summaryrefslogtreecommitdiffstats
path: root/gcc/config
diff options
context:
space:
mode:
authordje <dje@138bc75d-0d04-0410-961f-82ee72b054a4>1994-11-17 23:58:35 +0000
committerdje <dje@138bc75d-0d04-0410-961f-82ee72b054a4>1994-11-17 23:58:35 +0000
commita5e62b29411ecaa3643fafc777a4d5757672af23 (patch)
tree1c91fd30d64ff77ca2354dff679d291841e54db1 /gcc/config
parentb88b311da9c4957ba34820f0a98a668ed8e8cd50 (diff)
downloadppe42-gcc-a5e62b29411ecaa3643fafc777a4d5757672af23.tar.gz
ppe42-gcc-a5e62b29411ecaa3643fafc777a4d5757672af23.zip
Initial revision
git-svn-id: svn+ssh://gcc.gnu.org/svn/gcc/trunk@8496 138bc75d-0d04-0410-961f-82ee72b054a4
Diffstat (limited to 'gcc/config')
-rw-r--r--gcc/config/m68k/fpgnulib.c439
-rw-r--r--gcc/config/m68k/lb1sf68.asm3191
-rw-r--r--gcc/config/m68k/m68k-aout.h30
-rw-r--r--gcc/config/m68k/m68k-none.h94
-rw-r--r--gcc/config/m68k/m68kemb.h39
-rw-r--r--gcc/config/m68k/t-m68kbare23
-rw-r--r--gcc/config/m88k/m88k-aout.h31
-rw-r--r--gcc/config/m88k/m88k-coff.h33
-rw-r--r--gcc/config/m88k/t-bug12
9 files changed, 3892 insertions, 0 deletions
diff --git a/gcc/config/m68k/fpgnulib.c b/gcc/config/m68k/fpgnulib.c
new file mode 100644
index 00000000000..bd54058e77e
--- /dev/null
+++ b/gcc/config/m68k/fpgnulib.c
@@ -0,0 +1,439 @@
+/* This is a stripped down version of floatlib.c. It supplies only those
+ functions which exist in libgcc, but for which there is not assembly
+ language versions in m68k/lb1sf68.asm.
+
+ It also includes simplistic support for extended floats (by working in
+ double precision). You must compile this file again with -DEXTFLOAT
+ to get this support. */
+
+/*
+** gnulib support for software floating point.
+** Copyright (C) 1991 by Pipeline Associates, Inc. All rights reserved.
+** Permission is granted to do *anything* you want with this file,
+** commercial or otherwise, provided this message remains intact. So there!
+** I would appreciate receiving any updates/patches/changes that anyone
+** makes, and am willing to be the repository for said changes (am I
+** making a big mistake?).
+**
+** Pat Wood
+** Pipeline Associates, Inc.
+** pipeline!phw@motown.com or
+** sun!pipeline!phw or
+** uunet!motown!pipeline!phw
+**
+** 05/01/91 -- V1.0 -- first release to gcc mailing lists
+** 05/04/91 -- V1.1 -- added float and double prototypes and return values
+** -- fixed problems with adding and subtracting zero
+** -- fixed rounding in truncdfsf2
+** -- fixed SWAP define and tested on 386
+*/
+
+/*
+** The following are routines that replace the gnulib soft floating point
+** routines that are called automatically when -msoft-float is selected.
+** The support single and double precision IEEE format, with provisions
+** for byte-swapped machines (tested on 386). Some of the double-precision
+** routines work at full precision, but most of the hard ones simply punt
+** and call the single precision routines, producing a loss of accuracy.
+** long long support is not assumed or included.
+** Overall accuracy is close to IEEE (actually 68882) for single-precision
+** arithmetic. I think there may still be a 1 in 1000 chance of a bit
+** being rounded the wrong way during a multiply. I'm not fussy enough to
+** bother with it, but if anyone is, knock yourself out.
+**
+** Efficiency has only been addressed where it was obvious that something
+** would make a big difference. Anyone who wants to do this right for
+** best speed should go in and rewrite in assembler.
+**
+** I have tested this only on a 68030 workstation and 386/ix integrated
+** in with -msoft-float.
+*/
+
+/* the following deal with IEEE single-precision numbers */
+#define EXCESS 126L
+#define SIGNBIT 0x80000000L
+#define HIDDEN (1L << 23L)
+#define SIGN(fp) ((fp) & SIGNBIT)
+#define EXP(fp) (((fp) >> 23L) & 0xFF)
+#define MANT(fp) (((fp) & 0x7FFFFFL) | HIDDEN)
+#define PACK(s,e,m) ((s) | ((e) << 23L) | (m))
+
+/* the following deal with IEEE double-precision numbers */
+#define EXCESSD 1022
+#define HIDDEND (1L << 20L)
+#define EXPDBITS 11
+#define EXPDMASK 0x7FF
+#define EXPD(fp) (((fp.l.upper) >> 20L) & 0x7FFL)
+#define SIGND(fp) ((fp.l.upper) & SIGNBIT)
+#define MANTD(fp) (((((fp.l.upper) & 0xFFFFF) | HIDDEND) << 10) | \
+ (fp.l.lower >> 22))
+#define MANTDMASK 0xFFFFF /* mask of upper part */
+
+/* the following deal with IEEE extended-precision numbers */
+#define EXCESSX 16382
+#define HIDDENX (1L << 31L)
+#define EXPXBITS 15
+#define EXPXMASK 0x7FFF
+#define EXPX(fp) (((fp.l.upper) >> 16) & EXPXMASK)
+#define SIGNX(fp) ((fp.l.upper) & SIGNBIT)
+#define MANTXMASK 0x7FFFFFFF /* mask of upper part */
+
+union double_long
+{
+ double d;
+ struct {
+ long upper;
+ unsigned long lower;
+ } l;
+};
+
+union float_long {
+ float f;
+ long l;
+};
+
+union long_double_long
+{
+ long double ld;
+ struct
+ {
+ long upper;
+ unsigned long middle;
+ unsigned long lower;
+ } l;
+};
+
+#ifndef EXTFLOAT
+
+/* convert int to double */
+double
+__floatsidf (int a1)
+{
+ long sign = 0, exp = 31 + EXCESSD;
+ union double_long dl;
+
+ if (!a1)
+ {
+ dl.l.upper = dl.l.lower = 0;
+ return dl.d;
+ }
+
+ if (a1 < 0)
+ {
+ sign = SIGNBIT;
+ a1 = -a1;
+ if (a1 < 0)
+ {
+ dl.l.upper = SIGNBIT | ((32 + EXCESSD) << 20L);
+ dl.l.lower = 0;
+ return dl.d;
+ }
+ }
+
+ while (a1 < 0x1000000)
+ {
+ a1 <<= 4;
+ exp -= 4;
+ }
+
+ while (a1 < 0x40000000)
+ {
+ a1 <<= 1;
+ exp--;
+ }
+
+ /* pack up and go home */
+ dl.l.upper = sign;
+ dl.l.upper |= exp << 20L;
+ dl.l.upper |= (a1 >> 10L) & ~HIDDEND;
+ dl.l.lower = a1 << 22L;
+
+ return dl.d;
+}
+
+/* convert int to float */
+float
+__floatsisf (int l)
+{
+ double foo = __floatsidf (l);
+ return foo;
+}
+
+/* convert float to double */
+double
+__extendsfdf2 (float a1)
+{
+ register union float_long fl1;
+ register union double_long dl;
+ register long exp;
+
+ fl1.f = a1;
+
+ if (!fl1.l)
+ {
+ dl.l.upper = dl.l.lower = 0;
+ return dl.d;
+ }
+
+ dl.l.upper = SIGN (fl1.l);
+ exp = EXP (fl1.l) - EXCESS + EXCESSD;
+ dl.l.upper |= exp << 20;
+ dl.l.upper |= (MANT (fl1.l) & ~HIDDEN) >> 3;
+ dl.l.lower = MANT (fl1.l) << 29;
+
+ return dl.d;
+}
+
+/* convert double to float */
+float
+__truncdfsf2 (double a1)
+{
+ register long exp;
+ register long mant;
+ register union float_long fl;
+ register union double_long dl1;
+
+ dl1.d = a1;
+
+ if (!dl1.l.upper && !dl1.l.lower)
+ return 0;
+
+ exp = EXPD (dl1) - EXCESSD + EXCESS;
+
+ /* shift double mantissa 6 bits so we can round */
+ mant = MANTD (dl1) >> 6;
+
+ /* now round and shift down */
+ mant += 1;
+ mant >>= 1;
+
+ /* did the round overflow? */
+ if (mant & 0xFF000000)
+ {
+ mant >>= 1;
+ exp++;
+ }
+
+ mant &= ~HIDDEN;
+
+ /* pack up and go home */
+ fl.l = PACK (SIGND (dl1), exp, mant);
+ return (fl.f);
+}
+
+/* convert double to int */
+int
+__fixdfsi (double a1)
+{
+ register union double_long dl1;
+ register long exp;
+ register long l;
+
+ dl1.d = a1;
+
+ if (!dl1.l.upper && !dl1.l.lower)
+ return 0;
+
+ exp = EXPD (dl1) - EXCESSD - 31;
+ l = MANTD (dl1);
+
+ if (exp > 0)
+ {
+ /* Return largest integer. */
+ return SIGND (dl1) ? 0x80000000 : 0x7fffffff;
+ }
+
+ /* shift down until exp = 0 or l = 0 */
+ if (exp < 0 && exp > -32 && l)
+ l >>= -exp;
+
+ return (SIGND (dl1) ? -l : l);
+}
+
+/* convert float to int */
+int
+__fixsfsi (float a1)
+{
+ double foo = a1;
+ return __fixdfsi (foo);
+}
+
+#else /* EXTFLOAT */
+
+/* Primitive extended precision floating point support.
+
+ We assume all numbers are normalized, don't do any rounding, etc. */
+
+/* Prototypes for the above in case we use them. */
+double __floatsidf (int);
+float __floatsisf (int);
+double __extendsfdf2 (float);
+float __truncdfsf2 (double);
+int __fixdfsi (double);
+int __fixsfsi (float);
+
+/* convert double to long double */
+long double
+__extenddfxf2 (double d)
+{
+ register union double_long dl;
+ register union long_double_long ldl;
+ register long exp;
+
+ dl.d = d;
+ /*printf ("dfxf in: %g\n", d);*/
+
+ if (!dl.l.upper && !dl.l.lower)
+ return 0;
+
+ ldl.l.upper = SIGND (dl);
+ exp = EXPD (dl) - EXCESSD + EXCESSX;
+ ldl.l.upper |= exp << 16;
+ ldl.l.middle = HIDDENX;
+ /* 31-20: # mantissa bits in ldl.l.middle - # mantissa bits in dl.l.upper */
+ ldl.l.middle |= (dl.l.upper & MANTDMASK) << (31 - 20);
+ /* 1+20: explicit-integer-bit + # mantissa bits in dl.l.upper */
+ ldl.l.middle |= dl.l.lower >> (1 + 20);
+ /* 32 - 21: # bits of dl.l.lower in ldl.l.middle */
+ ldl.l.lower = dl.l.lower << (32 - 21);
+
+ /*printf ("dfxf out: %s\n", dumpxf (ldl.ld));*/
+ return ldl.ld;
+}
+
+/* convert long double to double */
+double
+__truncxfdf2 (long double ld)
+{
+ register long exp;
+ register union double_long dl;
+ register union long_double_long ldl;
+
+ ldl.ld = ld;
+ /*printf ("xfdf in: %s\n", dumpxf (ld));*/
+
+ if (!ldl.l.upper && !ldl.l.middle && !ldl.l.lower)
+ return 0;
+
+ exp = EXPX (ldl) - EXCESSX + EXCESSD;
+ /* ??? quick and dirty: keep `exp' sane */
+ if (exp >= EXPDMASK)
+ exp = EXPDMASK - 1;
+ dl.l.upper = SIGNX (ldl);
+ dl.l.upper |= exp << (32 - (EXPDBITS + 1));
+ /* +1-1: add one for sign bit, but take one off for explicit-integer-bit */
+ dl.l.upper |= (ldl.l.middle & MANTXMASK) >> (EXPDBITS + 1 - 1);
+ dl.l.lower = (ldl.l.middle & MANTXMASK) << (32 - (EXPDBITS + 1 - 1));
+ dl.l.lower |= ldl.l.lower >> (EXPDBITS + 1 - 1);
+
+ /*printf ("xfdf out: %g\n", dl.d);*/
+ return dl.d;
+}
+
+/* convert a float to a long double */
+long double
+__extendsfxf2 (float f)
+{
+ long double foo = __extenddfxf2 (__extendsfdf2 (f));
+ return foo;
+}
+
+/* convert a long double to a float */
+float
+__truncxfsf2 (long double ld)
+{
+ float foo = __truncdfsf2 (__truncxfdf2 (ld));
+ return foo;
+}
+
+/* convert an int to a long double */
+long double
+__floatsixf (int l)
+{
+ double foo = __floatsidf (l);
+ return foo;
+}
+
+/* convert a long double to an int */
+int
+__fixxfsi (long double ld)
+{
+ int foo = __fixdfsi ((double) ld);
+ return foo;
+}
+
+/* The remaining provide crude math support by working in double precision. */
+
+long double
+__addxf3 (long double x1, long double x2)
+{
+ return (double) x1 + (double) x2;
+}
+
+long double
+__subxf3 (long double x1, long double x2)
+{
+ return (double) x1 - (double) x2;
+}
+
+long double
+__mulxf3 (long double x1, long double x2)
+{
+ return (double) x1 * (double) x2;
+}
+
+long double
+__divxf3 (long double x1, long double x2)
+{
+ return (double) x1 / (double) x2;
+}
+
+long double
+__negxf2 (long double x1)
+{
+ return - (double) x1;
+}
+
+long
+__cmpxf2 (long double x1, long double x2)
+{
+ return __cmpdf2 ((double) x1, (double) x2);
+}
+
+long
+__eqxf2 (long double x1, long double x2)
+{
+ return __cmpdf2 ((double) x1, (double) x2);
+}
+
+long
+__nexf2 (long double x1, long double x2)
+{
+ return __cmpdf2 ((double) x1, (double) x2);
+}
+
+long
+__ltxf2 (long double x1, long double x2)
+{
+ return __cmpdf2 ((double) x1, (double) x2);
+}
+
+long
+__lexf2 (long double x1, long double x2)
+{
+ return __cmpdf2 ((double) x1, (double) x2);
+}
+
+long
+__gtxf2 (long double x1, long double x2)
+{
+ return __cmpdf2 ((double) x1, (double) x2);
+}
+
+long
+__gexf2 (long double x1, long double x2)
+{
+ return __cmpdf2 ((double) x1, (double) x2);
+}
+
+#endif /* EXTFLOAT */
diff --git a/gcc/config/m68k/lb1sf68.asm b/gcc/config/m68k/lb1sf68.asm
new file mode 100644
index 00000000000..6e9124d165e
--- /dev/null
+++ b/gcc/config/m68k/lb1sf68.asm
@@ -0,0 +1,3191 @@
+/* libgcc1 routines for 68000 w/o floating-point hardware. */
+/* Copyright (C) 1994 Free Software Foundation, Inc.
+
+This file is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 2, or (at your option) any
+later version.
+
+In addition to the permissions in the GNU General Public License, the
+Free Software Foundation gives you unlimited permission to link the
+compiled version of this file with other programs, and to distribute
+those programs without any restriction coming from the use of this
+file. (The General Public License restrictions do apply in other
+respects; for example, they cover modification of the file, and
+distribution when not linked into another program.)
+
+This file is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; see the file COPYING. If not, write to
+the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+/* As a special exception, if you link this library with files
+ compiled with GCC to produce an executable, this does not cause
+ the resulting executable to be covered by the GNU General Public License.
+ This exception does not however invalidate any other reasons why
+ the executable file might be covered by the GNU General Public License. */
+
+/* Use this one for any 680x0; assumes no floating point hardware.
+ The trailing " '" appearing on some lines is for ANSI preprocessors. Yuk.
+ Some of this code comes from MINIX, via the folks at ericsson.
+ D. V. Henkel-Wallace (gumby@cygnus.com) Fete Bastille, 1992
+*/
+
+/* These are predefined by new versions of GNU cpp. */
+
+#ifndef __USER_LABEL_PREFIX__
+#define __USER_LABEL_PREFIX__ _
+#endif
+
+#ifndef __REGISTER_PREFIX__
+#define __REGISTER_PREFIX__
+#endif
+
+/* ANSI concatenation macros. */
+
+#define CONCAT1(a, b) CONCAT2(a, b)
+#define CONCAT2(a, b) a ## b
+
+/* Use the right prefix for global labels. */
+
+#define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x)
+
+/* Use the right prefix for registers. */
+
+#define REG(x) CONCAT1 (__REGISTER_PREFIX__, x)
+
+#define d0 REG (d0)
+#define d1 REG (d1)
+#define d2 REG (d2)
+#define d3 REG (d3)
+#define d4 REG (d4)
+#define d5 REG (d5)
+#define d6 REG (d6)
+#define d7 REG (d7)
+#define a0 REG (a0)
+#define a1 REG (a1)
+#define a2 REG (a2)
+#define a3 REG (a3)
+#define a4 REG (a4)
+#define a5 REG (a5)
+#define a6 REG (a6)
+#define fp REG (fp)
+#define sp REG (sp)
+
+#ifdef L_floatex
+
+| This is an attempt at a decent floating point (single, double and
+| extended double) code for the GNU C compiler. It should be easy to
+| adapt to other compilers (but beware of the local labels!).
+
+| Starting date: 21 October, 1990
+
+| It is convenient to introduce the notation (s,e,f) for a floating point
+| number, where s=sign, e=exponent, f=fraction. We will call a floating
+| point number fpn to abbreviate, independently of the precision.
+| Let MAX_EXP be in each case the maximum exponent (255 for floats, 1023
+| for doubles and 16383 for long doubles). We then have the following
+| different cases:
+| 1. Normalized fpns have 0 < e < MAX_EXP. They correspond to
+| (-1)^s x 1.f x 2^(e-bias-1).
+| 2. Denormalized fpns have e=0. They correspond to numbers of the form
+| (-1)^s x 0.f x 2^(-bias).
+| 3. +/-INFINITY have e=MAX_EXP, f=0.
+| 4. Quiet NaN (Not a Number) have all bits set.
+| 5. Signaling NaN (Not a Number) have s=0, e=MAX_EXP, f=1.
+
+|=============================================================================
+| exceptions
+|=============================================================================
+
+| This is the floating point condition code register (_fpCCR):
+|
+| struct {
+| short _exception_bits;
+| short _trap_enable_bits;
+| short _sticky_bits;
+| short _rounding_mode;
+| short _format;
+| short _last_operation;
+| union {
+| float sf;
+| double df;
+| } _operand1;
+| union {
+| float sf;
+| double df;
+| } _operand2;
+| } _fpCCR;
+
+ .data
+ .even
+
+ .globl SYM (_fpCCR)
+
+SYM (_fpCCR):
+__exception_bits:
+ .word 0
+__trap_enable_bits:
+ .word 0
+__sticky_bits:
+ .word 0
+__rounding_mode:
+ .word ROUND_TO_NEAREST
+__format:
+ .word NIL
+__last_operation:
+ .word NOOP
+__operand1:
+ .long 0
+ .long 0
+__operand2:
+ .long 0
+ .long 0
+
+| Offsets:
+EBITS = __exception_bits - SYM (_fpCCR)
+TRAPE = __trap_enable_bits - SYM (_fpCCR)
+STICK = __sticky_bits - SYM (_fpCCR)
+ROUND = __rounding_mode - SYM (_fpCCR)
+FORMT = __format - SYM (_fpCCR)
+LASTO = __last_operation - SYM (_fpCCR)
+OPER1 = __operand1 - SYM (_fpCCR)
+OPER2 = __operand2 - SYM (_fpCCR)
+
+| The following exception types are supported:
+INEXACT_RESULT = 0x0001
+UNDERFLOW = 0x0002
+OVERFLOW = 0x0004
+DIVIDE_BY_ZERO = 0x0008
+INVALID_OPERATION = 0x0010
+
+| The allowed rounding modes are:
+UNKNOWN = -1
+ROUND_TO_NEAREST = 0 | round result to nearest representable value
+ROUND_TO_ZERO = 1 | round result towards zero
+ROUND_TO_PLUS = 2 | round result towards plus infinity
+ROUND_TO_MINUS = 3 | round result towards minus infinity
+
+| The allowed values of format are:
+NIL = 0
+SINGLE_FLOAT = 1
+DOUBLE_FLOAT = 2
+LONG_FLOAT = 3
+
+| The allowed values for the last operation are:
+NOOP = 0
+ADD = 1
+MULTIPLY = 2
+DIVIDE = 3
+NEGATE = 4
+COMPARE = 5
+EXTENDSFDF = 6
+TRUNCDFSF = 7
+
+|=============================================================================
+| __clear_sticky_bits
+|=============================================================================
+
+| The sticky bits are normally not cleared (thus the name), whereas the
+| exception type and exception value reflect the last computation.
+| This routine is provided to clear them (you can also write to _fpCCR,
+| since it is globally visible).
+
+ .globl SYM (__clear_sticky_bit)
+
+ .text
+ .even
+
+| void __clear_sticky_bits(void);
+SYM (__clear_sticky_bit):
+ lea SYM (_fpCCR),a0
+ movew #0,a0@(STICK)
+ rts
+
+|=============================================================================
+| $_exception_handler
+|=============================================================================
+
+ .globl $_exception_handler
+
+ .text
+ .even
+
+| This is the common exit point if an exception occurs.
+| NOTE: it is NOT callable from C!
+| It expects the exception type in d7, the format (SINGLE_FLOAT,
+| DOUBLE_FLOAT or LONG_FLOAT) in d6, and the last operation code in d5.
+| It sets the corresponding exception and sticky bits, and the format.
+| Depending on the format if fills the corresponding slots for the
+| operands which produced the exception (all this information is provided
+| so if you write your own exception handlers you have enough information
+| to deal with the problem).
+| Then checks to see if the corresponding exception is trap-enabled,
+| in which case it pushes the address of _fpCCR and traps through
+| trap FPTRAP (15 for the moment).
+
+FPTRAP = 15
+
+$_exception_handler:
+ lea SYM (_fpCCR),a0
+ movew d7,a0@(EBITS) | set __exception_bits
+ orw d7,a0@(STICK) | and __sticky_bits
+ movew d6,a0@(FORMT) | and __format
+ movew d5,a0@(LASTO) | and __last_operation
+
+| Now put the operands in place:
+ cmpw #SINGLE_FLOAT,d6
+ beq 1f
+ movel a6@(8),a0@(OPER1)
+ movel a6@(12),a0@(OPER1+4)
+ movel a6@(16),a0@(OPER2)
+ movel a6@(20),a0@(OPER2+4)
+ bra 2f
+1: movel a6@(8),a0@(OPER1)
+ movel a6@(12),a0@(OPER2)
+2:
+| And check whether the exception is trap-enabled:
+ andw a0@(TRAPE),d7 | is exception trap-enabled?
+ beq 1f | no, exit
+ pea SYM (_fpCCR) | yes, push address of _fpCCR
+ trap #FPTRAP | and trap
+1: moveml sp@+,d2-d7 | restore data registers
+ unlk a6 | and return
+ rts
+#endif /* L_floatex */
+
+#ifdef L_mulsi3
+ .text
+ .proc
+|#PROC# 04
+ .globl SYM (__mulsi3)
+SYM (__mulsi3):
+|#PROLOGUE# 0
+ link a6,#0
+ addl #-LF14,sp
+ moveml #LS14,sp@
+|#PROLOGUE# 1
+ movew a6@(0x8), d0 /* x0 -> d0 */
+ muluw a6@(0xe), d0 /* x0*y1 */
+ movew a6@(0xa), d1 /* x1 -> d1 */
+ muluw a6@(0xc), d1 /* x1*y0 */
+ addw d1, d0
+ lsll #8, d0
+ lsll #8, d0
+ movew a6@(0xa), d1 /* x1 -> d1 */
+ muluw a6@(0xe), d1 /* x1*y1 */
+ addl d1, d0
+ jra LE14
+LE14:
+|#PROLOGUE# 2
+ moveml sp@, #LS14
+ unlk a6
+|#PROLOGUE# 3
+ rts
+ LF14 = 4
+ LS14 = 0x0002 /* d1 will be saved and restored */
+ LFF14 = 0
+ LSS14 = 0x0
+ LV14 = 0
+#endif /* L_mulsi3 */
+
+#ifdef L_udivsi3
+ .text
+ .proc
+|#PROC# 04
+ .globl SYM (__udivsi3)
+SYM (__udivsi3):
+|#PROLOGUE# 0
+ link a6,#0
+ addl #-LF14,sp
+ moveml #LS14,sp@
+|#PROLOGUE# 1
+ movel a6@(0xc), d0 /* d0 = divisor */
+ movel a6@(0x8), d1 /* d1 = dividend */
+ movel d1, d3
+
+
+ cmpl #0x10000, d0 /* divisor >= 2 ^ 16 ? */
+ bge l4 /* then try next algorithm */
+ movel d1, d2
+ lsrl #8, d2 /* get high dividend */
+ lsrl #8, d2
+ divu d0, d2 /* high quotient in lower word */
+ movew d2, d1 /* save high quotient */
+ swap d1
+ movew d3, d2 /* get low dividend + high rest */
+ divu d0, d2 /* low quotient */
+ movew d2, d1
+ jra l5
+
+l4: movel d0, d2 /* use d2 as divisor backup */
+l4a: lsrl #1, d0 /* shift divisor */
+ lsrl #1, d1 /* shift dividend */
+ cmpl #0x10000, d0 /* still divisor >= 2 ^ 16 ? */
+ bge l4a
+ divu d0, d1 /* now we have 16bit divisor => compute remainder */
+ andl #0xffff, d1
+ movel d1, sp@- /* multiply divisor with */
+ movel d2, sp@- /* remainder */
+ jbsr SYM (__umulsi3) /* and */
+ addql #8, sp
+ cmpl d0, d3 /* compare the result with the dividend */
+ bge l5 /* if dividend >= result => nofix */
+ subql #1, d1
+
+l5: movel d1, d0
+
+l6: jra LE14
+LE14:
+|#PROLOGUE# 2
+ moveml sp@, #LS14
+ unlk a6
+|#PROLOGUE# 3
+ rts
+ LF14 = 16
+ LS14 = 0x000e /* d1-d3 will be saved and restored */
+ LFF14 = 0
+ LSS14 = 0x0
+ LV14 = 0
+#endif /* L_udivsi3 */
+
+#ifdef L_umulsi3
+ .text
+ .proc
+|#PROC# 04
+ .globl SYM (__umulsi3)
+SYM (__umulsi3):
+|#PROLOGUE# 0
+ link a6,#0
+ addl #-LF14,sp
+ moveml #LS14,sp@
+|#PROLOGUE# 1
+ movew a6@(0x8), d0 /* x0 -> d0 */
+ muluw a6@(0xe), d0 /* x0*y1 */
+ movew a6@(0xa), d1 /* x1 -> d1 */
+ muluw a6@(0xc), d1 /* x1*y0 */
+ addw d1, d0
+ lsll #8, d0
+ lsll #8, d0
+ movew a6@(0xa), d1 /* x1 -> d1 */
+ muluw a6@(0xe), d1 /* x1*y1 */
+ addl d1, d0
+ jra LE15
+LE15:
+|#PROLOGUE# 2
+ moveml sp@, #LS14
+ unlk a6
+|#PROLOGUE# 3
+ rts
+ LF14 = 4
+ LS14 = 0x0002 /* d1 will be saved and restored */
+ LFF14 = 0
+ LSS14 = 0x0
+ LV14 = 0
+#endif /* L_umulsi3 */
+
+#ifdef L_divsi3
+ .text
+ .proc
+|#PROC# 04
+ .globl SYM (__divsi3)
+SYM (__divsi3):
+|#PROLOGUE# 0
+ link a6,#0
+ addl #-LF14,sp
+ moveml #LS14,sp@
+|#PROLOGUE# 1
+ moveb #1, d4 /* sign of result stored in d4 (=1 or =-1) */
+ movel a6@(0xc), d0 /* d0 = divisor */
+ bpl l1
+ negl d0
+ negb d4 /* change sign because divisor <0 */
+l1: movel a6@(0x8), d1 /* d1 = dividend */
+ bpl l2
+ negl d1
+ negb d4
+l2: movel d1, d3
+
+
+ cmpl #0x10000, d0 /* divisor >= 2 ^ 16 ? */
+ bge l4 /* then try next algorithm */
+ movel d1, d2
+ lsrl #8, d2 /* get high dividend */
+ lsrl #8, d2
+ divu d0, d2 /* high quotient in lower word */
+ movew d2, d1 /* save high quotient */
+ swap d1
+ movew d3, d2 /* get low dividend + high rest */
+ divu d0, d2 /* low quotient */
+ movew d2, d1
+ jra l5
+
+l4: movel d0, d2 /* use d2 as divisor backup */
+l4a: lsrl #1, d0 /* shift divisor */
+ lsrl #1, d1 /* shift dividend */
+ cmpl #0x10000, d0 /* still divisor >= 2 ^ 16 ? */
+ bge l4a
+ divu d0, d1 /* now we have 16bit divisor => compute remainder */
+ andl #0xffff, d1
+ movel d1, sp@- /* multiply divisor with */
+ movel d2, sp@- /* remainder */
+ jbsr SYM (__umulsi3) /* and */
+ addql #8, sp
+ cmpl d0, d3 /* compare the result with the dividend */
+ bge l5 /* if dividend >= result => nofix */
+ subql #1, d1
+
+l5: movel d1, d0
+ tstb d4
+ bpl l6
+ negl d0
+
+l6: jra LE14
+LE14:
+|#PROLOGUE# 2
+ moveml sp@, #LS14
+ unlk a6
+|#PROLOGUE# 3
+ rts
+ LF14 = 16
+ LS14 = 0x001e /* d1-d4 will be saved and restored */
+ LFF14 = 8
+ LSS14 = 0x0
+ LV14 = 8
+#endif /* L_divsi3 */
+
+#ifdef L_umodsi3
+ .text
+ .proc
+|#PROC# 04
+ .globl SYM (__umodsi3)
+SYM (__umodsi3):
+|#PROLOGUE# 0
+ link a6,#0
+ addl #-LF14,sp
+ moveml #LS14,sp@
+|#PROLOGUE# 1
+ movel a6@(0xc),d1 /* divisor */
+ movel a6@(0x8),d2 /* dividend */
+ movel d1, sp@-
+ movel d2, sp@-
+ jbsr SYM (__udivsi3) /* d0 = a/b */
+ addql #8, sp
+ movel d0, sp@-
+ movel d1, sp@-
+ jbsr SYM (__umulsi3) /* d0 = (a/b)*b */
+ addql #8, sp
+ negl d0
+ addl d2, d0 /* d0 = a - (a/b)*b */
+ jra LE14
+LE14:
+|#PROLOGUE# 2
+ moveml sp@, #LS14
+ unlk a6
+|#PROLOGUE# 3
+ rts
+ LF14 = 8
+ LS14 = 0x006 /* d1-d2 will be saved and restored */
+ LFF14 = 0
+ LSS14 = 0x0
+ LV14 = 0
+#endif /* L_umodsi3 */
+
+#ifdef L_modsi3
+ .text
+ .proc
+|#PROC# 04
+ .globl SYM (__modsi3)
+SYM (__modsi3):
+|#PROLOGUE# 0
+ link a6,#0
+ addl #-LF14,sp
+ moveml #LS14,sp@
+|#PROLOGUE# 1
+ movel a6@(0xc),d1 /* divisor */
+ movel a6@(0x8),d2 /* dividend */
+ movel d1, sp@-
+ movel d2, sp@-
+ jbsr SYM (__divsi3) /* d0 = a/b */
+ addql #8, sp
+ movel d0, sp@-
+ movel d1, sp@-
+ jbsr SYM (__mulsi3) /* d0 = (a/b)*b */
+ addql #8, sp
+ negl d0
+ addl d2, d0 /* d0 = a - (a/b)*b */
+ jra LE14
+LE14:
+|#PROLOGUE# 2
+ moveml sp@, #LS14
+ unlk a6
+|#PROLOGUE# 3
+ rts
+ LF14 = 8
+ LS14 = 0x006 /* d1-d2 will be saved and restored */
+ LFF14 = 0
+ LSS14 = 0x0
+ LV14 = 0
+#endif /* L_modsi3 */
+
+#ifdef L_lshrsi3
+ .text
+ .proc
+|#PROC# 04
+ LF18 = 4
+ LS18 = 128
+ LFF18 = 0
+ LSS18 = 0
+ LV18 = 0
+ .text
+ .globl SYM (__lshrsi3)
+SYM (__lshrsi3):
+|#PROLOGUE# 0
+ link a6,#-4
+|#PROLOGUE# 1
+ movl a6@(8),d0
+ movw a6@(14),d1
+ lsrl d1,d0
+|#PROLOGUE# 2
+ unlk a6
+|#PROLOGUE# 3
+ rts
+#endif /* L_lshrsi3 */
+
+#ifdef L_lshlsi3
+ .text
+ .proc
+|#PROC# 04
+ LF18 = 4
+ LS18 = 128
+ LFF18 = 0
+ LSS18 = 0
+ LV18 = 0
+ .text
+ .globl SYM (__lshlsi3)
+SYM (__lshlsi3):
+|#PROLOGUE# 0
+ link a6,#-4
+|#PROLOGUE# 1
+ movl a6@(8),d0
+ movw a6@(14),d1
+ lsll d1,d0
+|#PROLOGUE# 2
+ unlk a6
+|#PROLOGUE# 3
+ rts
+#endif /* L_lshlsi3 */
+
+#ifdef L_ashrsi3
+ .text
+ .proc
+|#PROC# 04
+ LF18 = 4
+ LS18 = 128
+ LFF18 = 0
+ LSS18 = 0
+ LV18 = 0
+ .text
+ .globl SYM (__ashrsi3)
+SYM (__ashrsi3):
+|#PROLOGUE# 0
+ link a6,#-4
+|#PROLOGUE# 1
+ movl a6@(8),d0
+ movw a6@(14),d1
+ asrl d1,d0
+|#PROLOGUE# 2
+ unlk a6
+|#PROLOGUE# 3
+ rts
+#endif /* L_ashrsi3 */
+
+#ifdef L_ashlsi3
+ .text
+ .proc
+|#PROC# 04
+ LF18 = 4
+ LS18 = 128
+ LFF18 = 0
+ LSS18 = 0
+ LV18 = 0
+ .text
+ .globl SYM (__ashlsi3)
+SYM (__ashlsi3):
+|#PROLOGUE# 0
+ link a6,#-4
+|#PROLOGUE# 1
+ movl a6@(8),d0
+ movw a6@(14),d1
+ asll d1,d0
+|#PROLOGUE# 2
+ unlk a6
+|#PROLOGUE# 3
+ rts
+#endif /* L_ashlsi3 */
+
+#ifdef L_double
+
+ .globl SYM (_fpCCR)
+ .globl $_exception_handler
+
+QUIET_NaN = 0xffffffff
+
+D_MAX_EXP = 0x07ff
+D_BIAS = 1022
+DBL_MAX_EXP = D_MAX_EXP - D_BIAS
+DBL_MIN_EXP = 1 - D_BIAS
+DBL_MANT_DIG = 53
+
+INEXACT_RESULT = 0x0001
+UNDERFLOW = 0x0002
+OVERFLOW = 0x0004
+DIVIDE_BY_ZERO = 0x0008
+INVALID_OPERATION = 0x0010
+
+DOUBLE_FLOAT = 2
+
+NOOP = 0
+ADD = 1
+MULTIPLY = 2
+DIVIDE = 3
+NEGATE = 4
+COMPARE = 5
+EXTENDSFDF = 6
+TRUNCDFSF = 7
+
+UNKNOWN = -1
+ROUND_TO_NEAREST = 0 | round result to nearest representable value
+ROUND_TO_ZERO = 1 | round result towards zero
+ROUND_TO_PLUS = 2 | round result towards plus infinity
+ROUND_TO_MINUS = 3 | round result towards minus infinity
+
+| Entry points:
+
+ .globl SYM (__adddf3)
+ .globl SYM (__subdf3)
+ .globl SYM (__muldf3)
+ .globl SYM (__divdf3)
+ .globl SYM (__negdf2)
+ .globl SYM (__cmpdf2)
+
+ .text
+ .even
+
+| These are common routines to return and signal exceptions.
+
+Ld$den:
+| Return and signal a denormalized number
+ orl d7,d0
+ movew #UNDERFLOW,d7
+ orw #INEXACT_RESULT,d7
+ movew #DOUBLE_FLOAT,d6
+ jmp $_exception_handler
+
+Ld$infty:
+Ld$overflow:
+| Return a properly signed INFINITY and set the exception flags
+ movel #0x7ff00000,d0
+ movel #0,d1
+ orl d7,d0
+ movew #OVERFLOW,d7
+ orw #INEXACT_RESULT,d7
+ movew #DOUBLE_FLOAT,d6
+ jmp $_exception_handler
+
+Ld$underflow:
+| Return 0 and set the exception flags
+ movel #0,d0
+ movel d0,d1
+ movew #UNDERFLOW,d7
+ orw #INEXACT_RESULT,d7
+ movew #DOUBLE_FLOAT,d6
+ jmp $_exception_handler
+
+Ld$inop:
+| Return a quiet NaN and set the exception flags
+ movel #QUIET_NaN,d0
+ movel d0,d1
+ movew #INVALID_OPERATION,d7
+ orw #INEXACT_RESULT,d7
+ movew #DOUBLE_FLOAT,d6
+ jmp $_exception_handler
+
+Ld$div$0:
+| Return a properly signed INFINITY and set the exception flags
+ movel #0x7ff00000,d0
+ movel #0,d1
+ orl d7,d0
+ movew #DIVIDE_BY_ZERO,d7
+ orw #INEXACT_RESULT,d7
+ movew #DOUBLE_FLOAT,d6
+ jmp $_exception_handler
+
+|=============================================================================
+|=============================================================================
+| double precision routines
+|=============================================================================
+|=============================================================================
+
+| A double precision floating point number (double) has the format:
+|
+| struct _double {
+| unsigned int sign : 1; /* sign bit */
+| unsigned int exponent : 11; /* exponent, shifted by 126 */
+| unsigned int fraction : 52; /* fraction */
+| } double;
+|
+| Thus sizeof(double) = 8 (64 bits).
+|
+| All the routines are callable from C programs, and return the result
+| in the register pair d0-d1. They also preserve all registers except
+| d0-d1 and a0-a1.
+
+|=============================================================================
+| __subdf3
+|=============================================================================
+
+| double __subdf3(double, double);
+SYM (__subdf3):
+ bchg #31,sp@(12) | change sign of second operand
+ | and fall through, so we always add
+|=============================================================================
+| __adddf3
+|=============================================================================
+
+| double __adddf3(double, double);
+SYM (__adddf3):
+ link a6,#0 | everything will be done in registers
+ moveml d2-d7,sp@- | save all data registers and a2 (but d0-d1)
+ movel a6@(8),d0 | get first operand
+ movel a6@(12),d1 |
+ movel a6@(16),d2 | get second operand
+ movel a6@(20),d3 |
+
+ movel d0,d7 | get d0's sign bit in d7 '
+ addl d1,d1 | check and clear sign bit of a, and gain one
+ addxl d0,d0 | bit of extra precision
+ beq Ladddf$b | if zero return second operand
+
+ movel d2,d6 | save sign in d6
+ addl d3,d3 | get rid of sign bit and gain one bit of
+ addxl d2,d2 | extra precision
+ beq Ladddf$a | if zero return first operand
+
+ andl #0x80000000,d7 | isolate a's sign bit '
+ swap d6 | and also b's sign bit '
+ andw #0x8000,d6 |
+ orw d6,d7 | and combine them into d7, so that a's sign '
+ | bit is in the high word and b's is in the '
+ | low word, so d6 is free to be used
+ movel d7,a0 | now save d7 into a0, so d7 is free to
+ | be used also
+
+| Get the exponents and check for denormalized and/or infinity.
+
+ movel #0x001fffff,d6 | mask for the fraction
+ movel #0x00200000,d7 | mask to put hidden bit back
+
+ movel d0,d4 |
+ andl d6,d0 | get fraction in d0
+ notl d6 | make d6 into mask for the exponent
+ andl d6,d4 | get exponent in d4
+ beq Ladddf$a$den | branch if a is denormalized
+ cmpl d6,d4 | check for INFINITY or NaN
+ beq Ladddf$nf |
+ orl d7,d0 | and put hidden bit back
+Ladddf$1:
+ swap d4 | shift right exponent so that it starts
+ lsrw #5,d4 | in bit 0 and not bit 20
+| Now we have a's exponent in d4 and fraction in d0-d1 '
+ movel d2,d5 | save b to get exponent
+ andl d6,d5 | get exponent in d5
+ beq Ladddf$b$den | branch if b is denormalized
+ cmpl d6,d5 | check for INFINITY or NaN
+ beq Ladddf$nf
+ notl d6 | make d6 into mask for the fraction again
+ andl d6,d2 | and get fraction in d2
+ orl d7,d2 | and put hidden bit back
+Ladddf$2:
+ swap d5 | shift right exponent so that it starts
+ lsrw #5,d5 | in bit 0 and not bit 20
+
+| Now we have b's exponent in d5 and fraction in d2-d3. '
+
+| The situation now is as follows: the signs are combined in a0, the
+| numbers are in d0-d1 (a) and d2-d3 (b), and the exponents in d4 (a)
+| and d5 (b). To do the rounding correctly we need to keep all the
+| bits until the end, so we need to use d0-d1-d2-d3 for the first number
+| and d4-d5-d6-d7 for the second. To do this we store (temporarily) the
+| exponents in a2-a3.
+
+ moveml a2-a3,sp@- | save the address registers
+
+ movel d4,a2 | save the exponents
+ movel d5,a3 |
+
+ movel #0,d7 | and move the numbers around
+ movel d7,d6 |
+ movel d3,d5 |
+ movel d2,d4 |
+ movel d7,d3 |
+ movel d7,d2 |
+
+| Here we shift the numbers until the exponents are the same, and put
+| the largest exponent in a2.
+ exg d4,a2 | get exponents back
+ exg d5,a3 |
+ cmpw d4,d5 | compare the exponents
+ beq Ladddf$3 | if equal don't shift '
+ bhi 9f | branch if second exponent is higher
+
+| Here we have a's exponent larger than b's, so we have to shift b. We do
+| this by using as counter d2:
+1: movew d4,d2 | move largest exponent to d2
+ subw d5,d2 | and substract second exponent
+ exg d4,a2 | get back the longs we saved
+ exg d5,a3 |
+| if difference is too large we don't shift (actually, we can just exit) '
+ cmpw #DBL_MANT_DIG+2,d2
+ bge Ladddf$b$small
+ cmpw #32,d2 | if difference >= 32, shift by longs
+ bge 5f
+2: cmpw #16,d2 | if difference >= 16, shift by words
+ bge 6f
+ bra 3f | enter dbra loop
+
+4: lsrl #1,d4
+ roxrl #1,d5
+ roxrl #1,d6
+ roxrl #1,d7
+3: dbra d2,4b
+ movel #0,d2
+ movel d2,d3
+ bra Ladddf$4
+5:
+ movel d6,d7
+ movel d5,d6
+ movel d4,d5
+ movel #0,d4
+ subw #32,d2
+ bra 2b
+6:
+ movew d6,d7
+ swap d7
+ movew d5,d6
+ swap d6
+ movew d4,d5
+ swap d5
+ movew #0,d4
+ swap d4
+ subw #16,d2
+ bra 3b
+
+9: exg d4,d5
+ movew d4,d6
+ subw d5,d6 | keep d5 (largest exponent) in d4
+ exg d4,a2
+ exg d5,a3
+| if difference is too large we don't shift (actually, we can just exit) '
+ cmpw #DBL_MANT_DIG+2,d6
+ bge Ladddf$a$small
+ cmpw #32,d6 | if difference >= 32, shift by longs
+ bge 5f
+2: cmpw #16,d6 | if difference >= 16, shift by words
+ bge 6f
+ bra 3f | enter dbra loop
+
+4: lsrl #1,d0
+ roxrl #1,d1
+ roxrl #1,d2
+ roxrl #1,d3
+3: dbra d6,4b
+ movel #0,d7
+ movel d7,d6
+ bra Ladddf$4
+5:
+ movel d2,d3
+ movel d1,d2
+ movel d0,d1
+ movel #0,d0
+ subw #32,d6
+ bra 2b
+6:
+ movew d2,d3
+ swap d3
+ movew d1,d2
+ swap d2
+ movew d0,d1
+ swap d1
+ movew #0,d0
+ swap d0
+ subw #16,d6
+ bra 3b
+Ladddf$3:
+ exg d4,a2
+ exg d5,a3
+Ladddf$4:
+| Now we have the numbers in d0--d3 and d4--d7, the exponent in a2, and
+| the signs in a4.
+
+| Here we have to decide whether to add or substract the numbers:
+ exg d7,a0 | get the signs
+ exg d6,a3 | a3 is free to be used
+ movel d7,d6 |
+ movew #0,d7 | get a's sign in d7 '
+ swap d6 |
+ movew #0,d6 | and b's sign in d6 '
+ eorl d7,d6 | compare the signs
+ bmi Lsubdf$0 | if the signs are different we have
+ | to substract
+ exg d7,a0 | else we add the numbers
+ exg d6,a3 |
+ addl d7,d3 |
+ addxl d6,d2 |
+ addxl d5,d1 |
+ addxl d4,d0 |
+
+ movel a2,d4 | return exponent to d4
+ movel a0,d7 |
+ andl #0x80000000,d7 | d7 now has the sign
+
+ moveml sp@+,a2-a3
+
+| Before rounding normalize so bit #DBL_MANT_DIG is set (we will consider
+| the case of denormalized numbers in the rounding routine itself).
+| As in the addition (not in the substraction!) we could have set
+| one more bit we check this:
+ btst #DBL_MANT_DIG+1,d0
+ beq 1f
+ lsrl #1,d0
+ roxrl #1,d1
+ roxrl #1,d2
+ roxrl #1,d3
+ addw #1,d4
+1:
+ lea Ladddf$5,a0 | to return from rounding routine
+ lea SYM (_fpCCR),a1 | check the rounding mode
+ movew a1@(6),d6 | rounding mode in d6
+ beq Lround$to$nearest
+ cmpw #ROUND_TO_PLUS,d6
+ bhi Lround$to$minus
+ blt Lround$to$zero
+ bra Lround$to$plus
+Ladddf$5:
+| Put back the exponent and check for overflow
+ cmpw #0x7ff,d4 | is the exponent big?
+ bge 1f
+ bclr #DBL_MANT_DIG-1,d0
+ lslw #4,d4 | put exponent back into position
+ swap d0 |
+ orw d4,d0 |
+ swap d0 |
+ bra Ladddf$ret
+1:
+ movew #ADD,d5
+ bra Ld$overflow
+
+Lsubdf$0:
+| Here we do the substraction.
+ exg d7,a0 | put sign back in a0
+ exg d6,a3 |
+ subl d7,d3 |
+ subxl d6,d2 |
+ subxl d5,d1 |
+ subxl d4,d0 |
+ beq Ladddf$ret$1 | if zero just exit
+ bpl 1f | if positive skip the following
+ exg d7,a0 |
+ bchg #31,d7 | change sign bit in d7
+ exg d7,a0 |
+ negl d3 |
+ negxl d2 |
+ negxl d1 | and negate result
+ negxl d0 |
+1:
+ movel a2,d4 | return exponent to d4
+ movel a0,d7
+ andl #0x80000000,d7 | isolate sign bit
+ moveml sp@+,a2-a3 |
+
+| Before rounding normalize so bit #DBL_MANT_DIG is set (we will consider
+| the case of denormalized numbers in the rounding routine itself).
+| As in the addition (not in the substraction!) we could have set
+| one more bit we check this:
+ btst #DBL_MANT_DIG+1,d0
+ beq 1f
+ lsrl #1,d0
+ roxrl #1,d1
+ roxrl #1,d2
+ roxrl #1,d3
+ addw #1,d4
+1:
+ lea Lsubdf$1,a0 | to return from rounding routine
+ lea SYM (_fpCCR),a1 | check the rounding mode
+ movew a1@(6),d6 | rounding mode in d6
+ beq Lround$to$nearest
+ cmpw #ROUND_TO_PLUS,d6
+ bhi Lround$to$minus
+ blt Lround$to$zero
+ bra Lround$to$plus
+Lsubdf$1:
+| Put back the exponent and sign (we don't have overflow). '
+ bclr #DBL_MANT_DIG-1,d0
+ lslw #4,d4 | put exponent back into position
+ swap d0 |
+ orw d4,d0 |
+ swap d0 |
+ bra Ladddf$ret
+
+| If one of the numbers was too small (difference of exponents >=
+| DBL_MANT_DIG+1) we return the other (and now we don't have to '
+| check for finiteness or zero).
+Ladddf$a$small:
+ moveml sp@+,a2-a3
+ movel a6@(16),d0
+ movel a6@(20),d1
+ lea SYM (_fpCCR),a0
+ movew #0,a0@
+ moveml sp@+,d2-d7 | restore data registers
+ unlk a6 | and return
+ rts
+
+Ladddf$b$small:
+ moveml sp@+,a2-a3
+ movel a6@(8),d0
+ movel a6@(12),d1
+ lea SYM (_fpCCR),a0
+ movew #0,a0@
+ moveml sp@+,d2-d7 | restore data registers
+ unlk a6 | and return
+ rts
+
+Ladddf$a$den:
+ movel d7,d4 | d7 contains 0x00200000
+ bra Ladddf$1
+
+Ladddf$b$den:
+ movel d7,d5 | d7 contains 0x00200000
+ notl d6
+ bra Ladddf$2
+
+Ladddf$b:
+| Return b (if a is zero)
+ movel d2,d0
+ movel d3,d1
+ bra 1f
+Ladddf$a:
+ movel a6@(8),d0
+ movel a6@(12),d1
+1:
+ movew #ADD,d5
+| Check for NaN and +/-INFINITY.
+ movel d0,d7 |
+ andl #0x80000000,d7 |
+ bclr #31,d0 |
+ cmpl #0x7ff00000,d0 |
+ bge 2f |
+ movel d0,d0 | check for zero, since we don't '
+ bne Ladddf$ret | want to return -0 by mistake
+ bclr #31,d7 |
+ bra Ladddf$ret |
+2:
+ andl #0x000fffff,d0 | check for NaN (nonzero fraction)
+ orl d1,d0 |
+ bne Ld$inop |
+ bra Ld$infty |
+
+Ladddf$ret$1:
+ moveml sp@+,a2-a3 | restore regs and exit
+
+Ladddf$ret:
+| Normal exit.
+ lea SYM (_fpCCR),a0
+ movew #0,a0@
+ orl d7,d0 | put sign bit back
+ moveml sp@+,d2-d7
+ unlk a6
+ rts
+
+Ladddf$ret$den:
+| Return a denormalized number.
+ lsrl #1,d0 | shift right once more
+ roxrl #1,d1 |
+ bra Ladddf$ret
+
+Ladddf$nf:
+ movew #ADD,d5
+| This could be faster but it is not worth the effort, since it is not
+| executed very often. We sacrifice speed for clarity here.
+ movel a6@(8),d0 | get the numbers back (remember that we
+ movel a6@(12),d1 | did some processing already)
+ movel a6@(16),d2 |
+ movel a6@(20),d3 |
+ movel #0x7ff00000,d4 | useful constant (INFINITY)
+ movel d0,d7 | save sign bits
+ movel d2,d6 |
+ bclr #31,d0 | clear sign bits
+ bclr #31,d2 |
+| We know that one of them is either NaN of +/-INFINITY
+| Check for NaN (if either one is NaN return NaN)
+ cmpl d4,d0 | check first a (d0)
+ bhi Ld$inop | if d0 > 0x7ff00000 or equal and
+ bne 2f
+ tstl d1 | d1 > 0, a is NaN
+ bne Ld$inop |
+2: cmpl d4,d2 | check now b (d1)
+ bhi Ld$inop |
+ bne 3f
+ tstl d3 |
+ bne Ld$inop |
+3:
+| Now comes the check for +/-INFINITY. We know that both are (maybe not
+| finite) numbers, but we have to check if both are infinite whether we
+| are adding or substracting them.
+ eorl d7,d6 | to check sign bits
+ bmi 1f
+ andl #0x80000000,d7 | get (common) sign bit
+ bra Ld$infty
+1:
+| We know one (or both) are infinite, so we test for equality between the
+| two numbers (if they are equal they have to be infinite both, so we
+| return NaN).
+ cmpl d2,d0 | are both infinite?
+ bne 1f | if d0 <> d2 they are not equal
+ cmpl d3,d1 | if d0 == d2 test d3 and d1
+ beq Ld$inop | if equal return NaN
+1:
+ andl #0x80000000,d7 | get a's sign bit '
+ cmpl d4,d0 | test now for infinity
+ beq Ld$infty | if a is INFINITY return with this sign
+ bchg #31,d7 | else we know b is INFINITY and has
+ bra Ld$infty | the opposite sign
+
+|=============================================================================
+| __muldf3
+|=============================================================================
+
+| double __muldf3(double, double);
+SYM (__muldf3):
+ link a6,#0
+ moveml d2-d7,sp@-
+ movel a6@(8),d0 | get a into d0-d1
+ movel a6@(12),d1 |
+ movel a6@(16),d2 | and b into d2-d3
+ movel a6@(20),d3 |
+ movel d0,d7 | d7 will hold the sign of the product
+ eorl d2,d7 |
+ andl #0x80000000,d7 |
+ movel d7,a0 | save sign bit into a0
+ movel #0x7ff00000,d7 | useful constant (+INFINITY)
+ movel d7,d6 | another (mask for fraction)
+ notl d6 |
+ bclr #31,d0 | get rid of a's sign bit '
+ movel d0,d4 |
+ orl d1,d4 |
+ beq Lmuldf$a$0 | branch if a is zero
+ movel d0,d4 |
+ bclr #31,d2 | get rid of b's sign bit '
+ movel d2,d5 |
+ orl d3,d5 |
+ beq Lmuldf$b$0 | branch if b is zero
+ movel d2,d5 |
+ cmpl d7,d0 | is a big?
+ bhi Lmuldf$inop | if a is NaN return NaN
+ beq Lmuldf$a$nf | we still have to check d1 and b ...
+ cmpl d7,d2 | now compare b with INFINITY
+ bhi Lmuldf$inop | is b NaN?
+ beq Lmuldf$b$nf | we still have to check d3 ...
+| Here we have both numbers finite and nonzero (and with no sign bit).
+| Now we get the exponents into d4 and d5.
+ andl d7,d4 | isolate exponent in d4
+ beq Lmuldf$a$den | if exponent is zero we have a denormalized
+ andl d6,d0 | isolate fraction
+ orl #0x00100000,d0 | and put hidden bit back
+ swap d4 | I like exponents in the first byte
+ lsrw #4,d4 |
+Lmuldf$1:
+ andl d7,d5 |
+ beq Lmuldf$b$den |
+ andl d6,d2 |
+ orl #0x00100000,d2 | and put hidden bit back
+ swap d5 |
+ lsrw #4,d5 |
+Lmuldf$2: |
+ addw d5,d4 | add exponents
+ subw #D_BIAS+1,d4 | and substract bias (plus one)
+
+| We are now ready to do the multiplication. The situation is as follows:
+| both a and b have bit 52 ( bit 20 of d0 and d2) set (even if they were
+| denormalized to start with!), which means that in the product bit 104
+| (which will correspond to bit 8 of the fourth long) is set.
+
+| Here we have to do the product.
+| To do it we have to juggle the registers back and forth, as there are not
+| enough to keep everything in them. So we use the address registers to keep
+| some intermediate data.
+
+ moveml a2-a3,sp@- | save a2 and a3 for temporary use
+ movel #0,a2 | a2 is a null register
+ movel d4,a3 | and a3 will preserve the exponent
+
+| First, shift d2-d3 so bit 20 becomes bit 31:
+ rorl #5,d2 | rotate d2 5 places right
+ swap d2 | and swap it
+ rorl #5,d3 | do the same thing with d3
+ swap d3 |
+ movew d3,d6 | get the rightmost 11 bits of d3
+ andw #0x07ff,d6 |
+ orw d6,d2 | and put them into d2
+ andw #0xf800,d3 | clear those bits in d3
+
+ movel d2,d6 | move b into d6-d7
+ movel d3,d7 | move a into d4-d5
+ movel d0,d4 | and clear d0-d1-d2-d3 (to put result)
+ movel d1,d5 |
+ movel #0,d3 |
+ movel d3,d2 |
+ movel d3,d1 |
+ movel d3,d0 |
+
+| We use a1 as counter:
+ movel #DBL_MANT_DIG-1,a1
+ exg d7,a1
+
+1: exg d7,a1 | put counter back in a1
+ addl d3,d3 | shift sum once left
+ addxl d2,d2 |
+ addxl d1,d1 |
+ addxl d0,d0 |
+ addl d7,d7 |
+ addxl d6,d6 |
+ bcc 2f | if bit clear skip the following
+ exg d7,a2 |
+ addl d5,d3 | else add a to the sum
+ addxl d4,d2 |
+ addxl d7,d1 |
+ addxl d7,d0 |
+ exg d7,a2 |
+2: exg d7,a1 | put counter in d7
+ dbf d7,1b | decrement and branch
+
+ movel a3,d4 | restore exponent
+ moveml sp@+,a2-a3
+
+| Now we have the product in d0-d1-d2-d3, with bit 8 of d0 set. The
+| first thing to do now is to normalize it so bit 8 becomes bit
+| DBL_MANT_DIG-32 (to do the rounding); later we will shift right.
+ swap d0
+ swap d1
+ movew d1,d0
+ swap d2
+ movew d2,d1
+ swap d3
+ movew d3,d2
+ movew #0,d3
+ lsrl #1,d0
+ roxrl #1,d1
+ roxrl #1,d2
+ roxrl #1,d3
+ lsrl #1,d0
+ roxrl #1,d1
+ roxrl #1,d2
+ roxrl #1,d3
+ lsrl #1,d0
+ roxrl #1,d1
+ roxrl #1,d2
+ roxrl #1,d3
+
+| Now round, check for over- and underflow, and exit.
+ movel a0,d7 | get sign bit back into d7
+ movew #MULTIPLY,d5
+
+ btst #DBL_MANT_DIG+1-32,d0
+ beq Lround$exit
+ lsrl #1,d0
+ roxrl #1,d1
+ addw #1,d4
+ bra Lround$exit
+
+Lmuldf$inop:
+ movew #MULTIPLY,d5
+ bra Ld$inop
+
+Lmuldf$b$nf:
+ movew #MULTIPLY,d5
+ movel a0,d7 | get sign bit back into d7
+ tstl d3 | we know d2 == 0x7ff00000, so check d3
+ bne Ld$inop | if d3 <> 0 b is NaN
+ bra Ld$overflow | else we have overflow (since a is finite)
+
+Lmuldf$a$nf:
+ movew #MULTIPLY,d5
+ movel a0,d7 | get sign bit back into d7
+ tstl d1 | we know d0 == 0x7ff00000, so check d1
+ bne Ld$inop | if d1 <> 0 a is NaN
+ bra Ld$overflow | else signal overflow
+
+| If either number is zero return zero, unless the other is +/-INFINITY or
+| NaN, in which case we return NaN.
+Lmuldf$b$0:
+ movew #MULTIPLY,d5
+ exg d2,d0 | put b (==0) into d0-d1
+ exg d3,d1 | and a (with sign bit cleared) into d2-d3
+ bra 1f
+Lmuldf$a$0:
+ movel a6@(16),d2 | put b into d2-d3 again
+ movel a6@(20),d3 |
+ bclr #31,d2 | clear sign bit
+1: cmpl #0x7ff00000,d2 | check for non-finiteness
+ bge Ld$inop | in case NaN or +/-INFINITY return NaN
+ lea SYM (_fpCCR),a0
+ movew #0,a0@
+ moveml sp@+,d2-d7
+ unlk a6
+ rts
+
+| If a number is denormalized we put an exponent of 1 but do not put the
+| hidden bit back into the fraction; instead we shift left until bit 21
+| (the hidden bit) is set, adjusting the exponent accordingly. We do this
+| to ensure that the product of the fractions is close to 1.
+Lmuldf$a$den:
+ movel #1,d4
+ andl d6,d0
+1: addl d1,d1 | shift a left until bit 20 is set
+ addxl d0,d0 |
+ subw #1,d4 | and adjust exponent
+ btst #20,d0 |
+ bne Lmuldf$1 |
+ bra 1b
+
+Lmuldf$b$den:
+ movel #1,d5
+ andl d6,d2
+1: addl d3,d3 | shift b left until bit 20 is set
+ addxl d2,d2 |
+ subw #1,d5 | and adjust exponent
+ btst #20,d2 |
+ bne Lmuldf$2 |
+ bra 1b
+
+
+|=============================================================================
+| __divdf3
+|=============================================================================
+
+| double __divdf3(double, double);
+SYM (__divdf3):
+ link a6,#0
+ moveml d2-d7,sp@-
+ movel a6@(8),d0 | get a into d0-d1
+ movel a6@(12),d1 |
+ movel a6@(16),d2 | and b into d2-d3
+ movel a6@(20),d3 |
+ movel d0,d7 | d7 will hold the sign of the result
+ eorl d2,d7 |
+ andl #0x80000000,d7 |
+ movel d7,a0 | save sign into a0
+ movel #0x7ff00000,d7 | useful constant (+INFINITY)
+ movel d7,d6 | another (mask for fraction)
+ notl d6 |
+ bclr #31,d0 | get rid of a's sign bit '
+ movel d0,d4 |
+ orl d1,d4 |
+ beq Ldivdf$a$0 | branch if a is zero
+ movel d0,d4 |
+ bclr #31,d2 | get rid of b's sign bit '
+ movel d2,d5 |
+ orl d3,d5 |
+ beq Ldivdf$b$0 | branch if b is zero
+ movel d2,d5
+ cmpl d7,d0 | is a big?
+ bhi Ldivdf$inop | if a is NaN return NaN
+ beq Ldivdf$a$nf | if d0 == 0x7ff00000 we check d1
+ cmpl d7,d2 | now compare b with INFINITY
+ bhi Ldivdf$inop | if b is NaN return NaN
+ beq Ldivdf$b$nf | if d2 == 0x7ff00000 we check d3
+| Here we have both numbers finite and nonzero (and with no sign bit).
+| Now we get the exponents into d4 and d5 and normalize the numbers to
+| ensure that the ratio of the fractions is around 1. We do this by
+| making sure that both numbers have bit #DBL_MANT_DIG-32-1 (hidden bit)
+| set, even if they were denormalized to start with.
+| Thus, the result will satisfy: 2 > result > 1/2.
+ andl d7,d4 | and isolate exponent in d4
+ beq Ldivdf$a$den | if exponent is zero we have a denormalized
+ andl d6,d0 | and isolate fraction
+ orl #0x00100000,d0 | and put hidden bit back
+ swap d4 | I like exponents in the first byte
+ lsrw #4,d4 |
+Ldivdf$1: |
+ andl d7,d5 |
+ beq Ldivdf$b$den |
+ andl d6,d2 |
+ orl #0x00100000,d2 |
+ swap d5 |
+ lsrw #4,d5 |
+Ldivdf$2: |
+ subw d5,d4 | substract exponents
+ addw #D_BIAS,d4 | and add bias
+
+| We are now ready to do the division. We have prepared things in such a way
+| that the ratio of the fractions will be less than 2 but greater than 1/2.
+| At this point the registers in use are:
+| d0-d1 hold a (first operand, bit DBL_MANT_DIG-32=0, bit
+| DBL_MANT_DIG-1-32=1)
+| d2-d3 hold b (second operand, bit DBL_MANT_DIG-32=1)
+| d4 holds the difference of the exponents, corrected by the bias
+| a0 holds the sign of the ratio
+
+| To do the rounding correctly we need to keep information about the
+| nonsignificant bits. One way to do this would be to do the division
+| using four registers; another is to use two registers (as originally
+| I did), but use a sticky bit to preserve information about the
+| fractional part. Note that we can keep that info in a1, which is not
+| used.
+ movel #0,d6 | d6-d7 will hold the result
+ movel d6,d7 |
+ movel #0,a1 | and a1 will hold the sticky bit
+
+ movel #DBL_MANT_DIG-32+1,d5
+
+1: cmpl d0,d2 | is a < b?
+ bhi 3f | if b > a skip the following
+ beq 4f | if d0==d2 check d1 and d3
+2: subl d3,d1 |
+ subxl d2,d0 | a <-- a - b
+ bset d5,d6 | set the corresponding bit in d6
+3: addl d1,d1 | shift a by 1
+ addxl d0,d0 |
+ dbra d5,1b | and branch back
+ bra 5f
+4: cmpl d1,d3 | here d0==d2, so check d1 and d3
+ bhi 3b | if d1 > d2 skip the substraction
+ bra 2b | else go do it
+5:
+| Here we have to start setting the bits in the second long.
+ movel #31,d5 | again d5 is counter
+
+1: cmpl d0,d2 | is a < b?
+ bhi 3f | if b > a skip the following
+ beq 4f | if d0==d2 check d1 and d3
+2: subl d3,d1 |
+ subxl d2,d0 | a <-- a - b
+ bset d5,d7 | set the corresponding bit in d7
+3: addl d1,d1 | shift a by 1
+ addxl d0,d0 |
+ dbra d5,1b | and branch back
+ bra 5f
+4: cmpl d1,d3 | here d0==d2, so check d1 and d3
+ bhi 3b | if d1 > d2 skip the substraction
+ bra 2b | else go do it
+5:
+| Now go ahead checking until we hit a one, which we store in d2.
+ movel #DBL_MANT_DIG,d5
+1: cmpl d2,d0 | is a < b?
+ bhi 4f | if b < a, exit
+ beq 3f | if d0==d2 check d1 and d3
+2: addl d1,d1 | shift a by 1
+ addxl d0,d0 |
+ dbra d5,1b | and branch back
+ movel #0,d2 | here no sticky bit was found
+ movel d2,d3
+ bra 5f
+3: cmpl d1,d3 | here d0==d2, so check d1 and d3
+ bhi 2b | if d1 > d2 go back
+4:
+| Here put the sticky bit in d2-d3 (in the position which actually corresponds
+| to it; if you don't do this the algorithm loses in some cases). '
+ movel #0,d2
+ movel d2,d3
+ subw #DBL_MANT_DIG,d5
+ addw #63,d5
+ cmpw #31,d5
+ bhi 2f
+1: bset d5,d3
+ bra 5f
+ subw #32,d5
+2: bset d5,d2
+5:
+| Finally we are finished! Move the longs in the address registers to
+| their final destination:
+ movel d6,d0
+ movel d7,d1
+ movel #0,d3
+
+| Here we have finished the division, with the result in d0-d1-d2-d3, with
+| 2^21 <= d6 < 2^23. Thus bit 23 is not set, but bit 22 could be set.
+| If it is not, then definitely bit 21 is set. Normalize so bit 22 is
+| not set:
+ btst #DBL_MANT_DIG-32+1,d0
+ beq 1f
+ lsrl #1,d0
+ roxrl #1,d1
+ roxrl #1,d2
+ roxrl #1,d3
+ addw #1,d4
+1:
+| Now round, check for over- and underflow, and exit.
+ movel a0,d7 | restore sign bit to d7
+ movew #DIVIDE,d5
+ bra Lround$exit
+
+Ldivdf$inop:
+ movew #DIVIDE,d5
+ bra Ld$inop
+
+Ldivdf$a$0:
+| If a is zero check to see whether b is zero also. In that case return
+| NaN; then check if b is NaN, and return NaN also in that case. Else
+| return zero.
+ movew #DIVIDE,d5
+ bclr #31,d2 |
+ movel d2,d4 |
+ orl d3,d4 |
+ beq Ld$inop | if b is also zero return NaN
+ cmpl #0x7ff00000,d2 | check for NaN
+ bhi Ld$inop |
+ blt 1f |
+ tstl d3 |
+ bne Ld$inop |
+1: movel #0,d0 | else return zero
+ movel d0,d1 |
+ lea SYM (_fpCCR),a0 | clear exception flags
+ movew #0,a0@ |
+ moveml sp@+,d2-d7 |
+ unlk a6 |
+ rts |
+
+Ldivdf$b$0:
+ movew #DIVIDE,d5
+| If we got here a is not zero. Check if a is NaN; in that case return NaN,
+| else return +/-INFINITY. Remember that a is in d0 with the sign bit
+| cleared already.
+ movel a0,d7 | put a's sign bit back in d7 '
+ cmpl #0x7ff00000,d0 | compare d0 with INFINITY
+ bhi Ld$inop | if larger it is NaN
+ tstl d1 |
+ bne Ld$inop |
+ bra Ld$div$0 | else signal DIVIDE_BY_ZERO
+
+Ldivdf$b$nf:
+ movew #DIVIDE,d5
+| If d2 == 0x7ff00000 we have to check d3.
+ tstl d3 |
+ bne Ld$inop | if d3 <> 0, b is NaN
+ bra Ld$underflow | else b is +/-INFINITY, so signal underflow
+
+Ldivdf$a$nf:
+ movew #DIVIDE,d5
+| If d0 == 0x7ff00000 we have to check d1.
+ tstl d1 |
+ bne Ld$inop | if d1 <> 0, a is NaN
+| If a is INFINITY we have to check b
+ cmpl d7,d2 | compare b with INFINITY
+ bge Ld$inop | if b is NaN or INFINITY return NaN
+ tstl d3 |
+ bne Ld$inop |
+ bra Ld$overflow | else return overflow
+
+| If a number is denormalized we put an exponent of 1 but do not put the
+| bit back into the fraction.
+Ldivdf$a$den:
+ movel #1,d4
+ andl d6,d0
+1: addl d1,d1 | shift a left until bit 20 is set
+ addxl d0,d0
+ subw #1,d4 | and adjust exponent
+ btst #DBL_MANT_DIG-32-1,d0
+ bne Ldivdf$1
+ bra 1b
+
+Ldivdf$b$den:
+ movel #1,d5
+ andl d6,d2
+1: addl d3,d3 | shift b left until bit 20 is set
+ addxl d2,d2
+ subw #1,d5 | and adjust exponent
+ btst #DBL_MANT_DIG-32-1,d2
+ bne Ldivdf$2
+ bra 1b
+
+Lround$exit:
+| This is a common exit point for __muldf3 and __divdf3. When they enter
+| this point the sign of the result is in d7, the result in d0-d1, normalized
+| so that 2^21 <= d0 < 2^22, and the exponent is in the lower byte of d4.
+
+| First check for underlow in the exponent:
+ cmpw #-DBL_MANT_DIG-1,d4
+ blt Ld$underflow
+| It could happen that the exponent is less than 1, in which case the
+| number is denormalized. In this case we shift right and adjust the
+| exponent until it becomes 1 or the fraction is zero (in the latter case
+| we signal underflow and return zero).
+ movel d7,a0 |
+ movel #0,d6 | use d6-d7 to collect bits flushed right
+ movel d6,d7 | use d6-d7 to collect bits flushed right
+ cmpw #1,d4 | if the exponent is less than 1 we
+ bge 2f | have to shift right (denormalize)
+1: addw #1,d4 | adjust the exponent
+ lsrl #1,d0 | shift right once
+ roxrl #1,d1 |
+ roxrl #1,d2 |
+ roxrl #1,d3 |
+ roxrl #1,d6 |
+ roxrl #1,d7 |
+ cmpw #1,d4 | is the exponent 1 already?
+ beq 2f | if not loop back
+ bra 1b |
+ bra Ld$underflow | safety check, shouldn't execute '
+2: orl d6,d2 | this is a trick so we don't lose '
+ orl d7,d3 | the bits which were flushed right
+ movel a0,d7 | get back sign bit into d7
+| Now call the rounding routine (which takes care of denormalized numbers):
+ lea Lround$0,a0 | to return from rounding routine
+ lea SYM (_fpCCR),a1 | check the rounding mode
+ movew a1@(6),d6 | rounding mode in d6
+ beq Lround$to$nearest
+ cmpw #ROUND_TO_PLUS,d6
+ bhi Lround$to$minus
+ blt Lround$to$zero
+ bra Lround$to$plus
+Lround$0:
+| Here we have a correctly rounded result (either normalized or denormalized).
+
+| Here we should have either a normalized number or a denormalized one, and
+| the exponent is necessarily larger or equal to 1 (so we don't have to '
+| check again for underflow!). We have to check for overflow or for a
+| denormalized number (which also signals underflow).
+| Check for overflow (i.e., exponent >= 0x7ff).
+ cmpw #0x07ff,d4
+ bge Ld$overflow
+| Now check for a denormalized number (exponent==0):
+ movew d4,d4
+ beq Ld$den
+1:
+| Put back the exponents and sign and return.
+ lslw #4,d4 | exponent back to fourth byte
+ bclr #DBL_MANT_DIG-32-1,d0
+ swap d0 | and put back exponent
+ orw d4,d0 |
+ swap d0 |
+ orl d7,d0 | and sign also
+
+ lea SYM (_fpCCR),a0
+ movew #0,a0@
+ moveml sp@+,d2-d7
+ unlk a6
+ rts
+
+|=============================================================================
+| __negdf2
+|=============================================================================
+
+| double __negdf2(double, double);
+SYM (__negdf2):
+ link a6,#0
+ moveml d2-d7,sp@-
+ movew #NEGATE,d5
+ movel a6@(8),d0 | get number to negate in d0-d1
+ movel a6@(12),d1 |
+ bchg #31,d0 | negate
+ movel d0,d2 | make a positive copy (for the tests)
+ bclr #31,d2 |
+ movel d2,d4 | check for zero
+ orl d1,d4 |
+ beq 2f | if zero (either sign) return +zero
+ cmpl #0x7ff00000,d2 | compare to +INFINITY
+ blt 1f | if finite, return
+ bhi Ld$inop | if larger (fraction not zero) is NaN
+ tstl d1 | if d2 == 0x7ff00000 check d1
+ bne Ld$inop |
+ movel d0,d7 | else get sign and return INFINITY
+ andl #0x80000000,d7
+ bra Ld$infty
+1: lea SYM (_fpCCR),a0
+ movew #0,a0@
+ moveml sp@+,d2-d7
+ unlk a6
+ rts
+2: bclr #31,d0
+ bra 1b
+
+|=============================================================================
+| __cmpdf2
+|=============================================================================
+
+GREATER = 1
+LESS = -1
+EQUAL = 0
+
+| int __cmpdf2(double, double);
+SYM (__cmpdf2):
+ link a6,#0
+ moveml d2-d7,sp@- | save registers
+ movew #COMPARE,d5
+ movel a6@(8),d0 | get first operand
+ movel a6@(12),d1 |
+ movel a6@(16),d2 | get second operand
+ movel a6@(20),d3 |
+| First check if a and/or b are (+/-) zero and in that case clear
+| the sign bit.
+ movel d0,d6 | copy signs into d6 (a) and d7(b)
+ bclr #31,d0 | and clear signs in d0 and d2
+ movel d2,d7 |
+ bclr #31,d2 |
+ cmpl #0x7fff0000,d0 | check for a == NaN
+ bhi Ld$inop | if d0 > 0x7ff00000, a is NaN
+ beq Lcmpdf$a$nf | if equal can be INFINITY, so check d1
+ movel d0,d4 | copy into d4 to test for zero
+ orl d1,d4 |
+ beq Lcmpdf$a$0 |
+Lcmpdf$0:
+ cmpl #0x7fff0000,d2 | check for b == NaN
+ bhi Ld$inop | if d2 > 0x7ff00000, b is NaN
+ beq Lcmpdf$b$nf | if equal can be INFINITY, so check d3
+ movel d2,d4 |
+ orl d3,d4 |
+ beq Lcmpdf$b$0 |
+Lcmpdf$1:
+| Check the signs
+ eorl d6,d7
+ bpl 1f
+| If the signs are not equal check if a >= 0
+ tstl d6
+ bpl Lcmpdf$a$gt$b | if (a >= 0 && b < 0) => a > b
+ bmi Lcmpdf$b$gt$a | if (a < 0 && b >= 0) => a < b
+1:
+| If the signs are equal check for < 0
+ tstl d6
+ bpl 1f
+| If both are negative exchange them
+ exg d0,d2
+ exg d1,d3
+1:
+| Now that they are positive we just compare them as longs (does this also
+| work for denormalized numbers?).
+ cmpl d0,d2
+ bhi Lcmpdf$b$gt$a | |b| > |a|
+ bne Lcmpdf$a$gt$b | |b| < |a|
+| If we got here d0 == d2, so we compare d1 and d3.
+ cmpl d1,d3
+ bhi Lcmpdf$b$gt$a | |b| > |a|
+ bne Lcmpdf$a$gt$b | |b| < |a|
+| If we got here a == b.
+ movel #EQUAL,d0
+ moveml sp@+,d2-d7 | put back the registers
+ unlk a6
+ rts
+Lcmpdf$a$gt$b:
+ movel #GREATER,d0
+ moveml sp@+,d2-d7 | put back the registers
+ unlk a6
+ rts
+Lcmpdf$b$gt$a:
+ movel #LESS,d0
+ moveml sp@+,d2-d7 | put back the registers
+ unlk a6
+ rts
+
+Lcmpdf$a$0:
+ bclr #31,d6
+ bra Lcmpdf$0
+Lcmpdf$b$0:
+ bclr #31,d7
+ bra Lcmpdf$1
+
+Lcmpdf$a$nf:
+ tstl d1
+ bne Ld$inop
+ bra Lcmpdf$0
+
+Lcmpdf$b$nf:
+ tstl d3
+ bne Ld$inop
+ bra Lcmpdf$1
+
+|=============================================================================
+| rounding routines
+|=============================================================================
+
+| The rounding routines expect the number to be normalized in registers
+| d0-d1-d2-d3, with the exponent in register d4. They assume that the
+| exponent is larger or equal to 1. They return a properly normalized number
+| if possible, and a denormalized number otherwise. The exponent is returned
+| in d4.
+
+Lround$to$nearest:
+| We now normalize as suggested by D. Knuth ("Seminumerical Algorithms"):
+| Here we assume that the exponent is not too small (this should be checked
+| before entering the rounding routine), but the number could be denormalized.
+
+| Check for denormalized numbers:
+1: btst #DBL_MANT_DIG-32,d0
+ bne 2f | if set the number is normalized
+| Normalize shifting left until bit #DBL_MANT_DIG-32 is set or the exponent
+| is one (remember that a denormalized number corresponds to an
+| exponent of -D_BIAS+1).
+ cmpw #1,d4 | remember that the exponent is at least one
+ beq 2f | an exponent of one means denormalized
+ addl d3,d3 | else shift and adjust the exponent
+ addxl d2,d2 |
+ addxl d1,d1 |
+ addxl d0,d0 |
+ dbra d4,1b |
+2:
+| Now round: we do it as follows: after the shifting we can write the
+| fraction part as f + delta, where 1 < f < 2^25, and 0 <= delta <= 2.
+| If delta < 1, do nothing. If delta > 1, add 1 to f.
+| If delta == 1, we make sure the rounded number will be even (odd?)
+| (after shifting).
+ btst #0,d1 | is delta < 1?
+ beq 2f | if so, do not do anything
+ orl d2,d3 | is delta == 1?
+ bne 1f | if so round to even
+ movel d1,d3 |
+ andl #2,d3 | bit 1 is the last significant bit
+ movel #0,d2 |
+ addl d3,d1 |
+ addxl d2,d0 |
+ bra 2f |
+1: movel #1,d3 | else add 1
+ movel #0,d2 |
+ addl d3,d1 |
+ addxl d2,d0
+| Shift right once (because we used bit #DBL_MANT_DIG-32!).
+2: lsrl #1,d0
+ roxrl #1,d1
+
+| Now check again bit #DBL_MANT_DIG-32 (rounding could have produced a
+| 'fraction overflow' ...).
+ btst #DBL_MANT_DIG-32,d0
+ beq 1f
+ lsrl #1,d0
+ roxrl #1,d1
+ addw #1,d4
+1:
+| If bit #DBL_MANT_DIG-32-1 is clear we have a denormalized number, so we
+| have to put the exponent to zero and return a denormalized number.
+ btst #DBL_MANT_DIG-32-1,d0
+ beq 1f
+ jmp a0@
+1: movel #0,d4
+ jmp a0@
+
+Lround$to$zero:
+Lround$to$plus:
+Lround$to$minus:
+ jmp a0@
+#endif /* L_double */
+
+#ifdef L_float
+
+ .globl SYM (_fpCCR)
+ .globl $_exception_handler
+
+QUIET_NaN = 0xffffffff
+SIGNL_NaN = 0x7f800001
+INFINITY = 0x7f800000
+
+F_MAX_EXP = 0xff
+F_BIAS = 126
+FLT_MAX_EXP = F_MAX_EXP - F_BIAS
+FLT_MIN_EXP = 1 - F_BIAS
+FLT_MANT_DIG = 24
+
+INEXACT_RESULT = 0x0001
+UNDERFLOW = 0x0002
+OVERFLOW = 0x0004
+DIVIDE_BY_ZERO = 0x0008
+INVALID_OPERATION = 0x0010
+
+SINGLE_FLOAT = 1
+
+NOOP = 0
+ADD = 1
+MULTIPLY = 2
+DIVIDE = 3
+NEGATE = 4
+COMPARE = 5
+EXTENDSFDF = 6
+TRUNCDFSF = 7
+
+UNKNOWN = -1
+ROUND_TO_NEAREST = 0 | round result to nearest representable value
+ROUND_TO_ZERO = 1 | round result towards zero
+ROUND_TO_PLUS = 2 | round result towards plus infinity
+ROUND_TO_MINUS = 3 | round result towards minus infinity
+
+| Entry points:
+
+ .globl SYM (__addsf3)
+ .globl SYM (__subsf3)
+ .globl SYM (__mulsf3)
+ .globl SYM (__divsf3)
+ .globl SYM (__negsf2)
+ .globl SYM (__cmpsf2)
+
+| These are common routines to return and signal exceptions.
+
+ .text
+ .even
+
+Lf$den:
+| Return and signal a denormalized number
+ orl d7,d0
+ movew #UNDERFLOW,d7
+ orw #INEXACT_RESULT,d7
+ movew #SINGLE_FLOAT,d6
+ jmp $_exception_handler
+
+Lf$infty:
+Lf$overflow:
+| Return a properly signed INFINITY and set the exception flags
+ movel #INFINITY,d0
+ orl d7,d0
+ movew #OVERFLOW,d7
+ orw #INEXACT_RESULT,d7
+ movew #SINGLE_FLOAT,d6
+ jmp $_exception_handler
+
+Lf$underflow:
+| Return 0 and set the exception flags
+ movel #0,d0
+ movew #UNDERFLOW,d7
+ orw #INEXACT_RESULT,d7
+ movew #SINGLE_FLOAT,d6
+ jmp $_exception_handler
+
+Lf$inop:
+| Return a quiet NaN and set the exception flags
+ movel #QUIET_NaN,d0
+ movew #INVALID_OPERATION,d7
+ orw #INEXACT_RESULT,d7
+ movew #SINGLE_FLOAT,d6
+ jmp $_exception_handler
+
+Lf$div$0:
+| Return a properly signed INFINITY and set the exception flags
+ movel #INFINITY,d0
+ orl d7,d0
+ movew #DIVIDE_BY_ZERO,d7
+ orw #INEXACT_RESULT,d7
+ movew #SINGLE_FLOAT,d6
+ jmp $_exception_handler
+
+|=============================================================================
+|=============================================================================
+| single precision routines
+|=============================================================================
+|=============================================================================
+
+| A single precision floating point number (float) has the format:
+|
+| struct _float {
+| unsigned int sign : 1; /* sign bit */
+| unsigned int exponent : 8; /* exponent, shifted by 126 */
+| unsigned int fraction : 23; /* fraction */
+| } float;
+|
+| Thus sizeof(float) = 4 (32 bits).
+|
+| All the routines are callable from C programs, and return the result
+| in the single register d0. They also preserve all registers except
+| d0-d1 and a0-a1.
+
+|=============================================================================
+| __subsf3
+|=============================================================================
+
+| float __subsf3(float, float);
+SYM (__subsf3):
+ bchg #31,sp@(8) | change sign of second operand
+ | and fall through
+|=============================================================================
+| __addsf3
+|=============================================================================
+
+| float __addsf3(float, float);
+SYM (__addsf3):
+ link a6,#0 | everything will be done in registers
+ moveml d2-d7,sp@- | save all data registers but d0-d1
+ movel a6@(8),d0 | get first operand
+ movel a6@(12),d1 | get second operand
+ movel d0,d6 | get d0's sign bit '
+ addl d0,d0 | check and clear sign bit of a
+ beq Laddsf$b | if zero return second operand
+ movel d1,d7 | save b's sign bit '
+ addl d1,d1 | get rid of sign bit
+ beq Laddsf$a | if zero return first operand
+
+ movel d6,a0 | save signs in address registers
+ movel d7,a1 | so we can use d6 and d7
+
+| Get the exponents and check for denormalized and/or infinity.
+
+ movel #0x00ffffff,d4 | mask to get fraction
+ movel #0x01000000,d5 | mask to put hidden bit back
+
+ movel d0,d6 | save a to get exponent
+ andl d4,d0 | get fraction in d0
+ notl d4 | make d4 into a mask for the exponent
+ andl d4,d6 | get exponent in d6
+ beq Laddsf$a$den | branch if a is denormalized
+ cmpl d4,d6 | check for INFINITY or NaN
+ beq Laddsf$nf
+ swap d6 | put exponent into first word
+ orl d5,d0 | and put hidden bit back
+Laddsf$1:
+| Now we have a's exponent in d6 (second byte) and the mantissa in d0. '
+ movel d1,d7 | get exponent in d7
+ andl d4,d7 |
+ beq Laddsf$b$den | branch if b is denormalized
+ cmpl d4,d7 | check for INFINITY or NaN
+ beq Laddsf$nf
+ swap d7 | put exponent into first word
+ notl d4 | make d4 into a mask for the fraction
+ andl d4,d1 | get fraction in d1
+ orl d5,d1 | and put hidden bit back
+Laddsf$2:
+| Now we have b's exponent in d7 (second byte) and the mantissa in d1. '
+
+| Note that the hidden bit corresponds to bit #FLT_MANT_DIG-1, and we
+| shifted right once, so bit #FLT_MANT_DIG is set (so we have one extra
+| bit).
+
+ movel d1,d2 | move b to d2, since we want to use
+ | two registers to do the sum
+ movel #0,d1 | and clear the new ones
+ movel d1,d3 |
+
+| Here we shift the numbers in registers d0 and d1 so the exponents are the
+| same, and put the largest exponent in d6. Note that we are using two
+| registers for each number (see the discussion by D. Knuth in "Seminumerical
+| Algorithms").
+ cmpw d6,d7 | compare exponents
+ beq Laddsf$3 | if equal don't shift '
+ bhi 5f | branch if second exponent largest
+1:
+ subl d6,d7 | keep the largest exponent
+ negl d7
+ lsrw #8,d7 | put difference in lower byte
+| if difference is too large we don't shift (actually, we can just exit) '
+ cmpw #FLT_MANT_DIG+2,d7
+ bge Laddsf$b$small
+ cmpw #16,d7 | if difference >= 16 swap
+ bge 4f
+2:
+ subw #1,d7
+3: lsrl #1,d2 | shift right second operand
+ roxrl #1,d3
+ dbra d7,3b
+ bra Laddsf$3
+4:
+ movew d2,d3
+ swap d3
+ movew d3,d2
+ swap d2
+ subw #16,d7
+ bra 2b
+5:
+ exg d6,d7 | exchange the exponents
+ subl d6,d7 | keep the largest exponent
+ negl d7 |
+ lsrw #8,d7 | put difference in lower byte
+| if difference is too large we don't shift (and exit!) '
+ cmpw #FLT_MANT_DIG+2,d7
+ bge Laddsf$a$small
+ cmpw #16,d7 | if difference >= 16 swap
+ bge 8f
+6:
+ subw #1,d7
+7: lsrl #1,d0 | shift right first operand
+ roxrl #1,d1
+ dbra d7,7b
+ bra Laddsf$3
+8:
+ movew d0,d1
+ swap d1
+ movew d1,d0
+ swap d0
+ subw #16,d7
+ bra 6b
+
+| Now we have a in d0-d1, b in d2-d3, and the largest exponent in d6 (the
+| signs are stored in a0 and a1).
+
+Laddsf$3:
+| Here we have to decide whether to add or substract the numbers
+ exg d6,a0 | get signs back
+ exg d7,a1 | and save the exponents
+ eorl d6,d7 | combine sign bits
+ bmi Lsubsf$0 | if negative a and b have opposite
+ | sign so we actually substract the
+ | numbers
+
+| Here we have both positive or both negative
+ exg d6,a0 | now we have the exponent in d6
+ movel a0,d7 | and sign in d7
+ andl #0x80000000,d7 |
+| Here we do the addition.
+ addl d3,d1
+ addxl d2,d0
+| Note: now we have d2, d3, d4 and d5 to play with!
+
+| Put the exponent, in the first byte, in d2, to use the "standard" rounding
+| routines:
+ movel d6,d2
+ lsrw #8,d2
+
+| Before rounding normalize so bit #FLT_MANT_DIG is set (we will consider
+| the case of denormalized numbers in the rounding routine itself).
+| As in the addition (not in the substraction!) we could have set
+| one more bit we check this:
+ btst #FLT_MANT_DIG+1,d0
+ beq 1f
+ lsrl #1,d0
+ roxrl #1,d1
+ addl #1,d2
+1:
+ lea Laddsf$4,a0 | to return from rounding routine
+ lea SYM (_fpCCR),a1 | check the rounding mode
+ movew a1@(6),d6 | rounding mode in d6
+ beq Lround$to$nearest
+ cmpw #ROUND_TO_PLUS,d6
+ bhi Lround$to$minus
+ blt Lround$to$zero
+ bra Lround$to$plus
+Laddsf$4:
+| Put back the exponent, but check for overflow.
+ cmpw #0xff,d2
+ bhi 1f
+ bclr #FLT_MANT_DIG-1,d0
+ lslw #7,d2
+ swap d2
+ orl d2,d0
+ bra Laddsf$ret
+1:
+ movew #ADD,d5
+ bra Lf$overflow
+
+Lsubsf$0:
+| We are here if a > 0 and b < 0 (sign bits cleared).
+| Here we do the substraction.
+ movel d6,d7 | put sign in d7
+ andl #0x80000000,d7 |
+
+ subl d3,d1 | result in d0-d1
+ subxl d2,d0 |
+ beq Laddsf$ret | if zero just exit
+ bpl 1f | if positive skip the following
+ bchg #31,d7 | change sign bit in d7
+ negl d1
+ negxl d0
+1:
+ exg d2,a0 | now we have the exponent in d2
+ lsrw #8,d2 | put it in the first byte
+
+| Now d0-d1 is positive and the sign bit is in d7.
+
+| Note that we do not have to normalize, since in the substraction bit
+| #FLT_MANT_DIG+1 is never set, and denormalized numbers are handled by
+| the rounding routines themselves.
+ lea Lsubsf$1,a0 | to return from rounding routine
+ lea SYM (_fpCCR),a1 | check the rounding mode
+ movew a1@(6),d6 | rounding mode in d6
+ beq Lround$to$nearest
+ cmpw #ROUND_TO_PLUS,d6
+ bhi Lround$to$minus
+ blt Lround$to$zero
+ bra Lround$to$plus
+Lsubsf$1:
+| Put back the exponent (we can't have overflow!). '
+ bclr #FLT_MANT_DIG-1,d0
+ lslw #7,d2
+ swap d2
+ orl d2,d0
+ bra Laddsf$ret
+
+| If one of the numbers was too small (difference of exponents >=
+| FLT_MANT_DIG+2) we return the other (and now we don't have to '
+| check for finiteness or zero).
+Laddsf$a$small:
+ movel a6@(12),d0
+ lea SYM (_fpCCR),a0
+ movew #0,a0@
+ moveml sp@+,d2-d7 | restore data registers
+ unlk a6 | and return
+ rts
+
+Laddsf$b$small:
+ movel a6@(8),d0
+ lea SYM (_fpCCR),a0
+ movew #0,a0@
+ moveml sp@+,d2-d7 | restore data registers
+ unlk a6 | and return
+ rts
+
+| If the numbers are denormalized remember to put exponent equal to 1.
+
+Laddsf$a$den:
+ movel d5,d6 | d5 contains 0x01000000
+ swap d6
+ bra Laddsf$1
+
+Laddsf$b$den:
+ movel d5,d7
+ swap d7
+ notl d4 | make d4 into a mask for the fraction
+ | (this was not executed after the jump)
+ bra Laddsf$2
+
+| The rest is mainly code for the different results which can be
+| returned (checking always for +/-INFINITY and NaN).
+
+Laddsf$b:
+| Return b (if a is zero).
+ movel a6@(12),d0
+ bra 1f
+Laddsf$a:
+| Return a (if b is zero).
+ movel a6@(8),d0
+1:
+ movew #ADD,d5
+| We have to check for NaN and +/-infty.
+ movel d0,d7
+ andl #0x80000000,d7 | put sign in d7
+ bclr #31,d0 | clear sign
+ cmpl #INFINITY,d0 | check for infty or NaN
+ bge 2f
+ movel d0,d0 | check for zero (we do this because we don't '
+ bne Laddsf$ret | want to return -0 by mistake
+ bclr #31,d7 | if zero be sure to clear sign
+ bra Laddsf$ret | if everything OK just return
+2:
+| The value to be returned is either +/-infty or NaN
+ andl #0x007fffff,d0 | check for NaN
+ bne Lf$inop | if mantissa not zero is NaN
+ bra Lf$infty
+
+Laddsf$ret:
+| Normal exit (a and b nonzero, result is not NaN nor +/-infty).
+| We have to clear the exception flags (just the exception type).
+ lea SYM (_fpCCR),a0
+ movew #0,a0@
+ orl d7,d0 | put sign bit
+ moveml sp@+,d2-d7 | restore data registers
+ unlk a6 | and return
+ rts
+
+Laddsf$ret$den:
+| Return a denormalized number (for addition we don't signal underflow) '
+ lsrl #1,d0 | remember to shift right back once
+ bra Laddsf$ret | and return
+
+| Note: when adding two floats of the same sign if either one is
+| NaN we return NaN without regard to whether the other is finite or
+| not. When substracting them (i.e., when adding two numbers of
+| opposite signs) things are more complicated: if both are INFINITY
+| we return NaN, if only one is INFINITY and the other is NaN we return
+| NaN, but if it is finite we return INFINITY with the corresponding sign.
+
+Laddsf$nf:
+ movew #ADD,d5
+| This could be faster but it is not worth the effort, since it is not
+| executed very often. We sacrifice speed for clarity here.
+ movel a6@(8),d0 | get the numbers back (remember that we
+ movel a6@(12),d1 | did some processing already)
+ movel #INFINITY,d4 | useful constant (INFINITY)
+ movel d0,d2 | save sign bits
+ movel d1,d3
+ bclr #31,d0 | clear sign bits
+ bclr #31,d1
+| We know that one of them is either NaN of +/-INFINITY
+| Check for NaN (if either one is NaN return NaN)
+ cmpl d4,d0 | check first a (d0)
+ bhi Lf$inop
+ cmpl d4,d1 | check now b (d1)
+ bhi Lf$inop
+| Now comes the check for +/-INFINITY. We know that both are (maybe not
+| finite) numbers, but we have to check if both are infinite whether we
+| are adding or substracting them.
+ eorl d3,d2 | to check sign bits
+ bmi 1f
+ movel d0,d7
+ andl #0x80000000,d7 | get (common) sign bit
+ bra Lf$infty
+1:
+| We know one (or both) are infinite, so we test for equality between the
+| two numbers (if they are equal they have to be infinite both, so we
+| return NaN).
+ cmpl d1,d0 | are both infinite?
+ beq Lf$inop | if so return NaN
+
+ movel d0,d7
+ andl #0x80000000,d7 | get a's sign bit '
+ cmpl d4,d0 | test now for infinity
+ beq Lf$infty | if a is INFINITY return with this sign
+ bchg #31,d7 | else we know b is INFINITY and has
+ bra Lf$infty | the opposite sign
+
+|=============================================================================
+| __mulsf3
+|=============================================================================
+
+| float __mulsf3(float, float);
+SYM (__mulsf3):
+ link a6,#0
+ moveml d2-d7,sp@-
+ movel a6@(8),d0 | get a into d0
+ movel a6@(12),d1 | and b into d1
+ movel d0,d7 | d7 will hold the sign of the product
+ eorl d1,d7 |
+ andl #0x80000000,d7 |
+ movel #INFINITY,d6 | useful constant (+INFINITY)
+ movel d6,d5 | another (mask for fraction)
+ notl d5 |
+ movel #0x00800000,d4 | this is to put hidden bit back
+ bclr #31,d0 | get rid of a's sign bit '
+ movel d0,d2 |
+ beq Lmulsf$a$0 | branch if a is zero
+ bclr #31,d1 | get rid of b's sign bit '
+ movel d1,d3 |
+ beq Lmulsf$b$0 | branch if b is zero
+ cmpl d6,d0 | is a big?
+ bhi Lmulsf$inop | if a is NaN return NaN
+ beq Lmulsf$inf | if a is INFINITY we have to check b
+ cmpl d6,d1 | now compare b with INFINITY
+ bhi Lmulsf$inop | is b NaN?
+ beq Lmulsf$overflow | is b INFINITY?
+| Here we have both numbers finite and nonzero (and with no sign bit).
+| Now we get the exponents into d2 and d3.
+ andl d6,d2 | and isolate exponent in d2
+ beq Lmulsf$a$den | if exponent is zero we have a denormalized
+ andl d5,d0 | and isolate fraction
+ orl d4,d0 | and put hidden bit back
+ swap d2 | I like exponents in the first byte
+ lsrw #7,d2 |
+Lmulsf$1: | number
+ andl d6,d3 |
+ beq Lmulsf$b$den |
+ andl d5,d1 |
+ orl d4,d1 |
+ swap d3 |
+ lsrw #7,d3 |
+Lmulsf$2: |
+ addw d3,d2 | add exponents
+ subw #F_BIAS+1,d2 | and substract bias (plus one)
+
+| We are now ready to do the multiplication. The situation is as follows:
+| both a and b have bit FLT_MANT_DIG-1 set (even if they were
+| denormalized to start with!), which means that in the product
+| bit 2*(FLT_MANT_DIG-1) (that is, bit 2*FLT_MANT_DIG-2-32 of the
+| high long) is set.
+
+| To do the multiplication let us move the number a little bit around ...
+ movel d1,d6 | second operand in d6
+ movel d0,d5 | first operand in d4-d5
+ movel #0,d4
+ movel d4,d1 | the sums will go in d0-d1
+ movel d4,d0
+
+| now bit FLT_MANT_DIG-1 becomes bit 31:
+ lsll #31-FLT_MANT_DIG+1,d6
+
+| Start the loop (we loop #FLT_MANT_DIG times):
+ movew #FLT_MANT_DIG-1,d3
+1: addl d1,d1 | shift sum
+ addxl d0,d0
+ lsll #1,d6 | get bit bn
+ bcc 2f | if not set skip sum
+ addl d5,d1 | add a
+ addxl d4,d0
+2: dbf d3,1b | loop back
+
+| Now we have the product in d0-d1, with bit (FLT_MANT_DIG - 1) + FLT_MANT_DIG
+| (mod 32) of d0 set. The first thing to do now is to normalize it so bit
+| FLT_MANT_DIG is set (to do the rounding).
+ rorl #6,d1
+ swap d1
+ movew d1,d3
+ andw #0x03ff,d3
+ andw #0xfd00,d1
+ lsll #8,d0
+ addl d0,d0
+ addl d0,d0
+ orw d3,d0
+
+ movew #MULTIPLY,d5
+
+ btst #FLT_MANT_DIG+1,d0
+ beq Lround$exit
+ lsrl #1,d0
+ roxrl #1,d1
+ addw #1,d2
+ bra Lround$exit
+
+Lmulsf$inop:
+ movew #MULTIPLY,d5
+ bra Lf$inop
+
+Lmulsf$overflow:
+ movew #MULTIPLY,d5
+ bra Lf$overflow
+
+Lmulsf$inf:
+ movew #MULTIPLY,d5
+| If either is NaN return NaN; else both are (maybe infinite) numbers, so
+| return INFINITY with the correct sign (which is in d7).
+ cmpl d6,d1 | is b NaN?
+ bhi Lf$inop | if so return NaN
+ bra Lf$overflow | else return +/-INFINITY
+
+| If either number is zero return zero, unless the other is +/-INFINITY,
+| or NaN, in which case we return NaN.
+Lmulsf$b$0:
+| Here d1 (==b) is zero.
+ movel d1,d0 | put b into d0 (just a zero)
+ movel a6@(8),d1 | get a again to check for non-finiteness
+ bra 1f
+Lmulsf$a$0:
+ movel a6@(12),d1 | get b again to check for non-finiteness
+1: bclr #31,d1 | clear sign bit
+ cmpl #INFINITY,d1 | and check for a large exponent
+ bge Lf$inop | if b is +/-INFINITY or NaN return NaN
+ lea SYM (_fpCCR),a0 | else return zero
+ movew #0,a0@ |
+ moveml sp@+,d2-d7 |
+ unlk a6 |
+ rts |
+
+| If a number is denormalized we put an exponent of 1 but do not put the
+| hidden bit back into the fraction; instead we shift left until bit 23
+| (the hidden bit) is set, adjusting the exponent accordingly. We do this
+| to ensure that the product of the fractions is close to 1.
+Lmulsf$a$den:
+ movel #1,d2
+ andl d5,d0
+1: addl d0,d0 | shift a left (until bit 23 is set)
+ subw #1,d2 | and adjust exponent
+ btst #FLT_MANT_DIG-1,d0
+ bne Lmulsf$1 |
+ bra 1b | else loop back
+
+Lmulsf$b$den:
+ movel #1,d3
+ andl d5,d1
+1: addl d1,d1 | shift b left until bit 23 is set
+ subw #1,d3 | and adjust exponent
+ btst #FLT_MANT_DIG-1,d1
+ bne Lmulsf$2 |
+ bra 1b | else loop back
+
+|=============================================================================
+| __divsf3
+|=============================================================================
+
+| float __divsf3(float, float);
+SYM (__divsf3):
+ link a6,#0
+ moveml d2-d7,sp@-
+ movel a6@(8),d0 | get a into d0
+ movel a6@(12),d1 | and b into d1
+ movel d0,d7 | d7 will hold the sign of the result
+ eorl d1,d7 |
+ andl #0x80000000,d7 |
+ movel #INFINITY,d6 | useful constant (+INFINITY)
+ movel d6,d5 | another (mask for fraction)
+ notl d5 |
+ movel #0x00800000,d4 | this is to put hidden bit back
+ bclr #31,d0 | get rid of a's sign bit '
+ movel d0,d2 |
+ beq Ldivsf$a$0 | branch if a is zero
+ bclr #31,d1 | get rid of b's sign bit '
+ movel d1,d3 |
+ beq Ldivsf$b$0 | branch if b is zero
+ cmpl d6,d0 | is a big?
+ bhi Ldivsf$inop | if a is NaN return NaN
+ beq Ldivsf$inf | if a is INIFINITY we have to check b
+ cmpl d6,d1 | now compare b with INFINITY
+ bhi Ldivsf$inop | if b is NaN return NaN
+ beq Ldivsf$underflow
+| Here we have both numbers finite and nonzero (and with no sign bit).
+| Now we get the exponents into d2 and d3 and normalize the numbers to
+| ensure that the ratio of the fractions is close to 1. We do this by
+| making sure that bit #FLT_MANT_DIG-1 (hidden bit) is set.
+ andl d6,d2 | and isolate exponent in d2
+ beq Ldivsf$a$den | if exponent is zero we have a denormalized
+ andl d5,d0 | and isolate fraction
+ orl d4,d0 | and put hidden bit back
+ swap d2 | I like exponents in the first byte
+ lsrw #7,d2 |
+Ldivsf$1: |
+ andl d6,d3 |
+ beq Ldivsf$b$den |
+ andl d5,d1 |
+ orl d4,d1 |
+ swap d3 |
+ lsrw #7,d3 |
+Ldivsf$2: |
+ subw d3,d2 | substract exponents
+ addw #F_BIAS,d2 | and add bias
+
+| We are now ready to do the division. We have prepared things in such a way
+| that the ratio of the fractions will be less than 2 but greater than 1/2.
+| At this point the registers in use are:
+| d0 holds a (first operand, bit FLT_MANT_DIG=0, bit FLT_MANT_DIG-1=1)
+| d1 holds b (second operand, bit FLT_MANT_DIG=1)
+| d2 holds the difference of the exponents, corrected by the bias
+| d7 holds the sign of the ratio
+| d4, d5, d6 hold some constants
+ movel d7,a0 | d6-d7 will hold the ratio of the fractions
+ movel #0,d6 |
+ movel d6,d7
+
+ movew #FLT_MANT_DIG+1,d3
+1: cmpl d0,d1 | is a < b?
+ bhi 2f |
+ bset d3,d6 | set a bit in d6
+ subl d1,d0 | if a >= b a <-- a-b
+ beq 3f | if a is zero, exit
+2: addl d0,d0 | multiply a by 2
+ dbra d3,1b
+
+| Now we keep going to set the sticky bit ...
+ movew #FLT_MANT_DIG,d3
+1: cmpl d0,d1
+ ble 2f
+ addl d0,d0
+ dbra d3,1b
+ movel #0,d1
+ bra 3f
+2: movel #0,d1
+ subw #FLT_MANT_DIG,d3
+ addw #31,d3
+ bset d3,d1
+3:
+ movel d6,d0 | put the ratio in d0-d1
+ movel a0,d7 | get sign back
+
+| Because of the normalization we did before we are guaranteed that
+| d0 is smaller than 2^26 but larger than 2^24. Thus bit 26 is not set,
+| bit 25 could be set, and if it is not set then bit 24 is necessarily set.
+ btst #FLT_MANT_DIG+1,d0
+ beq 1f | if it is not set, then bit 24 is set
+ lsrl #1,d0 |
+ addw #1,d2 |
+1:
+| Now round, check for over- and underflow, and exit.
+ movew #DIVIDE,d5
+ bra Lround$exit
+
+Ldivsf$inop:
+ movew #DIVIDE,d5
+ bra Lf$inop
+
+Ldivsf$overflow:
+ movew #DIVIDE,d5
+ bra Lf$overflow
+
+Ldivsf$underflow:
+ movew #DIVIDE,d5
+ bra Lf$underflow
+
+Ldivsf$a$0:
+ movew #DIVIDE,d5
+| If a is zero check to see whether b is zero also. In that case return
+| NaN; then check if b is NaN, and return NaN also in that case. Else
+| return zero.
+ andl #0x7fffffff,d1 | clear sign bit and test b
+ beq Lf$inop | if b is also zero return NaN
+ cmpl #INFINITY,d1 | check for NaN
+ bhi Lf$inop |
+ movel #0,d0 | else return zero
+ lea SYM (_fpCCR),a0 |
+ movew #0,a0@ |
+ moveml sp@+,d2-d7 |
+ unlk a6 |
+ rts |
+
+Ldivsf$b$0:
+ movew #DIVIDE,d5
+| If we got here a is not zero. Check if a is NaN; in that case return NaN,
+| else return +/-INFINITY. Remember that a is in d0 with the sign bit
+| cleared already.
+ cmpl #INFINITY,d0 | compare d0 with INFINITY
+ bhi Lf$inop | if larger it is NaN
+ bra Lf$div$0 | else signal DIVIDE_BY_ZERO
+
+Ldivsf$inf:
+ movew #DIVIDE,d5
+| If a is INFINITY we have to check b
+ cmpl #INFINITY,d1 | compare b with INFINITY
+ bge Lf$inop | if b is NaN or INFINITY return NaN
+ bra Lf$overflow | else return overflow
+
+| If a number is denormalized we put an exponent of 1 but do not put the
+| bit back into the fraction.
+Ldivsf$a$den:
+ movel #1,d2
+ andl d5,d0
+1: addl d0,d0 | shift a left until bit FLT_MANT_DIG-1 is set
+ subw #1,d2 | and adjust exponent
+ btst #FLT_MANT_DIG-1,d0
+ bne Ldivsf$1
+ bra 1b
+
+Ldivsf$b$den:
+ movel #1,d3
+ andl d5,d1
+1: addl d1,d1 | shift b left until bit FLT_MANT_DIG is set
+ subw #1,d3 | and adjust exponent
+ btst #FLT_MANT_DIG-1,d1
+ bne Ldivsf$2
+ bra 1b
+
+Lround$exit:
+| This is a common exit point for __mulsf3 and __divsf3.
+
+| First check for underlow in the exponent:
+ cmpw #-FLT_MANT_DIG-1,d2
+ blt Lf$underflow
+| It could happen that the exponent is less than 1, in which case the
+| number is denormalized. In this case we shift right and adjust the
+| exponent until it becomes 1 or the fraction is zero (in the latter case
+| we signal underflow and return zero).
+ movel #0,d6 | d6 is used temporarily
+ cmpw #1,d2 | if the exponent is less than 1 we
+ bge 2f | have to shift right (denormalize)
+1: addw #1,d2 | adjust the exponent
+ lsrl #1,d0 | shift right once
+ roxrl #1,d1 |
+ roxrl #1,d6 | d6 collect bits we would lose otherwise
+ cmpw #1,d2 | is the exponent 1 already?
+ beq 2f | if not loop back
+ bra 1b |
+ bra Lf$underflow | safety check, shouldn't execute '
+2: orl d6,d1 | this is a trick so we don't lose '
+ | the extra bits which were flushed right
+| Now call the rounding routine (which takes care of denormalized numbers):
+ lea Lround$0,a0 | to return from rounding routine
+ lea SYM (_fpCCR),a1 | check the rounding mode
+ movew a1@(6),d6 | rounding mode in d6
+ beq Lround$to$nearest
+ cmpw #ROUND_TO_PLUS,d6
+ bhi Lround$to$minus
+ blt Lround$to$zero
+ bra Lround$to$plus
+Lround$0:
+| Here we have a correctly rounded result (either normalized or denormalized).
+
+| Here we should have either a normalized number or a denormalized one, and
+| the exponent is necessarily larger or equal to 1 (so we don't have to '
+| check again for underflow!). We have to check for overflow or for a
+| denormalized number (which also signals underflow).
+| Check for overflow (i.e., exponent >= 255).
+ cmpw #0x00ff,d2
+ bge Lf$overflow
+| Now check for a denormalized number (exponent==0).
+ movew d2,d2
+ beq Lf$den
+1:
+| Put back the exponents and sign and return.
+ lslw #7,d2 | exponent back to fourth byte
+ bclr #FLT_MANT_DIG-1,d0
+ swap d0 | and put back exponent
+ orw d2,d0 |
+ swap d0 |
+ orl d7,d0 | and sign also
+
+ lea SYM (_fpCCR),a0
+ movew #0,a0@
+ moveml sp@+,d2-d7
+ unlk a6
+ rts
+
+|=============================================================================
+| __negsf2
+|=============================================================================
+
+| This is trivial and could be shorter if we didn't bother checking for NaN '
+| and +/-INFINITY.
+
+| float __negsf2(float);
+SYM (__negsf2):
+ link a6,#0
+ moveml d2-d7,sp@-
+ movew #NEGATE,d5
+ movel a6@(8),d0 | get number to negate in d0
+ bchg #31,d0 | negate
+ movel d0,d1 | make a positive copy
+ bclr #31,d1 |
+ tstl d1 | check for zero
+ beq 2f | if zero (either sign) return +zero
+ cmpl #INFINITY,d1 | compare to +INFINITY
+ blt 1f |
+ bhi Lf$inop | if larger (fraction not zero) is NaN
+ movel d0,d7 | else get sign and return INFINITY
+ andl #0x80000000,d7
+ bra Lf$infty
+1: lea SYM (_fpCCR),a0
+ movew #0,a0@
+ moveml sp@+,d2-d7
+ unlk a6
+ rts
+2: bclr #31,d0
+ bra 1b
+
+|=============================================================================
+| __cmpsf2
+|=============================================================================
+
+GREATER = 1
+LESS = -1
+EQUAL = 0
+
+| int __cmpsf2(float, float);
+SYM (__cmpsf2):
+ link a6,#0
+ moveml d2-d7,sp@- | save registers
+ movew #COMPARE,d5
+ movel a6@(8),d0 | get first operand
+ movel a6@(12),d1 | get second operand
+| Check if either is NaN, and in that case return garbage and signal
+| INVALID_OPERATION. Check also if either is zero, and clear the signs
+| if necessary.
+ movel d0,d6
+ andl #0x7fffffff,d0
+ beq Lcmpsf$a$0
+ cmpl #0x7f800000,d0
+ bhi Lf$inop
+Lcmpsf$1:
+ movel d1,d7
+ andl #0x7fffffff,d1
+ beq Lcmpsf$b$0
+ cmpl #0x7f800000,d1
+ bhi Lf$inop
+Lcmpsf$2:
+| Check the signs
+ eorl d6,d7
+ bpl 1f
+| If the signs are not equal check if a >= 0
+ tstl d6
+ bpl Lcmpsf$a$gt$b | if (a >= 0 && b < 0) => a > b
+ bmi Lcmpsf$b$gt$a | if (a < 0 && b >= 0) => a < b
+1:
+| If the signs are equal check for < 0
+ tstl d6
+ bpl 1f
+| If both are negative exchange them
+ exg d0,d1
+1:
+| Now that they are positive we just compare them as longs (does this also
+| work for denormalized numbers?).
+ cmpl d0,d1
+ bhi Lcmpsf$b$gt$a | |b| > |a|
+ bne Lcmpsf$a$gt$b | |b| < |a|
+| If we got here a == b.
+ movel #EQUAL,d0
+ moveml sp@+,d2-d7 | put back the registers
+ unlk a6
+ rts
+Lcmpsf$a$gt$b:
+ movel #GREATER,d0
+ moveml sp@+,d2-d7 | put back the registers
+ unlk a6
+ rts
+Lcmpsf$b$gt$a:
+ movel #LESS,d0
+ moveml sp@+,d2-d7 | put back the registers
+ unlk a6
+ rts
+
+Lcmpsf$a$0:
+ bclr #31,d6
+ bra Lcmpsf$1
+Lcmpsf$b$0:
+ bclr #31,d7
+ bra Lcmpsf$2
+
+|=============================================================================
+| rounding routines
+|=============================================================================
+
+| The rounding routines expect the number to be normalized in registers
+| d0-d1, with the exponent in register d2. They assume that the
+| exponent is larger or equal to 1. They return a properly normalized number
+| if possible, and a denormalized number otherwise. The exponent is returned
+| in d2.
+
+Lround$to$nearest:
+| We now normalize as suggested by D. Knuth ("Seminumerical Algorithms"):
+| Here we assume that the exponent is not too small (this should be checked
+| before entering the rounding routine), but the number could be denormalized.
+
+| Check for denormalized numbers:
+1: btst #FLT_MANT_DIG,d0
+ bne 2f | if set the number is normalized
+| Normalize shifting left until bit #FLT_MANT_DIG is set or the exponent
+| is one (remember that a denormalized number corresponds to an
+| exponent of -F_BIAS+1).
+ cmpw #1,d2 | remember that the exponent is at least one
+ beq 2f | an exponent of one means denormalized
+ addl d1,d1 | else shift and adjust the exponent
+ addxl d0,d0 |
+ dbra d2,1b |
+2:
+| Now round: we do it as follows: after the shifting we can write the
+| fraction part as f + delta, where 1 < f < 2^25, and 0 <= delta <= 2.
+| If delta < 1, do nothing. If delta > 1, add 1 to f.
+| If delta == 1, we make sure the rounded number will be even (odd?)
+| (after shifting).
+ btst #0,d0 | is delta < 1?
+ beq 2f | if so, do not do anything
+ tstl d1 | is delta == 1?
+ bne 1f | if so round to even
+ movel d0,d1 |
+ andl #2,d1 | bit 1 is the last significant bit
+ addl d1,d0 |
+ bra 2f |
+1: movel #1,d1 | else add 1
+ addl d1,d0 |
+| Shift right once (because we used bit #FLT_MANT_DIG!).
+2: lsrl #1,d0
+| Now check again bit #FLT_MANT_DIG (rounding could have produced a
+| 'fraction overflow' ...).
+ btst #FLT_MANT_DIG,d0
+ beq 1f
+ lsrl #1,d0
+ addw #1,d2
+1:
+| If bit #FLT_MANT_DIG-1 is clear we have a denormalized number, so we
+| have to put the exponent to zero and return a denormalized number.
+ btst #FLT_MANT_DIG-1,d0
+ beq 1f
+ jmp a0@
+1: movel #0,d2
+ jmp a0@
+
+Lround$to$zero:
+Lround$to$plus:
+Lround$to$minus:
+ jmp a0@
+#endif /* L_float */
+
+| gcc expects the routines __eqdf2, __nedf2, __gtdf2, __gedf2,
+| __ledf2, __ltdf2 to all return the same value as a direct call to
+| __cmpdf2 would. In this implementation, each of these routines
+| simply calls __cmpdf2. It would be more efficient to give the
+| __cmpdf2 routine several names, but separating them out will make it
+| easier to write efficient versions of these routines someday.
+
+#ifdef L_eqdf2
+LL0:
+ .text
+ .proc
+|#PROC# 04
+ LF18 = 4
+ LS18 = 128
+ LFF18 = 0
+ LSS18 = 0
+ LV18 = 0
+ .text
+ .globl SYM (__eqdf2)
+SYM (__eqdf2):
+|#PROLOGUE# 0
+ link a6,#0
+|#PROLOGUE# 1
+ movl a6@(20),sp@-
+ movl a6@(16),sp@-
+ movl a6@(12),sp@-
+ movl a6@(8),sp@-
+ jbsr SYM (__cmpdf2)
+|#PROLOGUE# 2
+ unlk a6
+|#PROLOGUE# 3
+ rts
+#endif /* L_eqdf2 */
+
+#ifdef L_nedf2
+LL0:
+ .text
+ .proc
+|#PROC# 04
+ LF18 = 8
+ LS18 = 132
+ LFF18 = 0
+ LSS18 = 0
+ LV18 = 0
+ .text
+ .globl SYM (__nedf2)
+SYM (__nedf2):
+|#PROLOGUE# 0
+ link a6,#0
+|#PROLOGUE# 1
+ movl a6@(20),sp@-
+ movl a6@(16),sp@-
+ movl a6@(12),sp@-
+ movl a6@(8),sp@-
+ jbsr SYM (__cmpdf2)
+|#PROLOGUE# 2
+ unlk a6
+|#PROLOGUE# 3
+ rts
+#endif /* L_nedf2 */
+
+#ifdef L_gtdf2
+ .text
+ .proc
+|#PROC# 04
+ LF18 = 8
+ LS18 = 132
+ LFF18 = 0
+ LSS18 = 0
+ LV18 = 0
+ .text
+ .globl SYM (__gtdf2)
+SYM (__gtdf2):
+|#PROLOGUE# 0
+ link a6,#0
+|#PROLOGUE# 1
+ movl a6@(20),sp@-
+ movl a6@(16),sp@-
+ movl a6@(12),sp@-
+ movl a6@(8),sp@-
+ jbsr SYM (__cmpdf2)
+|#PROLOGUE# 2
+ unlk a6
+|#PROLOGUE# 3
+ rts
+#endif /* L_gtdf2 */
+
+#ifdef L_gedf2
+LL0:
+ .text
+ .proc
+|#PROC# 04
+ LF18 = 8
+ LS18 = 132
+ LFF18 = 0
+ LSS18 = 0
+ LV18 = 0
+ .text
+ .globl SYM (__gedf2)
+SYM (__gedf2):
+|#PROLOGUE# 0
+ link a6,#0
+|#PROLOGUE# 1
+ movl a6@(20),sp@-
+ movl a6@(16),sp@-
+ movl a6@(12),sp@-
+ movl a6@(8),sp@-
+ jbsr SYM (__cmpdf2)
+|#PROLOGUE# 2
+ unlk a6
+|#PROLOGUE# 3
+ rts
+#endif /* L_gedf2 */
+
+#ifdef L_ltdf2
+LL0:
+ .text
+ .proc
+|#PROC# 04
+ LF18 = 8
+ LS18 = 132
+ LFF18 = 0
+ LSS18 = 0
+ LV18 = 0
+ .text
+ .globl SYM (__ltdf2)
+SYM (__ltdf2):
+|#PROLOGUE# 0
+ link a6,#0
+|#PROLOGUE# 1
+ movl a6@(20),sp@-
+ movl a6@(16),sp@-
+ movl a6@(12),sp@-
+ movl a6@(8),sp@-
+ jbsr SYM (__cmpdf2)
+|#PROLOGUE# 2
+ unlk a6
+|#PROLOGUE# 3
+ rts
+#endif /* L_ltdf2 */
+
+#ifdef L_ledf2
+ .text
+ .proc
+|#PROC# 04
+ LF18 = 8
+ LS18 = 132
+ LFF18 = 0
+ LSS18 = 0
+ LV18 = 0
+ .text
+ .globl SYM (__ledf2)
+SYM (__ledf2):
+|#PROLOGUE# 0
+ link a6,#0
+|#PROLOGUE# 1
+ movl a6@(20),sp@-
+ movl a6@(16),sp@-
+ movl a6@(12),sp@-
+ movl a6@(8),sp@-
+ jbsr SYM (__cmpdf2)
+|#PROLOGUE# 2
+ unlk a6
+|#PROLOGUE# 3
+ rts
+#endif /* L_ledf2 */
+
+| The comments above about __eqdf2, et. al., also apply to __eqsf2,
+| et. al., except that the latter call __cmpsf2 rather than __cmpdf2.
+
+#ifdef L_eqsf2
+ .text
+ .proc
+|#PROC# 04
+ LF18 = 4
+ LS18 = 128
+ LFF18 = 0
+ LSS18 = 0
+ LV18 = 0
+ .text
+ .globl SYM (__eqsf2)
+SYM (__eqsf2):
+|#PROLOGUE# 0
+ link a6,#0
+|#PROLOGUE# 1
+ movl a6@(12),sp@-
+ movl a6@(8),sp@-
+ jbsr SYM (__cmpsf2)
+|#PROLOGUE# 2
+ unlk a6
+|#PROLOGUE# 3
+ rts
+#endif /* L_eqsf2 */
+
+#ifdef L_nesf2
+ .text
+ .proc
+|#PROC# 04
+ LF18 = 8
+ LS18 = 132
+ LFF18 = 0
+ LSS18 = 0
+ LV18 = 0
+ .text
+ .globl SYM (__nesf2)
+SYM (__nesf2):
+|#PROLOGUE# 0
+ link a6,#0
+|#PROLOGUE# 1
+ movl a6@(12),sp@-
+ movl a6@(8),sp@-
+ jbsr SYM (__cmpsf2)
+|#PROLOGUE# 2
+ unlk a6
+|#PROLOGUE# 3
+ rts
+#endif /* L_nesf2 */
+
+#ifdef L_gtsf2
+ .text
+ .proc
+|#PROC# 04
+ LF18 = 8
+ LS18 = 132
+ LFF18 = 0
+ LSS18 = 0
+ LV18 = 0
+ .text
+ .globl SYM (__gtsf2)
+SYM (__gtsf2):
+|#PROLOGUE# 0
+ link a6,#0
+|#PROLOGUE# 1
+ movl a6@(12),sp@-
+ movl a6@(8),sp@-
+ jbsr SYM (__cmpsf2)
+|#PROLOGUE# 2
+ unlk a6
+|#PROLOGUE# 3
+ rts
+#endif /* L_gtsf2 */
+
+#ifdef L_gesf2
+ .text
+ .proc
+|#PROC# 04
+ LF18 = 8
+ LS18 = 132
+ LFF18 = 0
+ LSS18 = 0
+ LV18 = 0
+ .text
+ .globl SYM (__gesf2)
+SYM (__gesf2):
+|#PROLOGUE# 0
+ link a6,#0
+|#PROLOGUE# 1
+ movl a6@(12),sp@-
+ movl a6@(8),sp@-
+ jbsr SYM (__cmpsf2)
+|#PROLOGUE# 2
+ unlk a6
+|#PROLOGUE# 3
+ rts
+#endif /* L_gesf2 */
+
+#ifdef L_ltsf2
+ .text
+ .proc
+|#PROC# 04
+ LF18 = 8
+ LS18 = 132
+ LFF18 = 0
+ LSS18 = 0
+ LV18 = 0
+ .text
+ .globl SYM (__ltsf2)
+SYM (__ltsf2):
+|#PROLOGUE# 0
+ link a6,#0
+|#PROLOGUE# 1
+ movl a6@(12),sp@-
+ movl a6@(8),sp@-
+ jbsr SYM (__cmpsf2)
+|#PROLOGUE# 2
+ unlk a6
+|#PROLOGUE# 3
+ rts
+#endif /* L_ltsf2 */
+
+#ifdef L_lesf2
+ .text
+ .proc
+|#PROC# 04
+ LF18 = 8
+ LS18 = 132
+ LFF18 = 0
+ LSS18 = 0
+ LV18 = 0
+ .text
+ .globl SYM (__lesf2)
+SYM (__lesf2):
+|#PROLOGUE# 0
+ link a6,#0
+|#PROLOGUE# 1
+ movl a6@(12),sp@-
+ movl a6@(8),sp@-
+ jbsr SYM (__cmpsf2)
+|#PROLOGUE# 2
+ unlk a6
+|#PROLOGUE# 3
+ rts
+#endif /* L_lesf2 */
+
diff --git a/gcc/config/m68k/m68k-aout.h b/gcc/config/m68k/m68k-aout.h
new file mode 100644
index 00000000000..8e3b66181f2
--- /dev/null
+++ b/gcc/config/m68k/m68k-aout.h
@@ -0,0 +1,30 @@
+/* Definitions of target machine for GNU compiler. "naked" 68020,
+ a.out object files and debugging, version.
+ Copyright (C) 1994 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+/* This comment is here to see if it will keep Sun's cpp from dying. */
+
+#include "m68k/m68k-none.h"
+#include "m68k/m68kemb.h"
+#include "aoutos.h"
+
+#define DBX_DEBUGGING_INFO
+#undef SDB_DEBUGGING_INFO
+
+/* end of m68k-aout.h */
diff --git a/gcc/config/m68k/m68k-none.h b/gcc/config/m68k/m68k-none.h
new file mode 100644
index 00000000000..5e584681ce0
--- /dev/null
+++ b/gcc/config/m68k/m68k-none.h
@@ -0,0 +1,94 @@
+/* Definitions of target machine for GNU compiler. "naked" 68020.
+ Copyright (C) 1994 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+#include "m68k/m68k.h"
+
+/* See m68k.h. 7 means 68020 with 68881. */
+
+#ifndef TARGET_DEFAULT
+#define TARGET_DEFAULT 7
+#endif
+
+/* Names to predefine in the preprocessor for this target machine.
+ Always define mc68000. Other definitions depend on switches given
+ to the compiler:
+
+ -m68000: define nothing else
+ default, -m68020, -mc68020: define mc68020
+ -m68030: define mc68030
+ -m68040: define mc68040
+ -m68020-40: define mc68020 mc68030 mc68040
+ -m68302: define mc68302
+ -m68332: define mc68332
+ */
+
+#ifndef CPP_PREDEFINES
+#define CPP_PREDEFINES "-Dmc68000"
+#endif
+
+#ifndef CPP_SPEC
+
+#if TARGET_DEFAULT & 02
+
+/* -m68881 is the default */
+#define CPP_SPEC \
+"%{!mc68000:%{!m68000:%{!m68332:%{!msoft-float:%{mfpa:-D__HAVE_FPA__ }%{!mfpa:-D__HAVE_68881__ }}}}}\
+%{!ansi:%{m68010:-Dmc68010 }%{m68020:-Dmc68020 }%{mc68020:-Dmc68020 }%{m68030:-Dmc68030 }%{m68040:-Dmc68040 }%{m68020-40:-Dmc68020 -Dmc68030 -Dmc68040 }%{m68302:-Dmc68302 }%{m68332:-Dmc68332 }%{!mc68000:%{!m68000:%{!m68010:%{!mc68020:%{!m68020:%{!m68030:%{!m68040:%{!m68020-40:%{!m68302:%{!m68332:-Dmc68020 }}}}}}}}}}}\
+%{m68010:-D__mc68010__ -D__mc68010 }%{m68020:-D__mc68020__ -D__mc68020 }%{mc68020:-D__mc68020__ -D__mc68020 }%{m68030:-D__mc68030__ -D__mc68030 }%{m68040:-D__mc68040__ -D__mc68040 }%{m68020-40:-D__mc68020__ -D__mc68030__ -D__mc68040__ -D__mc68020 -D__mc68030 -D__mc68040 }%{m68302:-D__mc68302__ -D__mc68302 }%{m68332:-D__mc68332__ -D__mc68332 }%{!mc68000:%{!m68000:%{!m68010:%{!mc68020:%{!m68020:%{!m68030:%{!m68040:%{!m68020-40:%{!m68302:%{!m68332:-D__mc68020__ -D__mc68020 }}}}}}}}}}"
+
+#else
+#if TARGET_DEFAULT & 0100
+
+/* -mfpa is the default */
+#define CPP_SPEC \
+"%{!msoft-float:%{m68881:-D__HAVE_68881__ }%{!m68881:-D__HAVE_FPA__ }}\
+%{!ansi:%{m68010:-Dmc68010 }%{m68020:-Dmc68020 }%{mc68020:-Dmc68020 }%{m68030:-Dmc68030 }%{m68040:-Dmc68040 }%{m68020-40:-Dmc68020 -Dmc68030 -Dmc68040 }%{m68302:-Dmc68302 }%{m68332:-Dmc68332 }%{!mc68000:%{!m68000:%{!m68010:%{!mc68020:%{!m68020:%{!m68030:%{!m68040:%{!m68020-40:%{!m68302:%{!m68332:-Dmc68020 }}}}}}}}}}}\
+%{m68010:-D__mc68010__ -D__mc68010 }%{m68020:-D__mc68020__ -D__mc68020 }%{mc68020:-D__mc68020__ -D__mc68020 }%{m68030:-D__mc68030__ -D__mc68030 }%{m68040:-D__mc68040__ -D__mc68040 }%{m68020-40:-D__mc68020__ -D__mc68030__ -D__mc68040__ -D__mc68020 -D__mc68030 -D__mc68040 }%{m68302:-D__mc68302__ -D__mc68302 }%{m68332:-D__mc68332__ -D__mc68332 }%{!mc68000:%{!m68000:%{!m68010:%{!mc68020:%{!m68020:%{!m68030:%{!m68040:%{!m68020-40:%{!m68302:%{!m68332:-D__mc68020__ -D__mc68020 }}}}}}}}}}"
+
+#else
+
+/* -msoft-float is the default */
+#define CPP_SPEC \
+"%{m68881:-D__HAVE_68881__ }%{mfpa:-D__HAVE_FPA__ }\
+%{!ansi:%{m68010:-Dmc68010 }%{m68020:-Dmc68020 }%{mc68020:-Dmc68020 }%{m68030:-Dmc68030 }%{m68040:-Dmc68040 }%{m68020-40:-Dmc68020 -Dmc68030 -Dmc68040 }%{m68302:-Dmc68302 }%{m68332:-Dmc68332 }%{!mc68000:%{!m68000:%{!m68010:%{!mc68020:%{!m68020:%{!m68030:%{!m68040:%{!m68020-40:%{!m68302:%{!m68332:-Dmc68020 }}}}}}}}}}}\
+%{m68010:-D__mc68010__ -D__mc68010 }%{m68020:-D__mc68020__ -D__mc68020 }%{mc68020:-D__mc68020__ -D__mc68020 }%{m68030:-D__mc68030__ -D__mc68030 }%{m68040:-D__mc68040__ -D__mc68040 }%{m68020-40:-D__mc68020__ -D__mc68030__ -D__mc68040__ -D__mc68020 -D__mc68030 -D__mc68040 }%{m68302:-D__mc68302__ -D__mc68302 }%{m68332:-D__mc68332__ -D__mc68332 }%{!mc68000:%{!m68000:%{!m68010:%{!mc68020:%{!m68020:%{!m68030:%{!m68040:%{!m68020-40:%{!m68302:%{!m68332:-D__mc68020__ -D__mc68020 }}}}}}}}}}"
+
+#endif
+#endif
+
+#endif
+
+/* Pass flags to gas indicating which type of processor we have. */
+
+#ifndef ASM_SPEC
+
+#define ASM_SPEC \
+"%{m68851}%{mno-68851}%{m68881}%{mno-68881}%{msoft-float:-mno-68881 }\
+%{m68000}%{mc68000}%{m68010}%{m68020}%{mc68020}%{m68030}%{m68040}%{m68020-40:-mc68040}%{m68302}%{m68332}%{!m68000:%{!mc68000:%{!m68010:%{!mc68020:%{!m68020:%{!m68030:%{!m68040:%{!m68020-40:%{!m68302:%{!m68332:-mc68020}}}}}}}}}}"
+
+#endif
+
+#ifndef CC1_SPEC
+
+#define CC1_SPEC \
+ "%{m68000:%{!m68881:-msoft-float }}%{m68302:-m68000}%{m68332:-m68020 -mnobitfield %{!m68881:-msoft-float}}%{!m68000:%{!mc68000:%{!m68010:%{!mc68020:%{!m68020:%{!m68030:%{!m68040:%{!m68020-40:%{!m68302:%{!m68332:-m68020}}}}}}}}}}"
+
+#endif
+
+/* end of m68k-none.h */
diff --git a/gcc/config/m68k/m68kemb.h b/gcc/config/m68k/m68kemb.h
new file mode 100644
index 00000000000..7b7521ab2ee
--- /dev/null
+++ b/gcc/config/m68k/m68kemb.h
@@ -0,0 +1,39 @@
+/* Definitions of target machine for GNU compiler. "embedded" 68XXX.
+ This is meant to be included after m68k.h.
+ Copyright (C) 1994 Free Software Foundation, Inc. */
+
+#define PTRDIFF_TYPE "long int"
+#define SIZE_TYPE "long unsigned int"
+
+/* In order for bitfields to work on a 68000, or with -mnobitfield, we must
+ define either PCC_BITFIELD_TYPE_MATTERS or STRUCTURE_SIZE_BOUNDARY.
+ Defining STRUCTURE_SIZE_BOUNDARY results in structure packing problems,
+ so we define PCC_BITFIELD_TYPE_MATTERS. */
+#define PCC_BITFIELD_TYPE_MATTERS 1
+
+/* Undef PCC_STATIC_STRUCT_RETURN so that we get a re-entrant calling
+ convention. */
+#undef PCC_STATIC_STRUCT_RETURN
+
+/* Don't default to pcc-struct-return, so that we can return small structures
+ and unions in registers, which is slightly more efficient. */
+#define DEFAULT_PCC_STRUCT_RETURN 0
+
+/* Return floating point values in a fp register. This make fp code a
+ little bit faster. It also makes -msoft-float code incompatible with
+ -m68881 code, so people have to be careful not to mix the two. */
+#undef FUNCTION_VALUE
+#define FUNCTION_VALUE(VALTYPE,FUNC) LIBCALL_VALUE (TYPE_MODE (VALTYPE))
+
+#undef LIBCALL_VALUE
+#define LIBCALL_VALUE(MODE) \
+ gen_rtx (REG, (MODE), \
+ ((TARGET_68881 \
+ && ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode)) \
+ ? 16 : 0))
+
+#undef FUNCTION_VALUE_REGNO_P
+#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (TARGET_68881 && (N) == 16))
+
+#undef NEEDS_UNTYPED_CALL
+#define NEEDS_UNTYPED_CALL 1
diff --git a/gcc/config/m68k/t-m68kbare b/gcc/config/m68k/t-m68kbare
new file mode 100644
index 00000000000..732ad4d1632
--- /dev/null
+++ b/gcc/config/m68k/t-m68kbare
@@ -0,0 +1,23 @@
+CROSS_LIBGCC1 = libgcc1-asm.a
+LIB1ASMSRC = m68k/lb1sf68.asm
+LIB1ASMFUNCS = _mulsi3 _udivsi3 _umulsi3 _divsi3 _umodsi3 _modsi3 \
+ _double _float _floatex \
+ _eqdf2 _nedf2 _gtdf2 _gedf2 _ltdf2 _ledf2 \
+ _eqsf2 _nesf2 _gtsf2 _gesf2 _ltsf2 _lesf2
+
+# These are really part of libgcc1, but this will cause them to be
+# built correctly, so...
+LIB2FUNCS_EXTRA = fpgnulib.c xfgnulib.c
+
+fpgnulib.c: $(srcdir)/config/m68k/fpgnulib.c
+ cp $(srcdir)/config/m68k/fpgnulib.c fpgnulib.c
+xfgnulib.c: $(srcdir)/config/m68k/fpgnulib.c
+ echo '#define EXTFLOAT' > xfgnulib.c
+ cat $(srcdir)/config/m68k/fpgnulib.c >> xfgnulib.c
+
+MULTILIB_OPTIONS=m68000/m68020 m68881/msoft-float
+MULTILIB_DIRNAMES=
+MULTILIB_MATCHES=m68020=m68040 m68000=mc68000 m68020=mc68020
+
+LIBGCC = stmp-multilib
+INSTALL_LIBGCC = install-multilib
diff --git a/gcc/config/m88k/m88k-aout.h b/gcc/config/m88k/m88k-aout.h
new file mode 100644
index 00000000000..e3cc87bca63
--- /dev/null
+++ b/gcc/config/m88k/m88k-aout.h
@@ -0,0 +1,31 @@
+/* Definitions for "naked" Motorola 88k using a.out object format files
+ and stabs debugging info.
+
+ Copyright (C) 1994 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+#undef SDB_DEBUGGING_INFO
+#define DBX_DEBUGGING_INFO
+
+#include "m88k/m88k.h"
+#include "aoutos.h"
+
+#undef CPP_PREDEFINES
+#define CPP_PREDEFINES "-Dm88000 -Dm88k"
+
+/* end of m88k-aout.h */
diff --git a/gcc/config/m88k/m88k-coff.h b/gcc/config/m88k/m88k-coff.h
new file mode 100644
index 00000000000..b86582a22b7
--- /dev/null
+++ b/gcc/config/m88k/m88k-coff.h
@@ -0,0 +1,33 @@
+/* Definitions for "naked" Motorola 88k using coff object format files
+ and coff debugging info.
+
+ Copyright (C) 1994 Free Software Foundation, Inc.
+
+This file is part of GNU CC.
+
+GNU CC is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+GNU CC is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with GNU CC; see the file COPYING. If not, write to
+the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+#include "m88k/m88k.h"
+
+#undef CPP_PREDEFINES
+#define CPP_PREDEFINES "-Dm88000 -Dm88k"
+
+#undef DBX_DEBUGGING_INFO
+#define SDB_DEBUGGING_INFO
+
+#undef PREFERRED_DEBUGGING_TYPE
+#define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
+
+/* end of m88k-coff.h */
diff --git a/gcc/config/m88k/t-bug b/gcc/config/m88k/t-bug
new file mode 100644
index 00000000000..a5e71ddf3fc
--- /dev/null
+++ b/gcc/config/m88k/t-bug
@@ -0,0 +1,12 @@
+# Specify how to create the *.asm files
+
+MOVE_ASM = moveHI15x.asm moveQI16x.asm moveSI46x.asm moveSI64n.asm \
+ moveHI48x.asm moveSI45x.asm moveSI47x.asm moveSI96x.asm \
+ moveDI96x.asm
+
+$(MOVE_ASM): $(srcdir)/config/m88k/m88k-move.sh
+ $(srcdir)/config/m88k/m88k-move.sh
+
+LIB2FUNCS_EXTRA = $(MOVE_ASM)
+LIBGCC1 = libgcc1.null
+CROSS_LIBGCC1 = libgcc1.null
OpenPOWER on IntegriCloud