summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Documentation/accounting/psi.txt64
-rw-r--r--include/linux/psi.h28
-rw-r--r--include/linux/psi_types.h92
-rw-r--r--include/linux/sched.h10
-rw-r--r--init/Kconfig15
-rw-r--r--kernel/fork.c4
-rw-r--r--kernel/sched/Makefile1
-rw-r--r--kernel/sched/core.c12
-rw-r--r--kernel/sched/psi.c657
-rw-r--r--kernel/sched/sched.h2
-rw-r--r--kernel/sched/stats.h86
-rw-r--r--mm/compaction.c5
-rw-r--r--mm/filemap.c15
-rw-r--r--mm/page_alloc.c9
-rw-r--r--mm/vmscan.c9
15 files changed, 1003 insertions, 6 deletions
diff --git a/Documentation/accounting/psi.txt b/Documentation/accounting/psi.txt
new file mode 100644
index 000000000000..3753a82f1cf5
--- /dev/null
+++ b/Documentation/accounting/psi.txt
@@ -0,0 +1,64 @@
+================================
+PSI - Pressure Stall Information
+================================
+
+:Date: April, 2018
+:Author: Johannes Weiner <hannes@cmpxchg.org>
+
+When CPU, memory or IO devices are contended, workloads experience
+latency spikes, throughput losses, and run the risk of OOM kills.
+
+Without an accurate measure of such contention, users are forced to
+either play it safe and under-utilize their hardware resources, or
+roll the dice and frequently suffer the disruptions resulting from
+excessive overcommit.
+
+The psi feature identifies and quantifies the disruptions caused by
+such resource crunches and the time impact it has on complex workloads
+or even entire systems.
+
+Having an accurate measure of productivity losses caused by resource
+scarcity aids users in sizing workloads to hardware--or provisioning
+hardware according to workload demand.
+
+As psi aggregates this information in realtime, systems can be managed
+dynamically using techniques such as load shedding, migrating jobs to
+other systems or data centers, or strategically pausing or killing low
+priority or restartable batch jobs.
+
+This allows maximizing hardware utilization without sacrificing
+workload health or risking major disruptions such as OOM kills.
+
+Pressure interface
+==================
+
+Pressure information for each resource is exported through the
+respective file in /proc/pressure/ -- cpu, memory, and io.
+
+The format for CPU is as such:
+
+some avg10=0.00 avg60=0.00 avg300=0.00 total=0
+
+and for memory and IO:
+
+some avg10=0.00 avg60=0.00 avg300=0.00 total=0
+full avg10=0.00 avg60=0.00 avg300=0.00 total=0
+
+The "some" line indicates the share of time in which at least some
+tasks are stalled on a given resource.
+
+The "full" line indicates the share of time in which all non-idle
+tasks are stalled on a given resource simultaneously. In this state
+actual CPU cycles are going to waste, and a workload that spends
+extended time in this state is considered to be thrashing. This has
+severe impact on performance, and it's useful to distinguish this
+situation from a state where some tasks are stalled but the CPU is
+still doing productive work. As such, time spent in this subset of the
+stall state is tracked separately and exported in the "full" averages.
+
+The ratios are tracked as recent trends over ten, sixty, and three
+hundred second windows, which gives insight into short term events as
+well as medium and long term trends. The total absolute stall time is
+tracked and exported as well, to allow detection of latency spikes
+which wouldn't necessarily make a dent in the time averages, or to
+average trends over custom time frames.
diff --git a/include/linux/psi.h b/include/linux/psi.h
new file mode 100644
index 000000000000..b0daf050de58
--- /dev/null
+++ b/include/linux/psi.h
@@ -0,0 +1,28 @@
+#ifndef _LINUX_PSI_H
+#define _LINUX_PSI_H
+
+#include <linux/psi_types.h>
+#include <linux/sched.h>
+
+#ifdef CONFIG_PSI
+
+extern bool psi_disabled;
+
+void psi_init(void);
+
+void psi_task_change(struct task_struct *task, int clear, int set);
+
+void psi_memstall_tick(struct task_struct *task, int cpu);
+void psi_memstall_enter(unsigned long *flags);
+void psi_memstall_leave(unsigned long *flags);
+
+#else /* CONFIG_PSI */
+
+static inline void psi_init(void) {}
+
+static inline void psi_memstall_enter(unsigned long *flags) {}
+static inline void psi_memstall_leave(unsigned long *flags) {}
+
+#endif /* CONFIG_PSI */
+
+#endif /* _LINUX_PSI_H */
diff --git a/include/linux/psi_types.h b/include/linux/psi_types.h
new file mode 100644
index 000000000000..2cf422db5d18
--- /dev/null
+++ b/include/linux/psi_types.h
@@ -0,0 +1,92 @@
+#ifndef _LINUX_PSI_TYPES_H
+#define _LINUX_PSI_TYPES_H
+
+#include <linux/seqlock.h>
+#include <linux/types.h>
+
+#ifdef CONFIG_PSI
+
+/* Tracked task states */
+enum psi_task_count {
+ NR_IOWAIT,
+ NR_MEMSTALL,
+ NR_RUNNING,
+ NR_PSI_TASK_COUNTS,
+};
+
+/* Task state bitmasks */
+#define TSK_IOWAIT (1 << NR_IOWAIT)
+#define TSK_MEMSTALL (1 << NR_MEMSTALL)
+#define TSK_RUNNING (1 << NR_RUNNING)
+
+/* Resources that workloads could be stalled on */
+enum psi_res {
+ PSI_IO,
+ PSI_MEM,
+ PSI_CPU,
+ NR_PSI_RESOURCES,
+};
+
+/*
+ * Pressure states for each resource:
+ *
+ * SOME: Stalled tasks & working tasks
+ * FULL: Stalled tasks & no working tasks
+ */
+enum psi_states {
+ PSI_IO_SOME,
+ PSI_IO_FULL,
+ PSI_MEM_SOME,
+ PSI_MEM_FULL,
+ PSI_CPU_SOME,
+ /* Only per-CPU, to weigh the CPU in the global average: */
+ PSI_NONIDLE,
+ NR_PSI_STATES,
+};
+
+struct psi_group_cpu {
+ /* 1st cacheline updated by the scheduler */
+
+ /* Aggregator needs to know of concurrent changes */
+ seqcount_t seq ____cacheline_aligned_in_smp;
+
+ /* States of the tasks belonging to this group */
+ unsigned int tasks[NR_PSI_TASK_COUNTS];
+
+ /* Period time sampling buckets for each state of interest (ns) */
+ u32 times[NR_PSI_STATES];
+
+ /* Time of last task change in this group (rq_clock) */
+ u64 state_start;
+
+ /* 2nd cacheline updated by the aggregator */
+
+ /* Delta detection against the sampling buckets */
+ u32 times_prev[NR_PSI_STATES] ____cacheline_aligned_in_smp;
+};
+
+struct psi_group {
+ /* Protects data updated during an aggregation */
+ struct mutex stat_lock;
+
+ /* Per-cpu task state & time tracking */
+ struct psi_group_cpu __percpu *pcpu;
+
+ /* Periodic aggregation state */
+ u64 total_prev[NR_PSI_STATES - 1];
+ u64 last_update;
+ u64 next_update;
+ struct delayed_work clock_work;
+
+ /* Total stall times and sampled pressure averages */
+ u64 total[NR_PSI_STATES - 1];
+ unsigned long avg[NR_PSI_STATES - 1][3];
+};
+
+#else /* CONFIG_PSI */
+
+struct psi_group { };
+
+#endif /* CONFIG_PSI */
+
+#endif /* _LINUX_PSI_TYPES_H */
diff --git a/include/linux/sched.h b/include/linux/sched.h
index adfb3f9a7597..b8fcc6b3080c 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -25,6 +25,7 @@
#include <linux/latencytop.h>
#include <linux/sched/prio.h>
#include <linux/signal_types.h>
+#include <linux/psi_types.h>
#include <linux/mm_types_task.h>
#include <linux/task_io_accounting.h>
#include <linux/rseq.h>
@@ -706,6 +707,10 @@ struct task_struct {
unsigned sched_contributes_to_load:1;
unsigned sched_migrated:1;
unsigned sched_remote_wakeup:1;
+#ifdef CONFIG_PSI
+ unsigned sched_psi_wake_requeue:1;
+#endif
+
/* Force alignment to the next boundary: */
unsigned :0;
@@ -965,6 +970,10 @@ struct task_struct {
kernel_siginfo_t *last_siginfo;
struct task_io_accounting ioac;
+#ifdef CONFIG_PSI
+ /* Pressure stall state */
+ unsigned int psi_flags;
+#endif
#ifdef CONFIG_TASK_XACCT
/* Accumulated RSS usage: */
u64 acct_rss_mem1;
@@ -1391,6 +1400,7 @@ extern struct pid *cad_pid;
#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
+#define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */
#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
diff --git a/init/Kconfig b/init/Kconfig
index 317d5ccb5191..26e639df5517 100644
--- a/init/Kconfig
+++ b/init/Kconfig
@@ -490,6 +490,21 @@ config TASK_IO_ACCOUNTING
Say N if unsure.
+config PSI
+ bool "Pressure stall information tracking"
+ help
+ Collect metrics that indicate how overcommitted the CPU, memory,
+ and IO capacity are in the system.
+
+ If you say Y here, the kernel will create /proc/pressure/ with the
+ pressure statistics files cpu, memory, and io. These will indicate
+ the share of walltime in which some or all tasks in the system are
+ delayed due to contention of the respective resource.
+
+ For more details see Documentation/accounting/psi.txt.
+
+ Say N if unsure.
+
endmenu # "CPU/Task time and stats accounting"
config CPU_ISOLATION
diff --git a/kernel/fork.c b/kernel/fork.c
index 3c719fec46c5..8f82a3bdcb8f 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -1822,6 +1822,10 @@ static __latent_entropy struct task_struct *copy_process(
p->default_timer_slack_ns = current->timer_slack_ns;
+#ifdef CONFIG_PSI
+ p->psi_flags = 0;
+#endif
+
task_io_accounting_init(&p->ioac);
acct_clear_integrals(p);
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile
index 7fe183404c38..21fb5a5662b5 100644
--- a/kernel/sched/Makefile
+++ b/kernel/sched/Makefile
@@ -29,3 +29,4 @@ obj-$(CONFIG_CPU_FREQ) += cpufreq.o
obj-$(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) += cpufreq_schedutil.o
obj-$(CONFIG_MEMBARRIER) += membarrier.o
obj-$(CONFIG_CPU_ISOLATION) += isolation.o
+obj-$(CONFIG_PSI) += psi.o
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index f3efef387797..fd2fce8a001b 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -722,8 +722,10 @@ static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
if (!(flags & ENQUEUE_NOCLOCK))
update_rq_clock(rq);
- if (!(flags & ENQUEUE_RESTORE))
+ if (!(flags & ENQUEUE_RESTORE)) {
sched_info_queued(rq, p);
+ psi_enqueue(p, flags & ENQUEUE_WAKEUP);
+ }
p->sched_class->enqueue_task(rq, p, flags);
}
@@ -733,8 +735,10 @@ static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
if (!(flags & DEQUEUE_NOCLOCK))
update_rq_clock(rq);
- if (!(flags & DEQUEUE_SAVE))
+ if (!(flags & DEQUEUE_SAVE)) {
sched_info_dequeued(rq, p);
+ psi_dequeue(p, flags & DEQUEUE_SLEEP);
+ }
p->sched_class->dequeue_task(rq, p, flags);
}
@@ -2037,6 +2041,7 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
if (task_cpu(p) != cpu) {
wake_flags |= WF_MIGRATED;
+ psi_ttwu_dequeue(p);
set_task_cpu(p, cpu);
}
@@ -3051,6 +3056,7 @@ void scheduler_tick(void)
curr->sched_class->task_tick(rq, curr, 0);
cpu_load_update_active(rq);
calc_global_load_tick(rq);
+ psi_task_tick(rq);
rq_unlock(rq, &rf);
@@ -6067,6 +6073,8 @@ void __init sched_init(void)
init_schedstats();
+ psi_init();
+
scheduler_running = 1;
}
diff --git a/kernel/sched/psi.c b/kernel/sched/psi.c
new file mode 100644
index 000000000000..595414599b98
--- /dev/null
+++ b/kernel/sched/psi.c
@@ -0,0 +1,657 @@
+/*
+ * Pressure stall information for CPU, memory and IO
+ *
+ * Copyright (c) 2018 Facebook, Inc.
+ * Author: Johannes Weiner <hannes@cmpxchg.org>
+ *
+ * When CPU, memory and IO are contended, tasks experience delays that
+ * reduce throughput and introduce latencies into the workload. Memory
+ * and IO contention, in addition, can cause a full loss of forward
+ * progress in which the CPU goes idle.
+ *
+ * This code aggregates individual task delays into resource pressure
+ * metrics that indicate problems with both workload health and
+ * resource utilization.
+ *
+ * Model
+ *
+ * The time in which a task can execute on a CPU is our baseline for
+ * productivity. Pressure expresses the amount of time in which this
+ * potential cannot be realized due to resource contention.
+ *
+ * This concept of productivity has two components: the workload and
+ * the CPU. To measure the impact of pressure on both, we define two
+ * contention states for a resource: SOME and FULL.
+ *
+ * In the SOME state of a given resource, one or more tasks are
+ * delayed on that resource. This affects the workload's ability to
+ * perform work, but the CPU may still be executing other tasks.
+ *
+ * In the FULL state of a given resource, all non-idle tasks are
+ * delayed on that resource such that nobody is advancing and the CPU
+ * goes idle. This leaves both workload and CPU unproductive.
+ *
+ * (Naturally, the FULL state doesn't exist for the CPU resource.)
+ *
+ * SOME = nr_delayed_tasks != 0
+ * FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
+ *
+ * The percentage of wallclock time spent in those compound stall
+ * states gives pressure numbers between 0 and 100 for each resource,
+ * where the SOME percentage indicates workload slowdowns and the FULL
+ * percentage indicates reduced CPU utilization:
+ *
+ * %SOME = time(SOME) / period
+ * %FULL = time(FULL) / period
+ *
+ * Multiple CPUs
+ *
+ * The more tasks and available CPUs there are, the more work can be
+ * performed concurrently. This means that the potential that can go
+ * unrealized due to resource contention *also* scales with non-idle
+ * tasks and CPUs.
+ *
+ * Consider a scenario where 257 number crunching tasks are trying to
+ * run concurrently on 256 CPUs. If we simply aggregated the task
+ * states, we would have to conclude a CPU SOME pressure number of
+ * 100%, since *somebody* is waiting on a runqueue at all
+ * times. However, that is clearly not the amount of contention the
+ * workload is experiencing: only one out of 256 possible exceution
+ * threads will be contended at any given time, or about 0.4%.
+ *
+ * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
+ * given time *one* of the tasks is delayed due to a lack of memory.
+ * Again, looking purely at the task state would yield a memory FULL
+ * pressure number of 0%, since *somebody* is always making forward
+ * progress. But again this wouldn't capture the amount of execution
+ * potential lost, which is 1 out of 4 CPUs, or 25%.
+ *
+ * To calculate wasted potential (pressure) with multiple processors,
+ * we have to base our calculation on the number of non-idle tasks in
+ * conjunction with the number of available CPUs, which is the number
+ * of potential execution threads. SOME becomes then the proportion of
+ * delayed tasks to possibe threads, and FULL is the share of possible
+ * threads that are unproductive due to delays:
+ *
+ * threads = min(nr_nonidle_tasks, nr_cpus)
+ * SOME = min(nr_delayed_tasks / threads, 1)
+ * FULL = (threads - min(nr_running_tasks, threads)) / threads
+ *
+ * For the 257 number crunchers on 256 CPUs, this yields:
+ *
+ * threads = min(257, 256)
+ * SOME = min(1 / 256, 1) = 0.4%
+ * FULL = (256 - min(257, 256)) / 256 = 0%
+ *
+ * For the 1 out of 4 memory-delayed tasks, this yields:
+ *
+ * threads = min(4, 4)
+ * SOME = min(1 / 4, 1) = 25%
+ * FULL = (4 - min(3, 4)) / 4 = 25%
+ *
+ * [ Substitute nr_cpus with 1, and you can see that it's a natural
+ * extension of the single-CPU model. ]
+ *
+ * Implementation
+ *
+ * To assess the precise time spent in each such state, we would have
+ * to freeze the system on task changes and start/stop the state
+ * clocks accordingly. Obviously that doesn't scale in practice.
+ *
+ * Because the scheduler aims to distribute the compute load evenly
+ * among the available CPUs, we can track task state locally to each
+ * CPU and, at much lower frequency, extrapolate the global state for
+ * the cumulative stall times and the running averages.
+ *
+ * For each runqueue, we track:
+ *
+ * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
+ * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
+ * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
+ *
+ * and then periodically aggregate:
+ *
+ * tNONIDLE = sum(tNONIDLE[i])
+ *
+ * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
+ * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
+ *
+ * %SOME = tSOME / period
+ * %FULL = tFULL / period
+ *
+ * This gives us an approximation of pressure that is practical
+ * cost-wise, yet way more sensitive and accurate than periodic
+ * sampling of the aggregate task states would be.
+ */
+
+#include <linux/sched/loadavg.h>
+#include <linux/seq_file.h>
+#include <linux/proc_fs.h>
+#include <linux/seqlock.h>
+#include <linux/cgroup.h>
+#include <linux/module.h>
+#include <linux/sched.h>
+#include <linux/psi.h>
+#include "sched.h"
+
+static int psi_bug __read_mostly;
+
+bool psi_disabled __read_mostly;
+core_param(psi_disabled, psi_disabled, bool, 0644);
+
+/* Running averages - we need to be higher-res than loadavg */
+#define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
+#define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
+#define EXP_60s 1981 /* 1/exp(2s/60s) */
+#define EXP_300s 2034 /* 1/exp(2s/300s) */
+
+/* Sampling frequency in nanoseconds */
+static u64 psi_period __read_mostly;
+
+/* System-level pressure and stall tracking */
+static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
+static struct psi_group psi_system = {
+ .pcpu = &system_group_pcpu,
+};
+
+static void psi_update_work(struct work_struct *work);
+
+static void group_init(struct psi_group *group)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu)
+ seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
+ group->next_update = sched_clock() + psi_period;
+ INIT_DELAYED_WORK(&group->clock_work, psi_update_work);
+ mutex_init(&group->stat_lock);
+}
+
+void __init psi_init(void)
+{
+ if (psi_disabled)
+ return;
+
+ psi_period = jiffies_to_nsecs(PSI_FREQ);
+ group_init(&psi_system);
+}
+
+static bool test_state(unsigned int *tasks, enum psi_states state)
+{
+ switch (state) {
+ case PSI_IO_SOME:
+ return tasks[NR_IOWAIT];
+ case PSI_IO_FULL:
+ return tasks[NR_IOWAIT] && !tasks[NR_RUNNING];
+ case PSI_MEM_SOME:
+ return tasks[NR_MEMSTALL];
+ case PSI_MEM_FULL:
+ return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING];
+ case PSI_CPU_SOME:
+ return tasks[NR_RUNNING] > 1;
+ case PSI_NONIDLE:
+ return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
+ tasks[NR_RUNNING];
+ default:
+ return false;
+ }
+}
+
+static void get_recent_times(struct psi_group *group, int cpu, u32 *times)
+{
+ struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
+ unsigned int tasks[NR_PSI_TASK_COUNTS];
+ u64 now, state_start;
+ unsigned int seq;
+ int s;
+
+ /* Snapshot a coherent view of the CPU state */
+ do {
+ seq = read_seqcount_begin(&groupc->seq);
+ now = cpu_clock(cpu);
+ memcpy(times, groupc->times, sizeof(groupc->times));
+ memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
+ state_start = groupc->state_start;
+ } while (read_seqcount_retry(&groupc->seq, seq));
+
+ /* Calculate state time deltas against the previous snapshot */
+ for (s = 0; s < NR_PSI_STATES; s++) {
+ u32 delta;
+ /*
+ * In addition to already concluded states, we also
+ * incorporate currently active states on the CPU,
+ * since states may last for many sampling periods.
+ *
+ * This way we keep our delta sampling buckets small
+ * (u32) and our reported pressure close to what's
+ * actually happening.
+ */
+ if (test_state(tasks, s))
+ times[s] += now - state_start;
+
+ delta = times[s] - groupc->times_prev[s];
+ groupc->times_prev[s] = times[s];
+
+ times[s] = delta;
+ }
+}
+
+static void calc_avgs(unsigned long avg[3], int missed_periods,
+ u64 time, u64 period)
+{
+ unsigned long pct;
+
+ /* Fill in zeroes for periods of no activity */
+ if (missed_periods) {
+ avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
+ avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
+ avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
+ }
+
+ /* Sample the most recent active period */
+ pct = div_u64(time * 100, period);
+ pct *= FIXED_1;
+ avg[0] = calc_load(avg[0], EXP_10s, pct);
+ avg[1] = calc_load(avg[1], EXP_60s, pct);
+ avg[2] = calc_load(avg[2], EXP_300s, pct);
+}
+
+static bool update_stats(struct psi_group *group)
+{
+ u64 deltas[NR_PSI_STATES - 1] = { 0, };
+ unsigned long missed_periods = 0;
+ unsigned long nonidle_total = 0;
+ u64 now, expires, period;
+ int cpu;
+ int s;
+
+ mutex_lock(&group->stat_lock);
+
+ /*
+ * Collect the per-cpu time buckets and average them into a
+ * single time sample that is normalized to wallclock time.
+ *
+ * For averaging, each CPU is weighted by its non-idle time in
+ * the sampling period. This eliminates artifacts from uneven
+ * loading, or even entirely idle CPUs.
+ */
+ for_each_possible_cpu(cpu) {
+ u32 times[NR_PSI_STATES];
+ u32 nonidle;
+
+ get_recent_times(group, cpu, times);
+
+ nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
+ nonidle_total += nonidle;
+
+ for (s = 0; s < PSI_NONIDLE; s++)
+ deltas[s] += (u64)times[s] * nonidle;
+ }
+
+ /*
+ * Integrate the sample into the running statistics that are
+ * reported to userspace: the cumulative stall times and the
+ * decaying averages.
+ *
+ * Pressure percentages are sampled at PSI_FREQ. We might be
+ * called more often when the user polls more frequently than
+ * that; we might be called less often when there is no task
+ * activity, thus no data, and clock ticks are sporadic. The
+ * below handles both.
+ */
+
+ /* total= */
+ for (s = 0; s < NR_PSI_STATES - 1; s++)
+ group->total[s] += div_u64(deltas[s], max(nonidle_total, 1UL));
+
+ /* avgX= */
+ now = sched_clock();
+ expires = group->next_update;
+ if (now < expires)
+ goto out;
+ if (now - expires > psi_period)
+ missed_periods = div_u64(now - expires, psi_period);
+
+ /*
+ * The periodic clock tick can get delayed for various
+ * reasons, especially on loaded systems. To avoid clock
+ * drift, we schedule the clock in fixed psi_period intervals.
+ * But the deltas we sample out of the per-cpu buckets above
+ * are based on the actual time elapsing between clock ticks.
+ */
+ group->next_update = expires + ((1 + missed_periods) * psi_period);
+ period = now - (group->last_update + (missed_periods * psi_period));
+ group->last_update = now;
+
+ for (s = 0; s < NR_PSI_STATES - 1; s++) {
+ u32 sample;
+
+ sample = group->total[s] - group->total_prev[s];
+ /*
+ * Due to the lockless sampling of the time buckets,
+ * recorded time deltas can slip into the next period,
+ * which under full pressure can result in samples in
+ * excess of the period length.
+ *
+ * We don't want to report non-sensical pressures in
+ * excess of 100%, nor do we want to drop such events
+ * on the floor. Instead we punt any overage into the
+ * future until pressure subsides. By doing this we
+ * don't underreport the occurring pressure curve, we
+ * just report it delayed by one period length.
+ *
+ * The error isn't cumulative. As soon as another
+ * delta slips from a period P to P+1, by definition
+ * it frees up its time T in P.
+ */
+ if (sample > period)
+ sample = period;
+ group->total_prev[s] += sample;
+ calc_avgs(group->avg[s], missed_periods, sample, period);
+ }
+out:
+ mutex_unlock(&group->stat_lock);
+ return nonidle_total;
+}
+
+static void psi_update_work(struct work_struct *work)
+{
+ struct delayed_work *dwork;
+ struct psi_group *group;
+ bool nonidle;
+
+ dwork = to_delayed_work(work);
+ group = container_of(dwork, struct psi_group, clock_work);
+
+ /*
+ * If there is task activity, periodically fold the per-cpu
+ * times and feed samples into the running averages. If things
+ * are idle and there is no data to process, stop the clock.
+ * Once restarted, we'll catch up the running averages in one
+ * go - see calc_avgs() and missed_periods.
+ */
+
+ nonidle = update_stats(group);
+
+ if (nonidle) {
+ unsigned long delay = 0;
+ u64 now;
+
+ now = sched_clock();
+ if (group->next_update > now)
+ delay = nsecs_to_jiffies(group->next_update - now) + 1;
+ schedule_delayed_work(dwork, delay);
+ }
+}
+
+static void record_times(struct psi_group_cpu *groupc, int cpu,
+ bool memstall_tick)
+{
+ u32 delta;
+ u64 now;
+
+ now = cpu_clock(cpu);
+ delta = now - groupc->state_start;
+ groupc->state_start = now;
+
+ if (test_state(groupc->tasks, PSI_IO_SOME)) {
+ groupc->times[PSI_IO_SOME] += delta;
+ if (test_state(groupc->tasks, PSI_IO_FULL))
+ groupc->times[PSI_IO_FULL] += delta;
+ }
+
+ if (test_state(groupc->tasks, PSI_MEM_SOME)) {
+ groupc->times[PSI_MEM_SOME] += delta;
+ if (test_state(groupc->tasks, PSI_MEM_FULL))
+ groupc->times[PSI_MEM_FULL] += delta;
+ else if (memstall_tick) {
+ u32 sample;
+ /*
+ * Since we care about lost potential, a
+ * memstall is FULL when there are no other
+ * working tasks, but also when the CPU is
+ * actively reclaiming and nothing productive
+ * could run even if it were runnable.
+ *
+ * When the timer tick sees a reclaiming CPU,
+ * regardless of runnable tasks, sample a FULL
+ * tick (or less if it hasn't been a full tick
+ * since the last state change).
+ */
+ sample = min(delta, (u32)jiffies_to_nsecs(1));
+ groupc->times[PSI_MEM_FULL] += sample;
+ }
+ }
+
+ if (test_state(groupc->tasks, PSI_CPU_SOME))
+ groupc->times[PSI_CPU_SOME] += delta;
+
+ if (test_state(groupc->tasks, PSI_NONIDLE))
+ groupc->times[PSI_NONIDLE] += delta;
+}
+
+static void psi_group_change(struct psi_group *group, int cpu,
+ unsigned int clear, unsigned int set)
+{
+ struct psi_group_cpu *groupc;
+ unsigned int t, m;
+
+ groupc = per_cpu_ptr(group->pcpu, cpu);
+
+ /*
+ * First we assess the aggregate resource states this CPU's
+ * tasks have been in since the last change, and account any
+ * SOME and FULL time these may have resulted in.
+ *
+ * Then we update the task counts according to the state
+ * change requested through the @clear and @set bits.
+ */
+ write_seqcount_begin(&groupc->seq);
+
+ record_times(groupc, cpu, false);
+
+ for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
+ if (!(m & (1 << t)))
+ continue;
+ if (groupc->tasks[t] == 0 && !psi_bug) {
+ printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u] clear=%x set=%x\n",
+ cpu, t, groupc->tasks[0],
+ groupc->tasks[1], groupc->tasks[2],
+ clear, set);
+ psi_bug = 1;
+ }
+ groupc->tasks[t]--;
+ }
+
+ for (t = 0; set; set &= ~(1 << t), t++)
+ if (set & (1 << t))
+ groupc->tasks[t]++;
+
+ write_seqcount_end(&groupc->seq);
+
+ if (!delayed_work_pending(&group->clock_work))
+ schedule_delayed_work(&group->clock_work, PSI_FREQ);
+}
+
+void psi_task_change(struct task_struct *task, int clear, int set)
+{
+ int cpu = task_cpu(task);
+
+ if (!task->pid)
+ return;
+
+ if (((task->psi_flags & set) ||
+ (task->psi_flags & clear) != clear) &&
+ !psi_bug) {
+ printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
+ task->pid, task->comm, cpu,
+ task->psi_flags, clear, set);
+ psi_bug = 1;
+ }
+
+ task->psi_flags &= ~clear;
+ task->psi_flags |= set;
+
+ psi_group_change(&psi_system, cpu, clear, set);
+}
+
+void psi_memstall_tick(struct task_struct *task, int cpu)
+{
+ struct psi_group_cpu *groupc;
+
+ groupc = per_cpu_ptr(psi_system.pcpu, cpu);
+ write_seqcount_begin(&groupc->seq);
+ record_times(groupc, cpu, true);
+ write_seqcount_end(&groupc->seq);
+}
+
+/**
+ * psi_memstall_enter - mark the beginning of a memory stall section
+ * @flags: flags to handle nested sections
+ *
+ * Marks the calling task as being stalled due to a lack of memory,
+ * such as waiting for a refault or performing reclaim.
+ */
+void psi_memstall_enter(unsigned long *flags)
+{
+ struct rq_flags rf;
+ struct rq *rq;
+
+ if (psi_disabled)
+ return;
+
+ *flags = current->flags & PF_MEMSTALL;
+ if (*flags)
+ return;
+ /*
+ * PF_MEMSTALL setting & accounting needs to be atomic wrt
+ * changes to the task's scheduling state, otherwise we can
+ * race with CPU migration.
+ */
+ rq = this_rq_lock_irq(&rf);
+
+ current->flags |= PF_MEMSTALL;
+ psi_task_change(current, 0, TSK_MEMSTALL);
+
+ rq_unlock_irq(rq, &rf);
+}
+
+/**
+ * psi_memstall_leave - mark the end of an memory stall section
+ * @flags: flags to handle nested memdelay sections
+ *
+ * Marks the calling task as no longer stalled due to lack of memory.
+ */
+void psi_memstall_leave(unsigned long *flags)
+{
+ struct rq_flags rf;
+ struct rq *rq;
+
+ if (psi_disabled)
+ return;
+
+ if (*flags)
+ return;
+ /*
+ * PF_MEMSTALL clearing & accounting needs to be atomic wrt
+ * changes to the task's scheduling state, otherwise we could
+ * race with CPU migration.
+ */
+ rq = this_rq_lock_irq(&rf);
+
+ current->flags &= ~PF_MEMSTALL;
+ psi_task_change(current, TSK_MEMSTALL, 0);
+
+ rq_unlock_irq(rq, &rf);
+}
+
+static int psi_show(struct seq_file *m, struct psi_group *group,
+ enum psi_res res)
+{
+ int full;
+
+ if (psi_disabled)
+ return -EOPNOTSUPP;
+
+ update_stats(group);
+
+ for (full = 0; full < 2 - (res == PSI_CPU); full++) {
+ unsigned long avg[3];
+ u64 total;
+ int w;
+
+ for (w = 0; w < 3; w++)
+ avg[w] = group->avg[res * 2 + full][w];
+ total = div_u64(group->total[res * 2 + full], NSEC_PER_USEC);
+
+ seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
+ full ? "full" : "some",
+ LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
+ LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
+ LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
+ total);
+ }
+
+ return 0;
+}
+
+static int psi_io_show(struct seq_file *m, void *v)
+{
+ return psi_show(m, &psi_system, PSI_IO);
+}
+
+static int psi_memory_show(struct seq_file *m, void *v)
+{
+ return psi_show(m, &psi_system, PSI_MEM);
+}
+
+static int psi_cpu_show(struct seq_file *m, void *v)
+{
+ return psi_show(m, &psi_system, PSI_CPU);
+}
+
+static int psi_io_open(struct inode *inode, struct file *file)
+{
+ return single_open(file, psi_io_show, NULL);
+}
+
+static int psi_memory_open(struct inode *inode, struct file *file)
+{
+ return single_open(file, psi_memory_show, NULL);
+}
+
+static int psi_cpu_open(struct inode *inode, struct file *file)
+{
+ return single_open(file, psi_cpu_show, NULL);
+}
+
+static const struct file_operations psi_io_fops = {
+ .open = psi_io_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = single_release,
+};
+
+static const struct file_operations psi_memory_fops = {
+ .open = psi_memory_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = single_release,
+};
+
+static const struct file_operations psi_cpu_fops = {
+ .open = psi_cpu_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = single_release,
+};
+
+static int __init psi_proc_init(void)
+{
+ proc_mkdir("pressure", NULL);
+ proc_create("pressure/io", 0, NULL, &psi_io_fops);
+ proc_create("pressure/memory", 0, NULL, &psi_memory_fops);
+ proc_create("pressure/cpu", 0, NULL, &psi_cpu_fops);
+ return 0;
+}
+module_init(psi_proc_init);
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 1de189bb9209..618577fc9aa8 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -54,6 +54,7 @@
#include <linux/proc_fs.h>
#include <linux/prefetch.h>
#include <linux/profile.h>
+#include <linux/psi.h>
#include <linux/rcupdate_wait.h>
#include <linux/security.h>
#include <linux/stop_machine.h>
@@ -319,6 +320,7 @@ extern bool dl_cpu_busy(unsigned int cpu);
#ifdef CONFIG_CGROUP_SCHED
#include <linux/cgroup.h>
+#include <linux/psi.h>
struct cfs_rq;
struct rt_rq;
diff --git a/kernel/sched/stats.h b/kernel/sched/stats.h
index 8aea199a39b4..4904c4677000 100644
--- a/kernel/sched/stats.h
+++ b/kernel/sched/stats.h
@@ -55,6 +55,92 @@ static inline void rq_sched_info_depart (struct rq *rq, unsigned long long delt
# define schedstat_val_or_zero(var) 0
#endif /* CONFIG_SCHEDSTATS */
+#ifdef CONFIG_PSI
+/*
+ * PSI tracks state that persists across sleeps, such as iowaits and
+ * memory stalls. As a result, it has to distinguish between sleeps,
+ * where a task's runnable state changes, and requeues, where a task
+ * and its state are being moved between CPUs and runqueues.
+ */
+static inline void psi_enqueue(struct task_struct *p, bool wakeup)
+{
+ int clear = 0, set = TSK_RUNNING;
+
+ if (psi_disabled)
+ return;
+
+ if (!wakeup || p->sched_psi_wake_requeue) {
+ if (p->flags & PF_MEMSTALL)
+ set |= TSK_MEMSTALL;
+ if (p->sched_psi_wake_requeue)
+ p->sched_psi_wake_requeue = 0;
+ } else {
+ if (p->in_iowait)
+ clear |= TSK_IOWAIT;
+ }
+
+ psi_task_change(p, clear, set);
+}
+
+static inline void psi_dequeue(struct task_struct *p, bool sleep)
+{
+ int clear = TSK_RUNNING, set = 0;
+
+ if (psi_disabled)
+ return;
+
+ if (!sleep) {
+ if (p->flags & PF_MEMSTALL)
+ clear |= TSK_MEMSTALL;
+ } else {
+ if (p->in_iowait)
+ set |= TSK_IOWAIT;
+ }
+
+ psi_task_change(p, clear, set);
+}
+
+static inline void psi_ttwu_dequeue(struct task_struct *p)
+{
+ if (psi_disabled)
+ return;
+ /*
+ * Is the task being migrated during a wakeup? Make sure to
+ * deregister its sleep-persistent psi states from the old
+ * queue, and let psi_enqueue() know it has to requeue.
+ */
+ if (unlikely(p->in_iowait || (p->flags & PF_MEMSTALL))) {
+ struct rq_flags rf;
+ struct rq *rq;
+ int clear = 0;
+
+ if (p->in_iowait)
+ clear |= TSK_IOWAIT;
+ if (p->flags & PF_MEMSTALL)
+ clear |= TSK_MEMSTALL;
+
+ rq = __task_rq_lock(p, &rf);
+ psi_task_change(p, clear, 0);
+ p->sched_psi_wake_requeue = 1;
+ __task_rq_unlock(rq, &rf);
+ }
+}
+
+static inline void psi_task_tick(struct rq *rq)
+{
+ if (psi_disabled)
+ return;
+
+ if (unlikely(rq->curr->flags & PF_MEMSTALL))
+ psi_memstall_tick(rq->curr, cpu_of(rq));
+}
+#else /* CONFIG_PSI */
+static inline void psi_enqueue(struct task_struct *p, bool wakeup) {}
+static inline void psi_dequeue(struct task_struct *p, bool sleep) {}
+static inline void psi_ttwu_dequeue(struct task_struct *p) {}
+static inline void psi_task_tick(struct rq *rq) {}
+#endif /* CONFIG_PSI */
+
#ifdef CONFIG_SCHED_INFO
static inline void sched_info_reset_dequeued(struct task_struct *t)
{
diff --git a/mm/compaction.c b/mm/compaction.c
index faca45ebe62d..7c607479de4a 100644
--- a/mm/compaction.c
+++ b/mm/compaction.c
@@ -22,6 +22,7 @@
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/page_owner.h>
+#include <linux/psi.h>
#include "internal.h"
#ifdef CONFIG_COMPACTION
@@ -2068,11 +2069,15 @@ static int kcompactd(void *p)
pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
while (!kthread_should_stop()) {
+ unsigned long pflags;
+
trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
wait_event_freezable(pgdat->kcompactd_wait,
kcompactd_work_requested(pgdat));
+ psi_memstall_enter(&pflags);
kcompactd_do_work(pgdat);
+ psi_memstall_leave(&pflags);
}
return 0;
diff --git a/mm/filemap.c b/mm/filemap.c
index 01a841f17bf4..41586009fa42 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -37,6 +37,7 @@
#include <linux/shmem_fs.h>
#include <linux/rmap.h>
#include <linux/delayacct.h>
+#include <linux/psi.h>
#include "internal.h"
#define CREATE_TRACE_POINTS
@@ -1075,11 +1076,14 @@ static inline int wait_on_page_bit_common(wait_queue_head_t *q,
struct wait_page_queue wait_page;
wait_queue_entry_t *wait = &wait_page.wait;
bool thrashing = false;
+ unsigned long pflags;
int ret = 0;
- if (bit_nr == PG_locked && !PageSwapBacked(page) &&
+ if (bit_nr == PG_locked &&
!PageUptodate(page) && PageWorkingset(page)) {
- delayacct_thrashing_start();
+ if (!PageSwapBacked(page))
+ delayacct_thrashing_start();
+ psi_memstall_enter(&pflags);
thrashing = true;
}
@@ -1121,8 +1125,11 @@ static inline int wait_on_page_bit_common(wait_queue_head_t *q,
finish_wait(q, wait);
- if (thrashing)
- delayacct_thrashing_end();
+ if (thrashing) {
+ if (!PageSwapBacked(page))
+ delayacct_thrashing_end();
+ psi_memstall_leave(&pflags);
+ }
/*
* A signal could leave PageWaiters set. Clearing it here if
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index 20f25d06c00c..f97b5a1700a4 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -66,6 +66,7 @@
#include <linux/ftrace.h>
#include <linux/lockdep.h>
#include <linux/nmi.h>
+#include <linux/psi.h>
#include <asm/sections.h>
#include <asm/tlbflush.h>
@@ -3549,15 +3550,20 @@ __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
enum compact_priority prio, enum compact_result *compact_result)
{
struct page *page;
+ unsigned long pflags;
unsigned int noreclaim_flag;
if (!order)
return NULL;
+ psi_memstall_enter(&pflags);
noreclaim_flag = memalloc_noreclaim_save();
+
*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
prio);
+
memalloc_noreclaim_restore(noreclaim_flag);
+ psi_memstall_leave(&pflags);
if (*compact_result <= COMPACT_INACTIVE)
return NULL;
@@ -3756,11 +3762,13 @@ __perform_reclaim(gfp_t gfp_mask, unsigned int order,
struct reclaim_state reclaim_state;
int progress;
unsigned int noreclaim_flag;
+ unsigned long pflags;
cond_resched();
/* We now go into synchronous reclaim */
cpuset_memory_pressure_bump();
+ psi_memstall_enter(&pflags);
fs_reclaim_acquire(gfp_mask);
noreclaim_flag = memalloc_noreclaim_save();
reclaim_state.reclaimed_slab = 0;
@@ -3772,6 +3780,7 @@ __perform_reclaim(gfp_t gfp_mask, unsigned int order,
current->reclaim_state = NULL;
memalloc_noreclaim_restore(noreclaim_flag);
fs_reclaim_release(gfp_mask);
+ psi_memstall_leave(&pflags);
cond_resched();
diff --git a/mm/vmscan.c b/mm/vmscan.c
index 87e9fef341d2..8ea87586925e 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -49,6 +49,7 @@
#include <linux/prefetch.h>
#include <linux/printk.h>
#include <linux/dax.h>
+#include <linux/psi.h>
#include <asm/tlbflush.h>
#include <asm/div64.h>
@@ -3305,6 +3306,7 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
{
struct zonelist *zonelist;
unsigned long nr_reclaimed;
+ unsigned long pflags;
int nid;
unsigned int noreclaim_flag;
struct scan_control sc = {
@@ -3333,9 +3335,13 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
sc.gfp_mask,
sc.reclaim_idx);
+ psi_memstall_enter(&pflags);
noreclaim_flag = memalloc_noreclaim_save();
+
nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
+
memalloc_noreclaim_restore(noreclaim_flag);
+ psi_memstall_leave(&pflags);
trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
@@ -3500,6 +3506,7 @@ static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
int i;
unsigned long nr_soft_reclaimed;
unsigned long nr_soft_scanned;
+ unsigned long pflags;
struct zone *zone;
struct scan_control sc = {
.gfp_mask = GFP_KERNEL,
@@ -3510,6 +3517,7 @@ static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
.may_swap = 1,
};
+ psi_memstall_enter(&pflags);
__fs_reclaim_acquire();
count_vm_event(PAGEOUTRUN);
@@ -3611,6 +3619,7 @@ static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
out:
snapshot_refaults(NULL, pgdat);
__fs_reclaim_release();
+ psi_memstall_leave(&pflags);
/*
* Return the order kswapd stopped reclaiming at as
* prepare_kswapd_sleep() takes it into account. If another caller
OpenPOWER on IntegriCloud