1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
|
//===------ ZoneAlgo.cpp ----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Derive information about array elements between statements ("Zones").
//
// The algorithms here work on the scatter space - the image space of the
// schedule returned by Scop::getSchedule(). We call an element in that space a
// "timepoint". Timepoints are lexicographically ordered such that we can
// defined ranges in the scatter space. We use two flavors of such ranges:
// Timepoint sets and zones. A timepoint set is simply a subset of the scatter
// space and is directly stored as isl_set.
//
// Zones are used to describe the space between timepoints as open sets, i.e.
// they do not contain the extrema. Using isl rational sets to express these
// would be overkill. We also cannot store them as the integer timepoints they
// contain; the (nonempty) zone between 1 and 2 would be empty and
// indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store
// the integer set including the extrema; the set ]1,2[ + ]3,4[ could be
// coalesced to ]1,3[, although we defined the range [2,3] to be not in the set.
// Instead, we store the "half-open" integer extrema, including the lower bound,
// but excluding the upper bound. Examples:
//
// * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the
// integer points 1 and 2, but not 0 or 3)
//
// * { [1] } represents the zone ]0,1[
//
// * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[
//
// Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly
// speaking the integer points never belong to the zone. However, depending an
// the interpretation, one might want to include them. Part of the
// interpretation may not be known when the zone is constructed.
//
// Reads are assumed to always take place before writes, hence we can think of
// reads taking place at the beginning of a timepoint and writes at the end.
//
// Let's assume that the zone represents the lifetime of a variable. That is,
// the zone begins with a write that defines the value during its lifetime and
// ends with the last read of that value. In the following we consider whether a
// read/write at the beginning/ending of the lifetime zone should be within the
// zone or outside of it.
//
// * A read at the timepoint that starts the live-range loads the previous
// value. Hence, exclude the timepoint starting the zone.
//
// * A write at the timepoint that starts the live-range is not defined whether
// it occurs before or after the write that starts the lifetime. We do not
// allow this situation to occur. Hence, we include the timepoint starting the
// zone to determine whether they are conflicting.
//
// * A read at the timepoint that ends the live-range reads the same variable.
// We include the timepoint at the end of the zone to include that read into
// the live-range. Doing otherwise would mean that the two reads access
// different values, which would mean that the value they read are both alive
// at the same time but occupy the same variable.
//
// * A write at the timepoint that ends the live-range starts a new live-range.
// It must not be included in the live-range of the previous definition.
//
// All combinations of reads and writes at the endpoints are possible, but most
// of the time only the write->read (for instance, a live-range from definition
// to last use) and read->write (for instance, an unused range from last use to
// overwrite) and combinations are interesting (half-open ranges). write->write
// zones might be useful as well in some context to represent
// output-dependencies.
//
// @see convertZoneToTimepoints
//
//
// The code makes use of maps and sets in many different spaces. To not loose
// track in which space a set or map is expected to be in, variables holding an
// isl reference are usually annotated in the comments. They roughly follow isl
// syntax for spaces, but only the tuples, not the dimensions. The tuples have a
// meaning as follows:
//
// * Space[] - An unspecified tuple. Used for function parameters such that the
// function caller can use it for anything they like.
//
// * Domain[] - A statement instance as returned by ScopStmt::getDomain()
// isl_id_get_name: Stmt_<NameOfBasicBlock>
// isl_id_get_user: Pointer to ScopStmt
//
// * Element[] - An array element as in the range part of
// MemoryAccess::getAccessRelation()
// isl_id_get_name: MemRef_<NameOfArrayVariable>
// isl_id_get_user: Pointer to ScopArrayInfo
//
// * Scatter[] - Scatter space or space of timepoints
// Has no tuple id
//
// * Zone[] - Range between timepoints as described above
// Has no tuple id
//
// * ValInst[] - An llvm::Value as defined at a specific timepoint.
//
// A ValInst[] itself can be structured as one of:
//
// * [] - An unknown value.
// Always zero dimensions
// Has no tuple id
//
// * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its
// runtime content does not depend on the timepoint.
// Always zero dimensions
// isl_id_get_name: Val_<NameOfValue>
// isl_id_get_user: A pointer to an llvm::Value
//
// * SCEV[...] - A synthesizable llvm::SCEV Expression.
// In contrast to a Value[] is has at least one dimension per
// SCEVAddRecExpr in the SCEV.
//
// * [Domain[] -> Value[]] - An llvm::Value that may change during the
// Scop's execution.
// The tuple itself has no id, but it wraps a map space holding a
// statement instance which defines the llvm::Value as the map's domain
// and llvm::Value itself as range.
//
// @see makeValInst()
//
// An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a
// statement instance to a timepoint, aka a schedule. There is only one scatter
// space, but most of the time multiple statements are processed in one set.
// This is why most of the time isl_union_map has to be used.
//
// The basic algorithm works as follows:
// At first we verify that the SCoP is compatible with this technique. For
// instance, two writes cannot write to the same location at the same statement
// instance because we cannot determine within the polyhedral model which one
// comes first. Once this was verified, we compute zones at which an array
// element is unused. This computation can fail if it takes too long. Then the
// main algorithm is executed. Because every store potentially trails an unused
// zone, we start at stores. We search for a scalar (MemoryKind::Value or
// MemoryKind::PHI) that we can map to the array element overwritten by the
// store, preferably one that is used by the store or at least the ScopStmt.
// When it does not conflict with the lifetime of the values in the array
// element, the map is applied and the unused zone updated as it is now used. We
// continue to try to map scalars to the array element until there are no more
// candidates to map. The algorithm is greedy in the sense that the first scalar
// not conflicting will be mapped. Other scalars processed later that could have
// fit the same unused zone will be rejected. As such the result depends on the
// processing order.
//
//===----------------------------------------------------------------------===//
#include "polly/ZoneAlgo.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/ISLTools.h"
#include "polly/Support/VirtualInstruction.h"
#define DEBUG_TYPE "polly-zone"
using namespace polly;
using namespace llvm;
static isl::union_map computeReachingDefinition(isl::union_map Schedule,
isl::union_map Writes,
bool InclDef, bool InclRedef) {
return computeReachingWrite(Schedule, Writes, false, InclDef, InclRedef);
}
/// Compute the reaching definition of a scalar.
///
/// Compared to computeReachingDefinition, there is just one element which is
/// accessed and therefore only a set if instances that accesses that element is
/// required.
///
/// @param Schedule { DomainWrite[] -> Scatter[] }
/// @param Writes { DomainWrite[] }
/// @param InclDef Include the timepoint of the definition to the result.
/// @param InclRedef Include the timepoint of the overwrite into the result.
///
/// @return { Scatter[] -> DomainWrite[] }
static isl::union_map computeScalarReachingDefinition(isl::union_map Schedule,
isl::union_set Writes,
bool InclDef,
bool InclRedef) {
// { DomainWrite[] -> Element[] }
auto Defs = give(isl_union_map_from_domain(Writes.take()));
// { [Element[] -> Scatter[]] -> DomainWrite[] }
auto ReachDefs =
computeReachingDefinition(Schedule, Defs, InclDef, InclRedef);
// { Scatter[] -> DomainWrite[] }
return give(isl_union_set_unwrap(
isl_union_map_range(isl_union_map_curry(ReachDefs.take()))));
}
/// Compute the reaching definition of a scalar.
///
/// This overload accepts only a single writing statement as an isl_map,
/// consequently the result also is only a single isl_map.
///
/// @param Schedule { DomainWrite[] -> Scatter[] }
/// @param Writes { DomainWrite[] }
/// @param InclDef Include the timepoint of the definition to the result.
/// @param InclRedef Include the timepoint of the overwrite into the result.
///
/// @return { Scatter[] -> DomainWrite[] }
static isl::map computeScalarReachingDefinition(isl::union_map Schedule,
isl::set Writes, bool InclDef,
bool InclRedef) {
auto DomainSpace = give(isl_set_get_space(Writes.keep()));
auto ScatterSpace = getScatterSpace(Schedule);
// { Scatter[] -> DomainWrite[] }
auto UMap = computeScalarReachingDefinition(
Schedule, give(isl_union_set_from_set(Writes.take())), InclDef,
InclRedef);
auto ResultSpace = give(isl_space_map_from_domain_and_range(
ScatterSpace.take(), DomainSpace.take()));
return singleton(UMap, ResultSpace);
}
isl::union_map polly::makeUnknownForDomain(isl::union_set Domain) {
return give(isl_union_map_from_domain(Domain.take()));
}
/// Create a domain-to-unknown value mapping.
///
/// @see makeUnknownForDomain(isl::union_set)
///
/// @param Domain { Domain[] }
///
/// @return { Domain[] -> ValInst[] }
static isl::map makeUnknownForDomain(isl::set Domain) {
return give(isl_map_from_domain(Domain.take()));
}
static std::string printInstruction(Instruction *Instr,
bool IsForDebug = false) {
std::string Result;
raw_string_ostream OS(Result);
Instr->print(OS, IsForDebug);
OS.flush();
size_t i = 0;
while (i < Result.size() && Result[i] == ' ')
i += 1;
return Result.substr(i);
}
ZoneAlgorithm::ZoneAlgorithm(const char *PassName, Scop *S, LoopInfo *LI)
: PassName(PassName), IslCtx(S->getSharedIslCtx()), S(S), LI(LI),
Schedule(S->getSchedule()) {
auto Domains = S->getDomains();
Schedule =
give(isl_union_map_intersect_domain(Schedule.take(), Domains.take()));
ParamSpace = give(isl_union_map_get_space(Schedule.keep()));
ScatterSpace = getScatterSpace(Schedule);
}
bool ZoneAlgorithm::isCompatibleStmt(ScopStmt *Stmt) {
auto Stores = makeEmptyUnionMap();
auto Loads = makeEmptyUnionMap();
// This assumes that the MemoryKind::Array MemoryAccesses are iterated in
// order.
for (auto *MA : *Stmt) {
if (!MA->isLatestArrayKind())
continue;
auto AccRel = give(isl_union_map_from_map(getAccessRelationFor(MA).take()));
if (MA->isRead()) {
// Reject load after store to same location.
if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep())) {
OptimizationRemarkMissed R(PassName, "LoadAfterStore",
MA->getAccessInstruction());
R << "load after store of same element in same statement";
R << " (previous stores: " << Stores;
R << ", loading: " << AccRel << ")";
S->getFunction().getContext().diagnose(R);
return false;
}
Loads = give(isl_union_map_union(Loads.take(), AccRel.take()));
continue;
}
if (!isa<StoreInst>(MA->getAccessInstruction())) {
DEBUG(dbgs() << "WRITE that is not a StoreInst not supported\n");
OptimizationRemarkMissed R(PassName, "UnusualStore",
MA->getAccessInstruction());
R << "encountered write that is not a StoreInst: "
<< printInstruction(MA->getAccessInstruction());
S->getFunction().getContext().diagnose(R);
return false;
}
// In region statements the order is less clear, eg. the load and store
// might be in a boxed loop.
if (Stmt->isRegionStmt() &&
!isl_union_map_is_disjoint(Loads.keep(), AccRel.keep())) {
OptimizationRemarkMissed R(PassName, "StoreInSubregion",
MA->getAccessInstruction());
R << "store is in a non-affine subregion";
S->getFunction().getContext().diagnose(R);
return false;
}
// Do not allow more than one store to the same location.
if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep())) {
OptimizationRemarkMissed R(PassName, "StoreAfterStore",
MA->getAccessInstruction());
R << "store after store of same element in same statement";
R << " (previous stores: " << Stores;
R << ", storing: " << AccRel << ")";
S->getFunction().getContext().diagnose(R);
return false;
}
Stores = give(isl_union_map_union(Stores.take(), AccRel.take()));
}
return true;
}
void ZoneAlgorithm::addArrayReadAccess(MemoryAccess *MA) {
assert(MA->isLatestArrayKind());
assert(MA->isRead());
// { DomainRead[] -> Element[] }
auto AccRel = getAccessRelationFor(MA);
AllReads = give(isl_union_map_add_map(AllReads.take(), AccRel.copy()));
}
void ZoneAlgorithm::addArrayWriteAccess(MemoryAccess *MA) {
assert(MA->isLatestArrayKind());
assert(MA->isWrite());
auto *Stmt = MA->getStatement();
// { Domain[] -> Element[] }
auto AccRel = getAccessRelationFor(MA);
if (MA->isMustWrite())
AllMustWrites =
give(isl_union_map_add_map(AllMustWrites.take(), AccRel.copy()));
if (MA->isMayWrite())
AllMayWrites =
give(isl_union_map_add_map(AllMayWrites.take(), AccRel.copy()));
// { Domain[] -> ValInst[] }
auto WriteValInstance =
makeValInst(MA->getAccessValue(), Stmt,
LI->getLoopFor(MA->getAccessInstruction()->getParent()),
MA->isMustWrite());
// { Domain[] -> [Element[] -> Domain[]] }
auto IncludeElement = give(isl_map_curry(isl_map_domain_map(AccRel.copy())));
// { [Element[] -> DomainWrite[]] -> ValInst[] }
auto EltWriteValInst = give(
isl_map_apply_domain(WriteValInstance.take(), IncludeElement.take()));
AllWriteValInst = give(
isl_union_map_add_map(AllWriteValInst.take(), EltWriteValInst.take()));
}
isl::union_set ZoneAlgorithm::makeEmptyUnionSet() const {
return give(isl_union_set_empty(ParamSpace.copy()));
}
isl::union_map ZoneAlgorithm::makeEmptyUnionMap() const {
return give(isl_union_map_empty(ParamSpace.copy()));
}
bool ZoneAlgorithm::isCompatibleScop() {
for (auto &Stmt : *S) {
if (!isCompatibleStmt(&Stmt))
return false;
}
return true;
}
isl::map ZoneAlgorithm::getScatterFor(ScopStmt *Stmt) const {
isl::space ResultSpace = give(isl_space_map_from_domain_and_range(
Stmt->getDomainSpace().release(), ScatterSpace.copy()));
return give(isl_union_map_extract_map(Schedule.keep(), ResultSpace.take()));
}
isl::map ZoneAlgorithm::getScatterFor(MemoryAccess *MA) const {
return getScatterFor(MA->getStatement());
}
isl::union_map ZoneAlgorithm::getScatterFor(isl::union_set Domain) const {
return give(isl_union_map_intersect_domain(Schedule.copy(), Domain.take()));
}
isl::map ZoneAlgorithm::getScatterFor(isl::set Domain) const {
auto ResultSpace = give(isl_space_map_from_domain_and_range(
isl_set_get_space(Domain.keep()), ScatterSpace.copy()));
auto UDomain = give(isl_union_set_from_set(Domain.copy()));
auto UResult = getScatterFor(std::move(UDomain));
auto Result = singleton(std::move(UResult), std::move(ResultSpace));
assert(!Result || isl_set_is_equal(give(isl_map_domain(Result.copy())).keep(),
Domain.keep()) == isl_bool_true);
return Result;
}
isl::set ZoneAlgorithm::getDomainFor(ScopStmt *Stmt) const {
return Stmt->getDomain().remove_redundancies();
}
isl::set ZoneAlgorithm::getDomainFor(MemoryAccess *MA) const {
return getDomainFor(MA->getStatement());
}
isl::map ZoneAlgorithm::getAccessRelationFor(MemoryAccess *MA) const {
auto Domain = getDomainFor(MA);
auto AccRel = MA->getLatestAccessRelation();
return give(isl_map_intersect_domain(AccRel.take(), Domain.take()));
}
isl::map ZoneAlgorithm::getScalarReachingDefinition(ScopStmt *Stmt) {
auto &Result = ScalarReachDefZone[Stmt];
if (Result)
return Result;
auto Domain = getDomainFor(Stmt);
Result = computeScalarReachingDefinition(Schedule, Domain, false, true);
simplify(Result);
return Result;
}
isl::map ZoneAlgorithm::getScalarReachingDefinition(isl::set DomainDef) {
auto DomId = give(isl_set_get_tuple_id(DomainDef.keep()));
auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(DomId.keep()));
auto StmtResult = getScalarReachingDefinition(Stmt);
return give(isl_map_intersect_range(StmtResult.take(), DomainDef.take()));
}
isl::map ZoneAlgorithm::makeUnknownForDomain(ScopStmt *Stmt) const {
return ::makeUnknownForDomain(getDomainFor(Stmt));
}
isl::id ZoneAlgorithm::makeValueId(Value *V) {
if (!V)
return nullptr;
auto &Id = ValueIds[V];
if (Id.is_null()) {
auto Name = getIslCompatibleName("Val_", V, ValueIds.size() - 1,
std::string(), UseInstructionNames);
Id = give(isl_id_alloc(IslCtx.get(), Name.c_str(), V));
}
return Id;
}
isl::space ZoneAlgorithm::makeValueSpace(Value *V) {
auto Result = give(isl_space_set_from_params(ParamSpace.copy()));
return give(isl_space_set_tuple_id(Result.take(), isl_dim_set,
makeValueId(V).take()));
}
isl::set ZoneAlgorithm::makeValueSet(Value *V) {
auto Space = makeValueSpace(V);
return give(isl_set_universe(Space.take()));
}
isl::map ZoneAlgorithm::makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
bool IsCertain) {
// If the definition/write is conditional, the value at the location could
// be either the written value or the old value. Since we cannot know which
// one, consider the value to be unknown.
if (!IsCertain)
return makeUnknownForDomain(UserStmt);
auto DomainUse = getDomainFor(UserStmt);
auto VUse = VirtualUse::create(S, UserStmt, Scope, Val, true);
switch (VUse.getKind()) {
case VirtualUse::Constant:
case VirtualUse::Block:
case VirtualUse::Hoisted:
case VirtualUse::ReadOnly: {
// The definition does not depend on the statement which uses it.
auto ValSet = makeValueSet(Val);
return give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
}
case VirtualUse::Synthesizable: {
auto *ScevExpr = VUse.getScevExpr();
auto UseDomainSpace = give(isl_set_get_space(DomainUse.keep()));
// Construct the SCEV space.
// TODO: Add only the induction variables referenced in SCEVAddRecExpr
// expressions, not just all of them.
auto ScevId = give(isl_id_alloc(UseDomainSpace.get_ctx().get(), nullptr,
const_cast<SCEV *>(ScevExpr)));
auto ScevSpace =
give(isl_space_drop_dims(UseDomainSpace.copy(), isl_dim_set, 0, 0));
ScevSpace = give(
isl_space_set_tuple_id(ScevSpace.take(), isl_dim_set, ScevId.copy()));
// { DomainUse[] -> ScevExpr[] }
auto ValInst = give(isl_map_identity(isl_space_map_from_domain_and_range(
UseDomainSpace.copy(), ScevSpace.copy())));
return ValInst;
}
case VirtualUse::Intra: {
// Definition and use is in the same statement. We do not need to compute
// a reaching definition.
// { llvm::Value }
auto ValSet = makeValueSet(Val);
// { UserDomain[] -> llvm::Value }
auto ValInstSet =
give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
// { UserDomain[] -> [UserDomain[] - >llvm::Value] }
auto Result = give(isl_map_reverse(isl_map_domain_map(ValInstSet.take())));
simplify(Result);
return Result;
}
case VirtualUse::Inter: {
// The value is defined in a different statement.
auto *Inst = cast<Instruction>(Val);
auto *ValStmt = S->getStmtFor(Inst);
// If the llvm::Value is defined in a removed Stmt, we cannot derive its
// domain. We could use an arbitrary statement, but this could result in
// different ValInst[] for the same llvm::Value.
if (!ValStmt)
return ::makeUnknownForDomain(DomainUse);
// { DomainDef[] }
auto DomainDef = getDomainFor(ValStmt);
// { Scatter[] -> DomainDef[] }
auto ReachDef = getScalarReachingDefinition(DomainDef);
// { DomainUse[] -> Scatter[] }
auto UserSched = getScatterFor(DomainUse);
// { DomainUse[] -> DomainDef[] }
auto UsedInstance =
give(isl_map_apply_range(UserSched.take(), ReachDef.take()));
// { llvm::Value }
auto ValSet = makeValueSet(Val);
// { DomainUse[] -> llvm::Value[] }
auto ValInstSet =
give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
// { DomainUse[] -> [DomainDef[] -> llvm::Value] }
auto Result =
give(isl_map_range_product(UsedInstance.take(), ValInstSet.take()));
simplify(Result);
return Result;
}
}
llvm_unreachable("Unhandled use type");
}
void ZoneAlgorithm::computeCommon() {
AllReads = makeEmptyUnionMap();
AllMayWrites = makeEmptyUnionMap();
AllMustWrites = makeEmptyUnionMap();
AllWriteValInst = makeEmptyUnionMap();
for (auto &Stmt : *S) {
for (auto *MA : Stmt) {
if (!MA->isLatestArrayKind())
continue;
if (MA->isRead())
addArrayReadAccess(MA);
if (MA->isWrite())
addArrayWriteAccess(MA);
}
}
// { DomainWrite[] -> Element[] }
auto AllWrites =
give(isl_union_map_union(AllMustWrites.copy(), AllMayWrites.copy()));
// { [Element[] -> Zone[]] -> DomainWrite[] }
WriteReachDefZone =
computeReachingDefinition(Schedule, AllWrites, false, true);
simplify(WriteReachDefZone);
}
void ZoneAlgorithm::printAccesses(llvm::raw_ostream &OS, int Indent) const {
OS.indent(Indent) << "After accesses {\n";
for (auto &Stmt : *S) {
OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
for (auto *MA : Stmt)
MA->print(OS);
}
OS.indent(Indent) << "}\n";
}
|