stall times and sampled pressure averages */ + u64 total[NR_PSI_STATES - 1]; + unsigned long avg[NR_PSI_STATES - 1][3]; +}; + +#else /* CONFIG_PSI */ + +struct psi_group { }; + +#endif /* CONFIG_PSI */ + +#endif /* _LINUX_PSI_TYPES_H */ diff --git a/include/linux/sched.h b/include/linux/sched.h index adfb3f9a7597..b8fcc6b3080c 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -25,6 +25,7 @@ #include <linux/latencytop.h> #include <linux/sched/prio.h> #include <linux/signal_types.h> +#include <linux/psi_types.h> #include <linux/mm_types_task.h> #include <linux/task_io_accounting.h> #include <linux/rseq.h> @@ -706,6 +707,10 @@ struct task_struct { unsigned sched_contributes_to_load:1; unsigned sched_migrated:1; unsigned sched_remote_wakeup:1; +#ifdef CONFIG_PSI + unsigned sched_psi_wake_requeue:1; +#endif + /* Force alignment to the next boundary: */ unsigned :0; @@ -965,6 +970,10 @@ struct task_struct { kernel_siginfo_t *last_siginfo; struct task_io_accounting ioac; +#ifdef CONFIG_PSI + /* Pressure stall state */ + unsigned int psi_flags; +#endif #ifdef CONFIG_TASK_XACCT /* Accumulated RSS usage: */ u64 acct_rss_mem1; @@ -1391,6 +1400,7 @@ extern struct pid *cad_pid; #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ +#define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */ #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ diff --git a/init/Kconfig b/init/Kconfig index 317d5ccb5191..26e639df5517 100644 --- a/init/Kconfig +++ b/init/Kconfig @@ -490,6 +490,21 @@ config TASK_IO_ACCOUNTING Say N if unsure. +config PSI + bool "Pressure stall information tracking" + help + Collect metrics that indicate how overcommitted the CPU, memory, + and IO capacity are in the system. + + If you say Y here, the kernel will create /proc/pressure/ with the + pressure statistics files cpu, memory, and io. These will indicate + the share of walltime in which some or all tasks in the system are + delayed due to contention of the respective resource. + + For more details see Documentation/accounting/psi.txt. + + Say N if unsure. + endmenu # "CPU/Task time and stats accounting" config CPU_ISOLATION diff --git a/kernel/fork.c b/kernel/fork.c index 3c719fec46c5..8f82a3bdcb8f 100644 --- a/kernel/fork.c +++ b/kernel/fork.c @@ -1822,6 +1822,10 @@ static __latent_entropy struct task_struct *copy_process( p->default_timer_slack_ns = current->timer_slack_ns; +#ifdef CONFIG_PSI + p->psi_flags = 0; +#endif + task_io_accounting_init(&p->ioac); acct_clear_integrals(p); diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile index 7fe183404c38..21fb5a5662b5 100644 --- a/kernel/sched/Makefile +++ b/kernel/sched/Makefile @@ -29,3 +29,4 @@ obj-$(CONFIG_CPU_FREQ) += cpufreq.o obj-$(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) += cpufreq_schedutil.o obj-$(CONFIG_MEMBARRIER) += membarrier.o obj-$(CONFIG_CPU_ISOLATION) += isolation.o +obj-$(CONFIG_PSI) += psi.o diff --git a/kernel/sched/core.c b/kernel/sched/core.c index f3efef387797..fd2fce8a001b 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -722,8 +722,10 @@ static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) if (!(flags & ENQUEUE_NOCLOCK)) update_rq_clock(rq); - if (!(flags & ENQUEUE_RESTORE)) + if (!(flags & ENQUEUE_RESTORE)) { sched_info_queued(rq, p); + psi_enqueue(p, flags & ENQUEUE_WAKEUP); + } p->sched_class->enqueue_task(rq, p, flags); } @@ -733,8 +735,10 @@ static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) if (!(flags & DEQUEUE_NOCLOCK)) update_rq_clock(rq); - if (!(flags & DEQUEUE_SAVE)) + if (!(flags & DEQUEUE_SAVE)) { sched_info_dequeued(rq, p); + psi_dequeue(p, flags & DEQUEUE_SLEEP); + } p->sched_class->dequeue_task(rq, p, flags); } @@ -2037,6 +2041,7 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); if (task_cpu(p) != cpu) { wake_flags |= WF_MIGRATED; + psi_ttwu_dequeue(p); set_task_cpu(p, cpu); } @@ -3051,6 +3056,7 @@ void scheduler_tick(void) curr->sched_class->task_tick(rq, curr, 0); cpu_load_update_active(rq); calc_global_load_tick(rq); + psi_task_tick(rq); rq_unlock(rq, &rf); @@ -6067,6 +6073,8 @@ void __init sched_init(void) init_schedstats(); + psi_init(); + scheduler_running = 1; } diff --git a/kernel/sched/psi.c b/kernel/sched/psi.c new file mode 100644 index 000000000000..595414599b98 --- /dev/null +++ b/kernel/sched/psi.c @@ -0,0 +1,657 @@ +/* + * Pressure stall information for CPU, memory and IO + * + * Copyright (c) 2018 Facebook, Inc. + * Author: Johannes Weiner <hannes@cmpxchg.org> + * + * When CPU, memory and IO are contended, tasks experience delays that + * reduce throughput and introduce latencies into the workload. Memory + * and IO contention, in addition, can cause a full loss of forward + * progress in which the CPU goes idle. + * + * This code aggregates individual task delays into resource pressure + * metrics that indicate problems with both workload health and + * resource utilization. + * + * Model + * + * The time in which a task can execute on a CPU is our baseline for + * productivity. Pressure expresses the amount of time in which this + * potential cannot be realized due to resource contention. + * + * This concept of productivity has two components: the workload and + * the CPU. To measure the impact of pressure on both, we define two + * contention states for a resource: SOME and FULL. + * + * In the SOME state of a given resource, one or more tasks are + * delayed on that resource. This affects the workload's ability to + * perform work, but the CPU may still be executing other tasks. + * + * In the FULL state of a given resource, all non-idle tasks are + * delayed on that resource such that nobody is advancing and the CPU + * goes idle. This leaves both workload and CPU unproductive. + * + * (Naturally, the FULL state doesn't exist for the CPU resource.) + * + * SOME = nr_delayed_tasks != 0 + * FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0 + * + * The percentage of wallclock time spent in those compound stall + * states gives pressure numbers between 0 and 100 for each resource, + * where the SOME percentage indicates workload slowdowns and the FULL + * percentage indicates reduced CPU utilization: + * + * %SOME = time(SOME) / period + * %FULL = time(FULL) / period + * + * Multiple CPUs + * + * The more tasks and available CPUs there are, the more work can be + * performed concurrently. This means that the potential that can go + * unrealized due to resource contention *also* scales with non-idle + * tasks and CPUs. + * + * Consider a scenario where 257 number crunching tasks are trying to + * run concurrently on 256 CPUs. If we simply aggregated the task + * states, we would have to conclude a CPU SOME pressure number of + * 100%, since *somebody* is waiting on a runqueue at all + * times. However, that is clearly not the amount of contention the + * workload is experiencing: only one out of 256 possible exceution + * threads will be contended at any given time, or about 0.4%. + * + * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any + * given time *one* of the tasks is delayed due to a lack of memory. + * Again, looking purely at the task state would yield a memory FULL + * pressure number of 0%, since *somebody* is always making forward + * progress. But again this wouldn't capture the amount of execution + * potential lost, which is 1 out of 4 CPUs, or 25%. + * + * To calculate wasted potential (pressure) with multiple processors, + * we have to base our calculation on the number of non-idle tasks in + * conjunction with the number of available CPUs, which is the number + * of potential execution threads. SOME becomes then the proportion of + * delayed tasks to possibe threads, and FULL is the share of possible + * threads that are unproductive due to delays: + * + * threads = min(nr_nonidle_tasks, nr_cpus) + * SOME = min(nr_delayed_tasks / threads, 1) + * FULL = (threads - min(nr_running_tasks, threads)) / threads + * + * For the 257 number crunchers on 256 CPUs, this yields: + * + * threads = min(257, 256) + * SOME = min(1 / 256, 1) = 0.4% + * FULL = (256 - min(257, 256)) / 256 = 0% + * + * For the 1 out of 4 memory-delayed tasks, this yields: + * + * threads = min(4, 4) + * SOME = min(1 / 4, 1) = 25% + * FULL = (4 - min(3, 4)) / 4 = 25% + * + * [ Substitute nr_cpus with 1, and you can see that it's a natural + * extension of the single-CPU model. ] + * + * Implementation + * + * To assess the precise time spent in each such state, we would have + * to freeze the system on task changes and start/stop the state + * clocks accordingly. Obviously that doesn't scale in practice. + * + * Because the scheduler aims to distribute the compute load evenly + * among the available CPUs, we can track task state locally to each + * CPU and, at much lower frequency, extrapolate the global state for + * the cumulative stall times and the running averages. + * + * For each runqueue, we track: + * + * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0) + * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu]) + * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0) + * + * and then periodically aggregate: + * + * tNONIDLE = sum(tNONIDLE[i]) + * + * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE + * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE + * + * %SOME = tSOME / period + * %FULL = tFULL / period + * + * This gives us an approximation of pressure that is practical + * cost-wise, yet way more sensitive and accurate than periodic + * sampling of the aggregate task states would be. + */ + +#include <linux/sched/loadavg.h> +#include <linux/seq_file.h> +#include <linux/proc_fs.h> +#include <linux/seqlock.h> +#include <linux/cgroup.h> +#include <linux/module.h> +#include <linux/sched.h> +#include <linux/psi.h> +#include "sched.h" + +static int psi_bug __read_mostly; + +bool psi_disabled __read_mostly; +core_param(psi_disabled, psi_disabled, bool, 0644); + +/* Running averages - we need to be higher-res than loadavg */ +#define PSI_FREQ (2*HZ+1) /* 2 sec intervals */ +#define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */ +#define EXP_60s 1981 /* 1/exp(2s/60s) */ +#define EXP_300s 2034 /* 1/exp(2s/300s) */ + +/* Sampling frequency in nanoseconds */ +static u64 psi_period __read_mostly; + +/* System-level pressure and stall tracking */ +static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu); +static struct psi_group psi_system = { + .pcpu = &system_group_pcpu, +}; + +static void psi_update_work(struct work_struct *work); + +static void group_init(struct psi_group *group) +{ + int cpu; + + for_each_possible_cpu(cpu) + seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq); + group->next_update = sched_clock() + psi_period; + INIT_DELAYED_WORK(&group->clock_work, psi_update_work); + mutex_init(&group->stat_lock); +} + +void __init psi_init(void) +{ + if (psi_disabled) + return; + + psi_period = jiffies_to_nsecs(PSI_FREQ); + group_init(&psi_system); +} + +static bool test_state(unsigned int *tasks, enum psi_states state) +{ + switch (state) { + case PSI_IO_SOME: + return tasks[NR_IOWAIT]; + case PSI_IO_FULL: + return tasks[NR_IOWAIT] && !tasks[NR_RUNNING]; + case PSI_MEM_SOME: + return tasks[NR_MEMSTALL]; + case PSI_MEM_FULL: + return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING]; + case PSI_CPU_SOME: + return tasks[NR_RUNNING] > 1; + case PSI_NONIDLE: + return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || + tasks[NR_RUNNING]; + default: + return false; + } +} + +static void get_recent_times(struct psi_group *group, int cpu, u32 *times) +{ + struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu); + unsigned int tasks[NR_PSI_TASK_COUNTS]; + u64 now, state_start; + unsigned int seq; + int s; + + /* Snapshot a coherent view of the CPU state */ + do { + seq = read_seqcount_begin(&groupc->seq); + now = cpu_clock(cpu); + memcpy(times, groupc->times, sizeof(groupc->times)); + memcpy(tasks, groupc->tasks, sizeof(groupc->tasks)); + state_start = groupc->state_start; + } while (read_seqcount_retry(&groupc->seq, seq)); + + /* Calculate state time deltas against the previous snapshot */ + for (s = 0; s < NR_PSI_STATES; s++) { + u32 delta; + /* + * In addition to already concluded states, we also + * incorporate currently active states on the CPU, + * since states may last for many sampling periods. + * + * This way we keep our delta sampling buckets small + * (u32) and our reported pressure close to what's + * actually happening. + */ + if (test_state(tasks, s)) + times[s] += now - state_start; + + delta = times[s] - groupc->times_prev[s]; + groupc->times_prev[s] = times[s]; + + times[s] = delta; + } +} + +static void calc_avgs(unsigned long avg[3], int missed_periods, + u64 time, u64 period) +{ + unsigned long pct; + + /* Fill in zeroes for periods of no activity */ + if (missed_periods) { + avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods); + avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods); + avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods); + } + + /* Sample the most recent active period */ + pct = div_u64(time * 100, period); + pct *= FIXED_1; + avg[0] = calc_load(avg[0], EXP_10s, pct); + avg[1] = calc_load(avg[1], EXP_60s, pct); + avg[2] = calc_load(avg[2], EXP_300s, pct); +} + +static bool update_stats(struct psi_group *group) +{ + u64 deltas[NR_PSI_STATES - 1] = { 0, }; + unsigned long missed_periods = 0; + unsigned long nonidle_total = 0; + u64 now, expires, period; + int cpu; + int s; + + mutex_lock(&group->stat_lock); + + /* + * Collect the per-cpu time buckets and average them into a + * single time sample that is normalized to wallclock time. + * + * For averaging, each CPU is weighted by its non-idle time in + * the sampling period. This eliminates artifacts from uneven + * loading, or even entirely idle CPUs. + */ + for_each_possible_cpu(cpu) { + u32 times[NR_PSI_STATES]; + u32 nonidle; + + get_recent_times(group, cpu, times); + + nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]); + nonidle_total += nonidle; + + for (s = 0; s < PSI_NONIDLE; s++) + deltas[s] += (u64)times[s] * nonidle; + } + + /* + * Integrate the sample into the running statistics that are + * reported to userspace: the cumulative stall times and the + * decaying averages. + * + * Pressure percentages are sampled at PSI_FREQ. We might be + * called more often when the user polls more frequently than + * that; we might be called less often when there is no task + * activity, thus no data, and clock ticks are sporadic. The + * below handles both. + */ + + /* total= */ + for (s = 0; s < NR_PSI_STATES - 1; s++) + group->total[s] += div_u64(deltas[s], max(nonidle_total, 1UL)); + + /* avgX= */ + now = sched_clock(); + expires = group->next_update; + if (now < expires) + goto out; + if (now - expires > psi_period) + missed_periods = div_u64(now - expires, psi_period); + + /* + * The periodic clock tick can get delayed for various + * reasons, especially on loaded systems. To avoid clock + * drift, we schedule the clock in fixed psi_period intervals. + * But the deltas we sample out of the per-cpu buckets above + * are based on the actual time elapsing between clock ticks. + */ + group->next_update = expires + ((1 + missed_periods) * psi_period); + period = now - (group->last_update + (missed_periods * psi_period)); + group->last_update = now; + + for (s = 0; s < NR_PSI_STATES - 1; s++) { + u32 sample; + + sample = group->total[s] - group->total_prev[s]; + /* + * Due to the lockless sampling of the time buckets, + * recorded time deltas can slip into the next period, + * which under full pressure can result in samples in + * excess of the period length. + * + * We don't want to report non-sensical pressures in + * excess of 100%, nor do we want to drop such events + * on the floor. Instead we punt any overage into the + * future until pressure subsides. By doing this we + * don't underreport the occurring pressure curve, we + * just report it delayed by one period length. + * + * The error isn't cumulative. As soon as another + * delta slips from a period P to P+1, by definition + * it frees up its time T in P. + */ + if (sample > period) + sample = period; + group->total_prev[s] += sample; + calc_avgs(group->avg[s], missed_periods, sample, period); + } +out: + mutex_unlock(&group->stat_lock); + return nonidle_total; +} + +static void psi_update_work(struct work_struct *work) +{ + struct delayed_work *dwork; + struct psi_group *group; + bool nonidle; + + dwork = to_delayed_work(work); + group = container_of(dwork, struct psi_group, clock_work); + + /* + * If there is task activity, periodically fold the per-cpu + * times and feed samples into the running averages. If things + * are idle and there is no data to process, stop the clock. + * Once restarted, we'll catch up the running averages in one + * go - see calc_avgs() and missed_periods. + */ + + nonidle = update_stats(group); + + if (nonidle) { + unsigned long delay = 0; + u64 now; + + now = sched_clock(); + if (group->next_update > now) + delay = nsecs_to_jiffies(group->next_update - now) + 1; + schedule_delayed_work(dwork, delay); + } +} + +static void record_times(struct psi_group_cpu *groupc, int cpu, + bool memstall_tick) +{ + u32 delta; + u64 now; + + now = cpu_clock(cpu); + delta = now - groupc->state_start; + groupc->state_start = now; + + if (test_state(groupc->tasks, PSI_IO_SOME)) { + groupc->times[PSI_IO_SOME] += delta; + if (test_state(groupc->tasks, PSI_IO_FULL)) + groupc->times[PSI_IO_FULL] += delta; + } + + if (test_state(groupc->tasks, PSI_MEM_SOME)) { + groupc->times[PSI_MEM_SOME] += delta; + if (test_state(groupc->tasks, PSI_MEM_FULL)) + groupc->times[PSI_MEM_FULL] += delta; + else if (memstall_tick) { + u32 sample; + /* + * Since we care about lost potential, a + * memstall is FULL when there are no other + * working tasks, but also when the CPU is + * actively reclaiming and nothing productive + * could run even if it were runnable. + * + * When the timer tick sees a reclaiming CPU, + * regardless of runnable tasks, sample a FULL + * tick (or less if it hasn't been a full tick + * since the last state change). + */ + sample = min(delta, (u32)jiffies_to_nsecs(1)); + groupc->times[PSI_MEM_FULL] += sample; + } + } + + if (test_state(groupc->tasks, PSI_CPU_SOME)) + groupc->times[PSI_CPU_SOME] += delta; + + if (test_state(groupc->tasks, PSI_NONIDLE)) + groupc->times[PSI_NONIDLE] += delta; +} + +static void psi_group_change(struct psi_group *group, int cpu, + unsigned int clear, unsigned int set) +{ + struct psi_group_cpu *groupc; + unsigned int t, m; + + groupc = per_cpu_ptr(group->pcpu, cpu); + + /* + * First we assess the aggregate resource states this CPU's + * tasks have been in since the last change, and account any + * SOME and FULL time these may have resulted in. + * + * Then we update the task counts according to the state + * change requested through the @clear and @set bits. + */ + write_seqcount_begin(&groupc->seq); + + record_times(groupc, cpu, false); + + for (t = 0, m = clear; m; m &= ~(1 << t), t++) { + if (!(m & (1 << t))) + continue; + if (groupc->tasks[t] == 0 && !psi_bug) { + printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u] clear=%x set=%x\n", + cpu, t, groupc->tasks[0], + groupc->tasks[1], groupc->tasks[2], + clear, set); + psi_bug = 1; + } + groupc->tasks[t]--; + } + + for (t = 0; set; set &= ~(1 << t), t++) + if (set & (1 << t)) + groupc->tasks[t]++; + + write_seqcount_end(&groupc->seq); + + if (!delayed_work_pending(&group->clock_work)) + schedule_delayed_work(&group->clock_work, PSI_FREQ); +} + +void psi_task_change(struct task_struct *task, int clear, int set) +{ + int cpu = task_cpu(task); + + if (!task->pid) + return; + + if (((task->psi_flags & set) || + (task->psi_flags & clear) != clear) && + !psi_bug) { + printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n", + task->pid, task->comm, cpu, + task->psi_flags, clear, set); + psi_bug = 1; + } + + task->psi_flags &= ~clear; + task->psi_flags |= set; + + psi_group_change(&psi_system, cpu, clear, set); +} + +void psi_memstall_tick(struct task_struct *task, int cpu) +{ + struct psi_group_cpu *groupc; + + groupc = per_cpu_ptr(psi_system.pcpu, cpu); + write_seqcount_begin(&groupc->seq); + record_times(groupc, cpu, true); + write_seqcount_end(&groupc->seq); +} + +/** + * psi_memstall_enter - mark the beginning of a memory stall section + * @flags: flags to handle nested sections + * + * Marks the calling task as being stalled due to a lack of memory, + * such as waiting for a refault or performing reclaim. + */ +void psi_memstall_enter(unsigned long *flags) +{ + struct rq_flags rf; + struct rq *rq; + + if (psi_disabled) + return; + + *flags = current->flags & PF_MEMSTALL; + if (*flags) + return; + /* + * PF_MEMSTALL setting & accounting needs to be atomic wrt + * changes to the task's scheduling state, otherwise we can + * race with CPU migration. + */ + rq = this_rq_lock_irq(&rf); + + current->flags |= PF_MEMSTALL; + psi_task_change(current, 0, TSK_MEMSTALL); + + rq_unlock_irq(rq, &rf); +} + +/** + * psi_memstall_leave - mark the end of an memory stall section + * @flags: flags to handle nested memdelay sections + * + * Marks the calling task as no longer stalled due to lack of memory. + */ +void psi_memstall_leave(unsigned long *flags) +{ + struct rq_flags rf; + struct rq *rq; + + if (psi_disabled) + return; + + if (*flags) + return; + /* + * PF_MEMSTALL clearing & accounting needs to be atomic wrt + * changes to the task's scheduling state, otherwise we could + * race with CPU migration. + */ + rq = this_rq_lock_irq(&rf); + + current->flags &= ~PF_MEMSTALL; + psi_task_change(current, TSK_MEMSTALL, 0); + + rq_unlock_irq(rq, &rf); +} + +static int psi_show(struct seq_file *m, struct psi_group *group, + enum psi_res res) +{ + int full; + + if (psi_disabled) + return -EOPNOTSUPP; + + update_stats(group); + + for (full = 0; full < 2 - (res == PSI_CPU); full++) { + unsigned long avg[3]; + u64 total; + int w; + + for (w = 0; w < 3; w++) + avg[w] = group->avg[res * 2 + full][w]; + total = div_u64(group->total[res * 2 + full], NSEC_PER_USEC); + + seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n", + full ? "full" : "some", + LOAD_INT(avg[0]), LOAD_FRAC(avg[0]), + LOAD_INT(avg[1]), LOAD_FRAC(avg[1]), + LOAD_INT(avg[2]), LOAD_FRAC(avg[2]), + total); + } + + return 0; +} + +static int psi_io_show(struct seq_file *m, void *v) +{ + return psi_show(m, &psi_system, PSI_IO); +} + +static int psi_memory_show(struct seq_file *m, void *v) +{ + return psi_show(m, &psi_system, PSI_MEM); +} + +static int psi_cpu_show(struct seq_file *m, void *v) +{ + return psi_show(m, &psi_system, PSI_CPU); +} + +static int psi_io_open(struct inode *inode, struct file *file) +{ + return single_open(file, psi_io_show, NULL); +} + +static int psi_memory_open(struct inode *inode, struct file *file) +{ + return single_open(file, psi_memory_show, NULL); +} + +static int psi_cpu_open(struct inode *inode, struct file *file) +{ + return single_open(file, psi_cpu_show, NULL); +} + +static const struct file_operations psi_io_fops = { + .open = psi_io_open, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, +}; + +static const struct file_operations psi_memory_fops = { + .open = psi_memory_open, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, +}; + +static const struct file_operations psi_cpu_fops = { + .open = psi_cpu_open, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, +}; + +static int __init psi_proc_init(void) +{ + proc_mkdir("pressure", NULL); + proc_create("pressure/io", 0, NULL, &psi_io_fops); + proc_create("pressure/memory", 0, NULL, &psi_memory_fops); + proc_create("pressure/cpu", 0, NULL, &psi_cpu_fops); + return 0; +} +module_init(psi_proc_init); diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index 1de189bb9209..618577fc9aa8 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -54,6 +54,7 @@ #include <linux/proc_fs.h> #include <linux/prefetch.h> #include <linux/profile.h> +#include <linux/psi.h> #include <linux/rcupdate_wait.h> #include <linux/security.h> #include <linux/stop_machine.h> @@ -319,6 +320,7 @@ extern bool dl_cpu_busy(unsigned int cpu); #ifdef CONFIG_CGROUP_SCHED #include <linux/cgroup.h> +#include <linux/psi.h> struct cfs_rq; struct rt_rq; diff --git a/kernel/sched/stats.h b/kernel/sched/stats.h index 8aea199a39b4..4904c4677000 100644 --- a/kernel/sched/stats.h +++ b/kernel/sched/stats.h @@ -55,6 +55,92 @@ static inline void rq_sched_info_depart (struct rq *rq, unsigned long long delt # define schedstat_val_or_zero(var) 0 #endif /* CONFIG_SCHEDSTATS */ +#ifdef CONFIG_PSI +/* + * PSI tracks state that persists across sleeps, such as iowaits and + * memory stalls. As a result, it has to distinguish between sleeps, + * where a task's runnable state changes, and requeues, where a task + * and its state are being moved between CPUs and runqueues. + */ +static inline void psi_enqueue(struct task_struct *p, bool wakeup) +{ + int clear = 0, set = TSK_RUNNING; + + if (psi_disabled) + return; + + if (!wakeup || p->sched_psi_wake_requeue) { + if (p->flags & PF_MEMSTALL) + set |= TSK_MEMSTALL; + if (p->sched_psi_wake_requeue) + p->sched_psi_wake_requeue = 0; + } else { + if (p->in_iowait) + clear |= TSK_IOWAIT; + } + + psi_task_change(p, clear, set); +} + +static inline void psi_dequeue(struct task_struct *p, bool sleep) +{ + int clear = TSK_RUNNING, set = 0; + + if (psi_disabled) + return; + + if (!sleep) { + if (p->flags & PF_MEMSTALL) + clear |= TSK_MEMSTALL; + } else { + if (p->in_iowait) + set |= TSK_IOWAIT; + } + + psi_task_change(p, clear, set); +} + +static inline void psi_ttwu_dequeue(struct task_struct *p) +{ + if (psi_disabled) + return; + /* + * Is the task being migrated during a wakeup? Make sure to + * deregister its sleep-persistent psi states from the old + * queue, and let psi_enqueue() know it has to requeue. + */ + if (unlikely(p->in_iowait || (p->flags & PF_MEMSTALL))) { + struct rq_flags rf; + struct rq *rq; + int clear = 0; + + if (p->in_iowait) + clear |= TSK_IOWAIT; + if (p->flags & PF_MEMSTALL) + clear |= TSK_MEMSTALL; + + rq = __task_rq_lock(p, &rf); + psi_task_change(p, clear, 0); + p->sched_psi_wake_requeue = 1; + __task_rq_unlock(rq, &rf); + } +} + +static inline void psi_task_tick(struct rq *rq) +{ + if (psi_disabled) + return; + + if (unlikely(rq->curr->flags & PF_MEMSTALL)) + psi_memstall_tick(rq->curr, cpu_of(rq)); +} +#else /* CONFIG_PSI */ +static inline void psi_enqueue(struct task_struct *p, bool wakeup) {} +static inline void psi_dequeue(struct task_struct *p, bool sleep) {} +static inline void psi_ttwu_dequeue(struct task_struct *p) {} +static inline void psi_task_tick(struct rq *rq) {} +#endif /* CONFIG_PSI */ + #ifdef CONFIG_SCHED_INFO static inline void sched_info_reset_dequeued(struct task_struct *t) { diff --git a/mm/compaction.c b/mm/compaction.c index faca45ebe62d..7c607479de4a 100644 --- a/mm/compaction.c +++ b/mm/compaction.c @@ -22,6 +22,7 @@ #include <linux/kthread.h> #include <linux/freezer.h> #include <linux/page_owner.h> +#include <linux/psi.h> #include "internal.h" #ifdef CONFIG_COMPACTION @@ -2068,11 +2069,15 @@ static int kcompactd(void *p) pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1; while (!kthread_should_stop()) { + unsigned long pflags; + trace_mm_compaction_kcompactd_sleep(pgdat->node_id); wait_event_freezable(pgdat->kcompactd_wait, kcompactd_work_requested(pgdat)); + psi_memstall_enter(&pflags); kcompactd_do_work(pgdat); + psi_memstall_leave(&pflags); } return 0; diff --git a/mm/filemap.c b/mm/filemap.c index 01a841f17bf4..41586009fa42 100644 --- a/mm/filemap.c +++ b/mm/filemap.c @@ -37,6 +37,7 @@ #include <linux/shmem_fs.h> #include <linux/rmap.h> #include <linux/delayacct.h> +#include <linux/psi.h> #include "internal.h" #define CREATE_TRACE_POINTS @@ -1075,11 +1076,14 @@ static inline int wait_on_page_bit_common(wait_queue_head_t *q, struct wait_page_queue wait_page; wait_queue_entry_t *wait = &wait_page.wait; bool thrashing = false; + unsigned long pflags; int ret = 0; - if (bit_nr == PG_locked && !PageSwapBacked(page) && + if (bit_nr == PG_locked && !PageUptodate(page) && PageWorkingset(page)) { - delayacct_thrashing_start(); + if (!PageSwapBacked(page)) + delayacct_thrashing_start(); + psi_memstall_enter(&pflags); thrashing = true; } @@ -1121,8 +1125,11 @@ static inline int wait_on_page_bit_common(wait_queue_head_t *q, finish_wait(q, wait); - if (thrashing) - delayacct_thrashing_end(); + if (thrashing) { + if (!PageSwapBacked(page)) + delayacct_thrashing_end(); + psi_memstall_leave(&pflags); + } /* * A signal could leave PageWaiters set. Clearing it here if diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 20f25d06c00c..f97b5a1700a4 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -66,6 +66,7 @@ #include <linux/ftrace.h> #include <linux/lockdep.h> #include <linux/nmi.h> +#include <linux/psi.h> #include <asm/sections.h> #include <asm/tlbflush.h> @@ -3549,15 +3550,20 @@ __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, enum compact_priority prio, enum compact_result *compact_result) { struct page *page; + unsigned long pflags; unsigned int noreclaim_flag; if (!order) return NULL; + psi_memstall_enter(&pflags); noreclaim_flag = memalloc_noreclaim_save(); + *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, prio); + memalloc_noreclaim_restore(noreclaim_flag); + psi_memstall_leave(&pflags); if (*compact_result <= COMPACT_INACTIVE) return NULL; @@ -3756,11 +3762,13 @@ __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct reclaim_state reclaim_state; int progress; unsigned int noreclaim_flag; + unsigned long pflags; cond_resched(); /* We now go into synchronous reclaim */ cpuset_memory_pressure_bump(); + psi_memstall_enter(&pflags); fs_reclaim_acquire(gfp_mask); noreclaim_flag = memalloc_noreclaim_save(); reclaim_state.reclaimed_slab = 0; @@ -3772,6 +3780,7 @@ __perform_reclaim(gfp_t gfp_mask, unsigned int order, current->reclaim_state = NULL; memalloc_noreclaim_restore(noreclaim_flag); fs_reclaim_release(gfp_mask); + psi_memstall_leave(&pflags); cond_resched(); diff --git a/mm/vmscan.c b/mm/vmscan.c index 87e9fef341d2..8ea87586925e 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -49,6 +49,7 @@ #include <linux/prefetch.h> #include <linux/printk.h> #include <linux/dax.h> +#include <linux/psi.h> #include <asm/tlbflush.h> #include <asm/div64.h> @@ -3305,6 +3306,7 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, { struct zonelist *zonelist; unsigned long nr_reclaimed; + unsigned long pflags; int nid; unsigned int noreclaim_flag; struct scan_control sc = { @@ -3333,9 +3335,13 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, sc.gfp_mask, sc.reclaim_idx); + psi_memstall_enter(&pflags); noreclaim_flag = memalloc_noreclaim_save(); + nr_reclaimed = do_try_to_free_pages(zonelist, &sc); + memalloc_noreclaim_restore(noreclaim_flag); + psi_memstall_leave(&pflags); trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); @@ -3500,6 +3506,7 @@ static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) int i; unsigned long nr_soft_reclaimed; unsigned long nr_soft_scanned; + unsigned long pflags; struct zone *zone; struct scan_control sc = { .gfp_mask = GFP_KERNEL, @@ -3510,6 +3517,7 @@ static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) .may_swap = 1, }; + psi_memstall_enter(&pflags); __fs_reclaim_acquire(); count_vm_event(PAGEOUTRUN); @@ -3611,6 +3619,7 @@ static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) out: snapshot_refaults(NULL, pgdat); __fs_reclaim_release(); + psi_memstall_leave(&pflags); /* * Return the order kswapd stopped reclaiming at as * prepare_kswapd_sleep() takes it into account. If another caller |