//===------ ZoneAlgo.cpp ----------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Derive information about array elements between statements ("Zones"). // // The algorithms here work on the scatter space - the image space of the // schedule returned by Scop::getSchedule(). We call an element in that space a // "timepoint". Timepoints are lexicographically ordered such that we can // defined ranges in the scatter space. We use two flavors of such ranges: // Timepoint sets and zones. A timepoint set is simply a subset of the scatter // space and is directly stored as isl_set. // // Zones are used to describe the space between timepoints as open sets, i.e. // they do not contain the extrema. Using isl rational sets to express these // would be overkill. We also cannot store them as the integer timepoints they // contain; the (nonempty) zone between 1 and 2 would be empty and // indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store // the integer set including the extrema; the set ]1,2[ + ]3,4[ could be // coalesced to ]1,3[, although we defined the range [2,3] to be not in the set. // Instead, we store the "half-open" integer extrema, including the lower bound, // but excluding the upper bound. Examples: // // * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the // integer points 1 and 2, but not 0 or 3) // // * { [1] } represents the zone ]0,1[ // // * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[ // // Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly // speaking the integer points never belong to the zone. However, depending an // the interpretation, one might want to include them. Part of the // interpretation may not be known when the zone is constructed. // // Reads are assumed to always take place before writes, hence we can think of // reads taking place at the beginning of a timepoint and writes at the end. // // Let's assume that the zone represents the lifetime of a variable. That is, // the zone begins with a write that defines the value during its lifetime and // ends with the last read of that value. In the following we consider whether a // read/write at the beginning/ending of the lifetime zone should be within the // zone or outside of it. // // * A read at the timepoint that starts the live-range loads the previous // value. Hence, exclude the timepoint starting the zone. // // * A write at the timepoint that starts the live-range is not defined whether // it occurs before or after the write that starts the lifetime. We do not // allow this situation to occur. Hence, we include the timepoint starting the // zone to determine whether they are conflicting. // // * A read at the timepoint that ends the live-range reads the same variable. // We include the timepoint at the end of the zone to include that read into // the live-range. Doing otherwise would mean that the two reads access // different values, which would mean that the value they read are both alive // at the same time but occupy the same variable. // // * A write at the timepoint that ends the live-range starts a new live-range. // It must not be included in the live-range of the previous definition. // // All combinations of reads and writes at the endpoints are possible, but most // of the time only the write->read (for instance, a live-range from definition // to last use) and read->write (for instance, an unused range from last use to // overwrite) and combinations are interesting (half-open ranges). write->write // zones might be useful as well in some context to represent // output-dependencies. // // @see convertZoneToTimepoints // // // The code makes use of maps and sets in many different spaces. To not loose // track in which space a set or map is expected to be in, variables holding an // isl reference are usually annotated in the comments. They roughly follow isl // syntax for spaces, but only the tuples, not the dimensions. The tuples have a // meaning as follows: // // * Space[] - An unspecified tuple. Used for function parameters such that the // function caller can use it for anything they like. // // * Domain[] - A statement instance as returned by ScopStmt::getDomain() // isl_id_get_name: Stmt_ // isl_id_get_user: Pointer to ScopStmt // // * Element[] - An array element as in the range part of // MemoryAccess::getAccessRelation() // isl_id_get_name: MemRef_ // isl_id_get_user: Pointer to ScopArrayInfo // // * Scatter[] - Scatter space or space of timepoints // Has no tuple id // // * Zone[] - Range between timepoints as described above // Has no tuple id // // * ValInst[] - An llvm::Value as defined at a specific timepoint. // // A ValInst[] itself can be structured as one of: // // * [] - An unknown value. // Always zero dimensions // Has no tuple id // // * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its // runtime content does not depend on the timepoint. // Always zero dimensions // isl_id_get_name: Val_ // isl_id_get_user: A pointer to an llvm::Value // // * SCEV[...] - A synthesizable llvm::SCEV Expression. // In contrast to a Value[] is has at least one dimension per // SCEVAddRecExpr in the SCEV. // // * [Domain[] -> Value[]] - An llvm::Value that may change during the // Scop's execution. // The tuple itself has no id, but it wraps a map space holding a // statement instance which defines the llvm::Value as the map's domain // and llvm::Value itself as range. // // @see makeValInst() // // An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a // statement instance to a timepoint, aka a schedule. There is only one scatter // space, but most of the time multiple statements are processed in one set. // This is why most of the time isl_union_map has to be used. // // The basic algorithm works as follows: // At first we verify that the SCoP is compatible with this technique. For // instance, two writes cannot write to the same location at the same statement // instance because we cannot determine within the polyhedral model which one // comes first. Once this was verified, we compute zones at which an array // element is unused. This computation can fail if it takes too long. Then the // main algorithm is executed. Because every store potentially trails an unused // zone, we start at stores. We search for a scalar (MemoryKind::Value or // MemoryKind::PHI) that we can map to the array element overwritten by the // store, preferably one that is used by the store or at least the ScopStmt. // When it does not conflict with the lifetime of the values in the array // element, the map is applied and the unused zone updated as it is now used. We // continue to try to map scalars to the array element until there are no more // candidates to map. The algorithm is greedy in the sense that the first scalar // not conflicting will be mapped. Other scalars processed later that could have // fit the same unused zone will be rejected. As such the result depends on the // processing order. // //===----------------------------------------------------------------------===// #include "polly/ZoneAlgo.h" #include "polly/ScopInfo.h" #include "polly/Support/GICHelper.h" #include "polly/Support/ISLTools.h" #include "polly/Support/VirtualInstruction.h" #define DEBUG_TYPE "polly-zone" using namespace polly; using namespace llvm; static isl::union_map computeReachingDefinition(isl::union_map Schedule, isl::union_map Writes, bool InclDef, bool InclRedef) { return computeReachingWrite(Schedule, Writes, false, InclDef, InclRedef); } /// Compute the reaching definition of a scalar. /// /// Compared to computeReachingDefinition, there is just one element which is /// accessed and therefore only a set if instances that accesses that element is /// required. /// /// @param Schedule { DomainWrite[] -> Scatter[] } /// @param Writes { DomainWrite[] } /// @param InclDef Include the timepoint of the definition to the result. /// @param InclRedef Include the timepoint of the overwrite into the result. /// /// @return { Scatter[] -> DomainWrite[] } static isl::union_map computeScalarReachingDefinition(isl::union_map Schedule, isl::union_set Writes, bool InclDef, bool InclRedef) { // { DomainWrite[] -> Element[] } auto Defs = give(isl_union_map_from_domain(Writes.take())); // { [Element[] -> Scatter[]] -> DomainWrite[] } auto ReachDefs = computeReachingDefinition(Schedule, Defs, InclDef, InclRedef); // { Scatter[] -> DomainWrite[] } return give(isl_union_set_unwrap( isl_union_map_range(isl_union_map_curry(ReachDefs.take())))); } /// Compute the reaching definition of a scalar. /// /// This overload accepts only a single writing statement as an isl_map, /// consequently the result also is only a single isl_map. /// /// @param Schedule { DomainWrite[] -> Scatter[] } /// @param Writes { DomainWrite[] } /// @param InclDef Include the timepoint of the definition to the result. /// @param InclRedef Include the timepoint of the overwrite into the result. /// /// @return { Scatter[] -> DomainWrite[] } static isl::map computeScalarReachingDefinition(isl::union_map Schedule, isl::set Writes, bool InclDef, bool InclRedef) { auto DomainSpace = give(isl_set_get_space(Writes.keep())); auto ScatterSpace = getScatterSpace(Schedule); // { Scatter[] -> DomainWrite[] } auto UMap = computeScalarReachingDefinition( Schedule, give(isl_union_set_from_set(Writes.take())), InclDef, InclRedef); auto ResultSpace = give(isl_space_map_from_domain_and_range( ScatterSpace.take(), DomainSpace.take())); return singleton(UMap, ResultSpace); } isl::union_map polly::makeUnknownForDomain(isl::union_set Domain) { return give(isl_union_map_from_domain(Domain.take())); } /// Create a domain-to-unknown value mapping. /// /// @see makeUnknownForDomain(isl::union_set) /// /// @param Domain { Domain[] } /// /// @return { Domain[] -> ValInst[] } static isl::map makeUnknownForDomain(isl::set Domain) { return give(isl_map_from_domain(Domain.take())); } static std::string printInstruction(Instruction *Instr, bool IsForDebug = false) { std::string Result; raw_string_ostream OS(Result); Instr->print(OS, IsForDebug); OS.flush(); size_t i = 0; while (i < Result.size() && Result[i] == ' ') i += 1; return Result.substr(i); } ZoneAlgorithm::ZoneAlgorithm(const char *PassName, Scop *S, LoopInfo *LI) : PassName(PassName), IslCtx(S->getSharedIslCtx()), S(S), LI(LI), Schedule(S->getSchedule()) { auto Domains = S->getDomains(); Schedule = give(isl_union_map_intersect_domain(Schedule.take(), Domains.take())); ParamSpace = give(isl_union_map_get_space(Schedule.keep())); ScatterSpace = getScatterSpace(Schedule); } bool ZoneAlgorithm::isCompatibleStmt(ScopStmt *Stmt) { auto Stores = makeEmptyUnionMap(); auto Loads = makeEmptyUnionMap(); // This assumes that the MemoryKind::Array MemoryAccesses are iterated in // order. for (auto *MA : *Stmt) { if (!MA->isLatestArrayKind()) continue; auto AccRel = give(isl_union_map_from_map(getAccessRelationFor(MA).take())); if (MA->isRead()) { // Reject load after store to same location. if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep())) { OptimizationRemarkMissed R(PassName, "LoadAfterStore", MA->getAccessInstruction()); R << "load after store of same element in same statement"; R << " (previous stores: " << Stores; R << ", loading: " << AccRel << ")"; S->getFunction().getContext().diagnose(R); return false; } Loads = give(isl_union_map_union(Loads.take(), AccRel.take())); continue; } if (!isa(MA->getAccessInstruction())) { DEBUG(dbgs() << "WRITE that is not a StoreInst not supported\n"); OptimizationRemarkMissed R(PassName, "UnusualStore", MA->getAccessInstruction()); R << "encountered write that is not a StoreInst: " << printInstruction(MA->getAccessInstruction()); S->getFunction().getContext().diagnose(R); return false; } // In region statements the order is less clear, eg. the load and store // might be in a boxed loop. if (Stmt->isRegionStmt() && !isl_union_map_is_disjoint(Loads.keep(), AccRel.keep())) { OptimizationRemarkMissed R(PassName, "StoreInSubregion", MA->getAccessInstruction()); R << "store is in a non-affine subregion"; S->getFunction().getContext().diagnose(R); return false; } // Do not allow more than one store to the same location. if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep())) { OptimizationRemarkMissed R(PassName, "StoreAfterStore", MA->getAccessInstruction()); R << "store after store of same element in same statement"; R << " (previous stores: " << Stores; R << ", storing: " << AccRel << ")"; S->getFunction().getContext().diagnose(R); return false; } Stores = give(isl_union_map_union(Stores.take(), AccRel.take())); } return true; } void ZoneAlgorithm::addArrayReadAccess(MemoryAccess *MA) { assert(MA->isLatestArrayKind()); assert(MA->isRead()); // { DomainRead[] -> Element[] } auto AccRel = getAccessRelationFor(MA); AllReads = give(isl_union_map_add_map(AllReads.take(), AccRel.copy())); } void ZoneAlgorithm::addArrayWriteAccess(MemoryAccess *MA) { assert(MA->isLatestArrayKind()); assert(MA->isWrite()); auto *Stmt = MA->getStatement(); // { Domain[] -> Element[] } auto AccRel = getAccessRelationFor(MA); if (MA->isMustWrite()) AllMustWrites = give(isl_union_map_add_map(AllMustWrites.take(), AccRel.copy())); if (MA->isMayWrite()) AllMayWrites = give(isl_union_map_add_map(AllMayWrites.take(), AccRel.copy())); // { Domain[] -> ValInst[] } auto WriteValInstance = makeValInst(MA->getAccessValue(), Stmt, LI->getLoopFor(MA->getAccessInstruction()->getParent()), MA->isMustWrite()); // { Domain[] -> [Element[] -> Domain[]] } auto IncludeElement = give(isl_map_curry(isl_map_domain_map(AccRel.copy()))); // { [Element[] -> DomainWrite[]] -> ValInst[] } auto EltWriteValInst = give( isl_map_apply_domain(WriteValInstance.take(), IncludeElement.take())); AllWriteValInst = give( isl_union_map_add_map(AllWriteValInst.take(), EltWriteValInst.take())); } isl::union_set ZoneAlgorithm::makeEmptyUnionSet() const { return give(isl_union_set_empty(ParamSpace.copy())); } isl::union_map ZoneAlgorithm::makeEmptyUnionMap() const { return give(isl_union_map_empty(ParamSpace.copy())); } bool ZoneAlgorithm::isCompatibleScop() { for (auto &Stmt : *S) { if (!isCompatibleStmt(&Stmt)) return false; } return true; } isl::map ZoneAlgorithm::getScatterFor(ScopStmt *Stmt) const { isl::space ResultSpace = give(isl_space_map_from_domain_and_range( Stmt->getDomainSpace().release(), ScatterSpace.copy())); return give(isl_union_map_extract_map(Schedule.keep(), ResultSpace.take())); } isl::map ZoneAlgorithm::getScatterFor(MemoryAccess *MA) const { return getScatterFor(MA->getStatement()); } isl::union_map ZoneAlgorithm::getScatterFor(isl::union_set Domain) const { return give(isl_union_map_intersect_domain(Schedule.copy(), Domain.take())); } isl::map ZoneAlgorithm::getScatterFor(isl::set Domain) const { auto ResultSpace = give(isl_space_map_from_domain_and_range( isl_set_get_space(Domain.keep()), ScatterSpace.copy())); auto UDomain = give(isl_union_set_from_set(Domain.copy())); auto UResult = getScatterFor(std::move(UDomain)); auto Result = singleton(std::move(UResult), std::move(ResultSpace)); assert(!Result || isl_set_is_equal(give(isl_map_domain(Result.copy())).keep(), Domain.keep()) == isl_bool_true); return Result; } isl::set ZoneAlgorithm::getDomainFor(ScopStmt *Stmt) const { return Stmt->getDomain().remove_redundancies(); } isl::set ZoneAlgorithm::getDomainFor(MemoryAccess *MA) const { return getDomainFor(MA->getStatement()); } isl::map ZoneAlgorithm::getAccessRelationFor(MemoryAccess *MA) const { auto Domain = getDomainFor(MA); auto AccRel = MA->getLatestAccessRelation(); return give(isl_map_intersect_domain(AccRel.take(), Domain.take())); } isl::map ZoneAlgorithm::getScalarReachingDefinition(ScopStmt *Stmt) { auto &Result = ScalarReachDefZone[Stmt]; if (Result) return Result; auto Domain = getDomainFor(Stmt); Result = computeScalarReachingDefinition(Schedule, Domain, false, true); simplify(Result); return Result; } isl::map ZoneAlgorithm::getScalarReachingDefinition(isl::set DomainDef) { auto DomId = give(isl_set_get_tuple_id(DomainDef.keep())); auto *Stmt = static_cast(isl_id_get_user(DomId.keep())); auto StmtResult = getScalarReachingDefinition(Stmt); return give(isl_map_intersect_range(StmtResult.take(), DomainDef.take())); } isl::map ZoneAlgorithm::makeUnknownForDomain(ScopStmt *Stmt) const { return ::makeUnknownForDomain(getDomainFor(Stmt)); } isl::id ZoneAlgorithm::makeValueId(Value *V) { if (!V) return nullptr; auto &Id = ValueIds[V]; if (Id.is_null()) { auto Name = getIslCompatibleName("Val_", V, ValueIds.size() - 1, std::string(), UseInstructionNames); Id = give(isl_id_alloc(IslCtx.get(), Name.c_str(), V)); } return Id; } isl::space ZoneAlgorithm::makeValueSpace(Value *V) { auto Result = give(isl_space_set_from_params(ParamSpace.copy())); return give(isl_space_set_tuple_id(Result.take(), isl_dim_set, makeValueId(V).take())); } isl::set ZoneAlgorithm::makeValueSet(Value *V) { auto Space = makeValueSpace(V); return give(isl_set_universe(Space.take())); } isl::map ZoneAlgorithm::makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope, bool IsCertain) { // If the definition/write is conditional, the value at the location could // be either the written value or the old value. Since we cannot know which // one, consider the value to be unknown. if (!IsCertain) return makeUnknownForDomain(UserStmt); auto DomainUse = getDomainFor(UserStmt); auto VUse = VirtualUse::create(S, UserStmt, Scope, Val, true); switch (VUse.getKind()) { case VirtualUse::Constant: case VirtualUse::Block: case VirtualUse::Hoisted: case VirtualUse::ReadOnly: { // The definition does not depend on the statement which uses it. auto ValSet = makeValueSet(Val); return give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take())); } case VirtualUse::Synthesizable: { auto *ScevExpr = VUse.getScevExpr(); auto UseDomainSpace = give(isl_set_get_space(DomainUse.keep())); // Construct the SCEV space. // TODO: Add only the induction variables referenced in SCEVAddRecExpr // expressions, not just all of them. auto ScevId = give(isl_id_alloc(UseDomainSpace.get_ctx().get(), nullptr, const_cast(ScevExpr))); auto ScevSpace = give(isl_space_drop_dims(UseDomainSpace.copy(), isl_dim_set, 0, 0)); ScevSpace = give( isl_space_set_tuple_id(ScevSpace.take(), isl_dim_set, ScevId.copy())); // { DomainUse[] -> ScevExpr[] } auto ValInst = give(isl_map_identity(isl_space_map_from_domain_and_range( UseDomainSpace.copy(), ScevSpace.copy()))); return ValInst; } case VirtualUse::Intra: { // Definition and use is in the same statement. We do not need to compute // a reaching definition. // { llvm::Value } auto ValSet = makeValueSet(Val); // { UserDomain[] -> llvm::Value } auto ValInstSet = give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take())); // { UserDomain[] -> [UserDomain[] - >llvm::Value] } auto Result = give(isl_map_reverse(isl_map_domain_map(ValInstSet.take()))); simplify(Result); return Result; } case VirtualUse::Inter: { // The value is defined in a different statement. auto *Inst = cast(Val); auto *ValStmt = S->getStmtFor(Inst); // If the llvm::Value is defined in a removed Stmt, we cannot derive its // domain. We could use an arbitrary statement, but this could result in // different ValInst[] for the same llvm::Value. if (!ValStmt) return ::makeUnknownForDomain(DomainUse); // { DomainDef[] } auto DomainDef = getDomainFor(ValStmt); // { Scatter[] -> DomainDef[] } auto ReachDef = getScalarReachingDefinition(DomainDef); // { DomainUse[] -> Scatter[] } auto UserSched = getScatterFor(DomainUse); // { DomainUse[] -> DomainDef[] } auto UsedInstance = give(isl_map_apply_range(UserSched.take(), ReachDef.take())); // { llvm::Value } auto ValSet = makeValueSet(Val); // { DomainUse[] -> llvm::Value[] } auto ValInstSet = give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take())); // { DomainUse[] -> [DomainDef[] -> llvm::Value] } auto Result = give(isl_map_range_product(UsedInstance.take(), ValInstSet.take())); simplify(Result); return Result; } } llvm_unreachable("Unhandled use type"); } void ZoneAlgorithm::computeCommon() { AllReads = makeEmptyUnionMap(); AllMayWrites = makeEmptyUnionMap(); AllMustWrites = makeEmptyUnionMap(); AllWriteValInst = makeEmptyUnionMap(); for (auto &Stmt : *S) { for (auto *MA : Stmt) { if (!MA->isLatestArrayKind()) continue; if (MA->isRead()) addArrayReadAccess(MA); if (MA->isWrite()) addArrayWriteAccess(MA); } } // { DomainWrite[] -> Element[] } auto AllWrites = give(isl_union_map_union(AllMustWrites.copy(), AllMayWrites.copy())); // { [Element[] -> Zone[]] -> DomainWrite[] } WriteReachDefZone = computeReachingDefinition(Schedule, AllWrites, false, true); simplify(WriteReachDefZone); } void ZoneAlgorithm::printAccesses(llvm::raw_ostream &OS, int Indent) const { OS.indent(Indent) << "After accesses {\n"; for (auto &Stmt : *S) { OS.indent(Indent + 4) << Stmt.getBaseName() << "\n"; for (auto *MA : Stmt) MA->print(OS); } OS.indent(Indent) << "}\n"; }