summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp
blob: ce42a9bd70fcd555c8c7fef7d5d52906f5dc76a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
//===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the interfaces that Hexagon uses to lower LLVM code
// into a selection DAG.
//
//===----------------------------------------------------------------------===//

#include "HexagonISelLowering.h"
#include "Hexagon.h"
#include "HexagonMachineFunctionInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "HexagonTargetMachine.h"
#include "HexagonTargetObjectFile.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetCallingConv.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "hexagon-lowering"

static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
  cl::init(true), cl::Hidden,
  cl::desc("Control jump table emission on Hexagon target"));

static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched",
  cl::Hidden, cl::ZeroOrMore, cl::init(false),
  cl::desc("Enable Hexagon SDNode scheduling"));

static cl::opt<bool> EnableFastMath("ffast-math",
  cl::Hidden, cl::ZeroOrMore, cl::init(false),
  cl::desc("Enable Fast Math processing"));

static cl::opt<int> MinimumJumpTables("minimum-jump-tables",
  cl::Hidden, cl::ZeroOrMore, cl::init(5),
  cl::desc("Set minimum jump tables"));

static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy",
  cl::Hidden, cl::ZeroOrMore, cl::init(6),
  cl::desc("Max #stores to inline memcpy"));

static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os",
  cl::Hidden, cl::ZeroOrMore, cl::init(4),
  cl::desc("Max #stores to inline memcpy"));

static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove",
  cl::Hidden, cl::ZeroOrMore, cl::init(6),
  cl::desc("Max #stores to inline memmove"));

static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os",
  cl::Hidden, cl::ZeroOrMore, cl::init(4),
  cl::desc("Max #stores to inline memmove"));

static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset",
  cl::Hidden, cl::ZeroOrMore, cl::init(8),
  cl::desc("Max #stores to inline memset"));

static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os",
  cl::Hidden, cl::ZeroOrMore, cl::init(4),
  cl::desc("Max #stores to inline memset"));

static cl::opt<bool> AlignLoads("hexagon-align-loads",
  cl::Hidden, cl::init(false),
  cl::desc("Rewrite unaligned loads as a pair of aligned loads"));


namespace {

  class HexagonCCState : public CCState {
    unsigned NumNamedVarArgParams = 0;

  public:
    HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
                   SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
                   unsigned NumNamedArgs)
        : CCState(CC, IsVarArg, MF, locs, C),
          NumNamedVarArgParams(NumNamedArgs) {}
    unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
  };

} // end anonymous namespace


// Implement calling convention for Hexagon.

static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
                       CCValAssign::LocInfo &LocInfo,
                       ISD::ArgFlagsTy &ArgFlags, CCState &State) {
  static const MCPhysReg ArgRegs[] = {
    Hexagon::R0, Hexagon::R1, Hexagon::R2,
    Hexagon::R3, Hexagon::R4, Hexagon::R5
  };
  const unsigned NumArgRegs = array_lengthof(ArgRegs);
  unsigned RegNum = State.getFirstUnallocated(ArgRegs);

  // RegNum is an index into ArgRegs: skip a register if RegNum is odd.
  if (RegNum != NumArgRegs && RegNum % 2 == 1)
    State.AllocateReg(ArgRegs[RegNum]);

  // Always return false here, as this function only makes sure that the first
  // unallocated register has an even register number and does not actually
  // allocate a register for the current argument.
  return false;
}

#include "HexagonGenCallingConv.inc"


void HexagonTargetLowering::promoteLdStType(MVT VT, MVT PromotedLdStVT) {
  if (VT != PromotedLdStVT) {
    setOperationAction(ISD::LOAD, VT, Promote);
    AddPromotedToType(ISD::LOAD, VT, PromotedLdStVT);

    setOperationAction(ISD::STORE, VT, Promote);
    AddPromotedToType(ISD::STORE, VT, PromotedLdStVT);
  }
}

SDValue
HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
      const {
  return SDValue();
}

/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
/// by "Src" to address "Dst" of size "Size".  Alignment information is
/// specified by the specific parameter attribute. The copy will be passed as
/// a byval function parameter.  Sometimes what we are copying is the end of a
/// larger object, the part that does not fit in registers.
static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
                                         SDValue Chain, ISD::ArgFlagsTy Flags,
                                         SelectionDAG &DAG, const SDLoc &dl) {
  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
                       /*isVolatile=*/false, /*AlwaysInline=*/false,
                       /*isTailCall=*/false,
                       MachinePointerInfo(), MachinePointerInfo());
}

bool
HexagonTargetLowering::CanLowerReturn(
    CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
    const SmallVectorImpl<ISD::OutputArg> &Outs,
    LLVMContext &Context) const {
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);

  if (MF.getSubtarget<HexagonSubtarget>().useHVXOps())
    return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX);
  return CCInfo.CheckReturn(Outs, RetCC_Hexagon);
}

// LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
// passed by value, the function prototype is modified to return void and
// the value is stored in memory pointed by a pointer passed by caller.
SDValue
HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
                                   bool IsVarArg,
                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
                                   const SmallVectorImpl<SDValue> &OutVals,
                                   const SDLoc &dl, SelectionDAG &DAG) const {
  // CCValAssign - represent the assignment of the return value to locations.
  SmallVector<CCValAssign, 16> RVLocs;

  // CCState - Info about the registers and stack slot.
  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());

  // Analyze return values of ISD::RET
  if (Subtarget.useHVXOps())
    CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX);
  else
    CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);

  SDValue Flag;
  SmallVector<SDValue, 4> RetOps(1, Chain);

  // Copy the result values into the output registers.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    CCValAssign &VA = RVLocs[i];

    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);

    // Guarantee that all emitted copies are stuck together with flags.
    Flag = Chain.getValue(1);
    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
  }

  RetOps[0] = Chain;  // Update chain.

  // Add the flag if we have it.
  if (Flag.getNode())
    RetOps.push_back(Flag);

  return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
}

bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
  // If either no tail call or told not to tail call at all, don't.
  auto Attr =
      CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
  if (!CI->isTailCall() || Attr.getValueAsString() == "true")
    return false;

  return true;
}

/// LowerCallResult - Lower the result values of an ISD::CALL into the
/// appropriate copies out of appropriate physical registers.  This assumes that
/// Chain/Glue are the input chain/glue to use, and that TheCall is the call
/// being lowered. Returns a SDNode with the same number of values as the
/// ISD::CALL.
SDValue HexagonTargetLowering::LowerCallResult(
    SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
    const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
  // Assign locations to each value returned by this call.
  SmallVector<CCValAssign, 16> RVLocs;

  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());

  if (Subtarget.useHVXOps())
    CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX);
  else
    CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);

  // Copy all of the result registers out of their specified physreg.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    SDValue RetVal;
    if (RVLocs[i].getValVT() == MVT::i1) {
      // Return values of type MVT::i1 require special handling. The reason
      // is that MVT::i1 is associated with the PredRegs register class, but
      // values of that type are still returned in R0. Generate an explicit
      // copy into a predicate register from R0, and treat the value of the
      // predicate register as the call result.
      auto &MRI = DAG.getMachineFunction().getRegInfo();
      SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
                                       MVT::i32, Glue);
      // FR0 = (Value, Chain, Glue)
      unsigned PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
      SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
                                     FR0.getValue(0), FR0.getValue(2));
      // TPR = (Chain, Glue)
      // Don't glue this CopyFromReg, because it copies from a virtual
      // register. If it is glued to the call, InstrEmitter will add it
      // as an implicit def to the call (EmitMachineNode).
      RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1);
      Glue = TPR.getValue(1);
      Chain = TPR.getValue(0);
    } else {
      RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
                                  RVLocs[i].getValVT(), Glue);
      Glue = RetVal.getValue(2);
      Chain = RetVal.getValue(1);
    }
    InVals.push_back(RetVal.getValue(0));
  }

  return Chain;
}

/// LowerCall - Functions arguments are copied from virtual regs to
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
SDValue
HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
                                 SmallVectorImpl<SDValue> &InVals) const {
  SelectionDAG &DAG                     = CLI.DAG;
  SDLoc &dl                             = CLI.DL;
  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
  SDValue Chain                         = CLI.Chain;
  SDValue Callee                        = CLI.Callee;
  CallingConv::ID CallConv              = CLI.CallConv;
  bool IsVarArg                         = CLI.IsVarArg;
  bool DoesNotReturn                    = CLI.DoesNotReturn;

  bool IsStructRet    = Outs.empty() ? false : Outs[0].Flags.isSRet();
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  auto PtrVT = getPointerTy(MF.getDataLayout());

  unsigned NumParams = CLI.CS.getInstruction()
                        ? CLI.CS.getFunctionType()->getNumParams()
                        : 0;
  if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee))
    Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32);

  // Analyze operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(),
                        NumParams);

  if (Subtarget.useHVXOps())
    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX);
  else
    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);

  auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
  if (Attr.getValueAsString() == "true")
    CLI.IsTailCall = false;

  if (CLI.IsTailCall) {
    bool StructAttrFlag = MF.getFunction().hasStructRetAttr();
    CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
                        IsVarArg, IsStructRet, StructAttrFlag, Outs,
                        OutVals, Ins, DAG);
    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
      CCValAssign &VA = ArgLocs[i];
      if (VA.isMemLoc()) {
        CLI.IsTailCall = false;
        break;
      }
    }
    LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n"
                                         : "Argument must be passed on stack. "
                                           "Not eligible for Tail Call\n"));
  }
  // Get a count of how many bytes are to be pushed on the stack.
  unsigned NumBytes = CCInfo.getNextStackOffset();
  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
  SmallVector<SDValue, 8> MemOpChains;

  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
  SDValue StackPtr =
      DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);

  bool NeedsArgAlign = false;
  unsigned LargestAlignSeen = 0;
  // Walk the register/memloc assignments, inserting copies/loads.
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    SDValue Arg = OutVals[i];
    ISD::ArgFlagsTy Flags = Outs[i].Flags;
    // Record if we need > 8 byte alignment on an argument.
    bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT());
    NeedsArgAlign |= ArgAlign;

    // Promote the value if needed.
    switch (VA.getLocInfo()) {
      default:
        // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
        llvm_unreachable("Unknown loc info!");
      case CCValAssign::Full:
        break;
      case CCValAssign::BCvt:
        Arg = DAG.getBitcast(VA.getLocVT(), Arg);
        break;
      case CCValAssign::SExt:
        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
        break;
      case CCValAssign::ZExt:
        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
        break;
      case CCValAssign::AExt:
        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
        break;
    }

    if (VA.isMemLoc()) {
      unsigned LocMemOffset = VA.getLocMemOffset();
      SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
                                        StackPtr.getValueType());
      MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
      if (ArgAlign)
        LargestAlignSeen = std::max(LargestAlignSeen,
                                    VA.getLocVT().getStoreSizeInBits() >> 3);
      if (Flags.isByVal()) {
        // The argument is a struct passed by value. According to LLVM, "Arg"
        // is a pointer.
        MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
                                                        Flags, DAG, dl));
      } else {
        MachinePointerInfo LocPI = MachinePointerInfo::getStack(
            DAG.getMachineFunction(), LocMemOffset);
        SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
        MemOpChains.push_back(S);
      }
      continue;
    }

    // Arguments that can be passed on register must be kept at RegsToPass
    // vector.
    if (VA.isRegLoc())
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
  }

  if (NeedsArgAlign && Subtarget.hasV60TOps()) {
    LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
    unsigned VecAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
    LargestAlignSeen = std::max(LargestAlignSeen, VecAlign);
    MFI.ensureMaxAlignment(LargestAlignSeen);
  }
  // Transform all store nodes into one single node because all store
  // nodes are independent of each other.
  if (!MemOpChains.empty())
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);

  SDValue Glue;
  if (!CLI.IsTailCall) {
    Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
    Glue = Chain.getValue(1);
  }

  // Build a sequence of copy-to-reg nodes chained together with token
  // chain and flag operands which copy the outgoing args into registers.
  // The Glue is necessary since all emitted instructions must be
  // stuck together.
  if (!CLI.IsTailCall) {
    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
                               RegsToPass[i].second, Glue);
      Glue = Chain.getValue(1);
    }
  } else {
    // For tail calls lower the arguments to the 'real' stack slot.
    //
    // Force all the incoming stack arguments to be loaded from the stack
    // before any new outgoing arguments are stored to the stack, because the
    // outgoing stack slots may alias the incoming argument stack slots, and
    // the alias isn't otherwise explicit. This is slightly more conservative
    // than necessary, because it means that each store effectively depends
    // on every argument instead of just those arguments it would clobber.
    //
    // Do not flag preceding copytoreg stuff together with the following stuff.
    Glue = SDValue();
    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
                               RegsToPass[i].second, Glue);
      Glue = Chain.getValue(1);
    }
    Glue = SDValue();
  }

  bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
  unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;

  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
  // node so that legalize doesn't hack it.
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
  } else if (ExternalSymbolSDNode *S =
             dyn_cast<ExternalSymbolSDNode>(Callee)) {
    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
  }

  // Returns a chain & a flag for retval copy to use.
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
  SmallVector<SDValue, 8> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Callee);

  // Add argument registers to the end of the list so that they are
  // known live into the call.
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
                                  RegsToPass[i].second.getValueType()));
  }

  const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv);
  assert(Mask && "Missing call preserved mask for calling convention");
  Ops.push_back(DAG.getRegisterMask(Mask));

  if (Glue.getNode())
    Ops.push_back(Glue);

  if (CLI.IsTailCall) {
    MFI.setHasTailCall();
    return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
  }

  // Set this here because we need to know this for "hasFP" in frame lowering.
  // The target-independent code calls getFrameRegister before setting it, and
  // getFrameRegister uses hasFP to determine whether the function has FP.
  MFI.setHasCalls(true);

  unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
  Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
  Glue = Chain.getValue(1);

  // Create the CALLSEQ_END node.
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
                             DAG.getIntPtrConstant(0, dl, true), Glue, dl);
  Glue = Chain.getValue(1);

  // Handle result values, copying them out of physregs into vregs that we
  // return.
  return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
                         InVals, OutVals, Callee);
}

/// Returns true by value, base pointer and offset pointer and addressing
/// mode by reference if this node can be combined with a load / store to
/// form a post-indexed load / store.
bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
      SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM,
      SelectionDAG &DAG) const {
  LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N);
  if (!LSN)
    return false;
  EVT VT = LSN->getMemoryVT();
  if (!VT.isSimple())
    return false;
  bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
                     VT == MVT::i64 || VT == MVT::v2i16 || VT == MVT::v2i32 ||
                     VT == MVT::v4i8 || VT == MVT::v4i16 || VT == MVT::v8i8 ||
                     Subtarget.isHVXVectorType(VT.getSimpleVT());
  if (!IsLegalType)
    return false;

  if (Op->getOpcode() != ISD::ADD)
    return false;
  Base = Op->getOperand(0);
  Offset = Op->getOperand(1);
  if (!isa<ConstantSDNode>(Offset.getNode()))
    return false;
  AM = ISD::POST_INC;

  int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
  return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V);
}

SDValue
HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
  unsigned LR = HRI.getRARegister();

  if (Op.getOpcode() != ISD::INLINEASM || HMFI.hasClobberLR())
    return Op;

  unsigned NumOps = Op.getNumOperands();
  if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue)
    --NumOps;  // Ignore the flag operand.

  for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
    unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
    ++i;  // Skip the ID value.

    switch (InlineAsm::getKind(Flags)) {
      default:
        llvm_unreachable("Bad flags!");
      case InlineAsm::Kind_RegUse:
      case InlineAsm::Kind_Imm:
      case InlineAsm::Kind_Mem:
        i += NumVals;
        break;
      case InlineAsm::Kind_Clobber:
      case InlineAsm::Kind_RegDef:
      case InlineAsm::Kind_RegDefEarlyClobber: {
        for (; NumVals; --NumVals, ++i) {
          unsigned Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
          if (Reg != LR)
            continue;
          HMFI.setHasClobberLR(true);
          return Op;
        }
        break;
      }
    }
  }

  return Op;
}

// Need to transform ISD::PREFETCH into something that doesn't inherit
// all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
// SDNPMayStore.
SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
                                             SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  SDValue Addr = Op.getOperand(1);
  // Lower it to DCFETCH($reg, #0).  A "pat" will try to merge the offset in,
  // if the "reg" is fed by an "add".
  SDLoc DL(Op);
  SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
  return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
}

// Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode
// is marked as having side-effects, while the register read on Hexagon does
// not have any. TableGen refuses to accept the direct pattern from that node
// to the A4_tfrcpp.
SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
                                                     SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  SDLoc dl(Op);
  SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
  return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain);
}

SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
      SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
  // Lower the hexagon_prefetch builtin to DCFETCH, as above.
  if (IntNo == Intrinsic::hexagon_prefetch) {
    SDValue Addr = Op.getOperand(2);
    SDLoc DL(Op);
    SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
    return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
  }
  return SDValue();
}

SDValue
HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
                                               SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  SDValue Size = Op.getOperand(1);
  SDValue Align = Op.getOperand(2);
  SDLoc dl(Op);

  ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
  assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");

  unsigned A = AlignConst->getSExtValue();
  auto &HFI = *Subtarget.getFrameLowering();
  // "Zero" means natural stack alignment.
  if (A == 0)
    A = HFI.getStackAlignment();

  LLVM_DEBUG({
    dbgs () << __func__ << " Align: " << A << " Size: ";
    Size.getNode()->dump(&DAG);
    dbgs() << "\n";
  });

  SDValue AC = DAG.getConstant(A, dl, MVT::i32);
  SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
  SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);

  DAG.ReplaceAllUsesOfValueWith(Op, AA);
  return AA;
}

SDValue HexagonTargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MachineRegisterInfo &MRI = MF.getRegInfo();

  // Assign locations to all of the incoming arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(),
                        MF.getFunction().getFunctionType()->getNumParams());

  if (Subtarget.useHVXOps())
    CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX);
  else
    CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);

  // For LLVM, in the case when returning a struct by value (>8byte),
  // the first argument is a pointer that points to the location on caller's
  // stack where the return value will be stored. For Hexagon, the location on
  // caller's stack is passed only when the struct size is smaller than (and
  // equal to) 8 bytes. If not, no address will be passed into callee and
  // callee return the result direclty through R0/R1.

  auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();

  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    ISD::ArgFlagsTy Flags = Ins[i].Flags;
    bool ByVal = Flags.isByVal();

    // Arguments passed in registers:
    // 1. 32- and 64-bit values and HVX vectors are passed directly,
    // 2. Large structs are passed via an address, and the address is
    //    passed in a register.
    if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8)
      llvm_unreachable("ByValSize must be bigger than 8 bytes");

    bool InReg = VA.isRegLoc() &&
                 (!ByVal || (ByVal && Flags.getByValSize() > 8));

    if (InReg) {
      MVT RegVT = VA.getLocVT();
      if (VA.getLocInfo() == CCValAssign::BCvt)
        RegVT = VA.getValVT();

      const TargetRegisterClass *RC = getRegClassFor(RegVT);
      unsigned VReg = MRI.createVirtualRegister(RC);
      SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);

      // Treat values of type MVT::i1 specially: they are passed in
      // registers of type i32, but they need to remain as values of
      // type i1 for consistency of the argument lowering.
      if (VA.getValVT() == MVT::i1) {
        assert(RegVT.getSizeInBits() <= 32);
        SDValue T = DAG.getNode(ISD::AND, dl, RegVT,
                                Copy, DAG.getConstant(1, dl, RegVT));
        Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT),
                            ISD::SETNE);
      } else {
#ifndef NDEBUG
        unsigned RegSize = RegVT.getSizeInBits();
        assert(RegSize == 32 || RegSize == 64 ||
               Subtarget.isHVXVectorType(RegVT));
#endif
      }
      InVals.push_back(Copy);
      MRI.addLiveIn(VA.getLocReg(), VReg);
    } else {
      assert(VA.isMemLoc() && "Argument should be passed in memory");

      // If it's a byval parameter, then we need to compute the
      // "real" size, not the size of the pointer.
      unsigned ObjSize = Flags.isByVal()
                            ? Flags.getByValSize()
                            : VA.getLocVT().getStoreSizeInBits() / 8;

      // Create the frame index object for this incoming parameter.
      int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
      int FI = MFI.CreateFixedObject(ObjSize, Offset, true);
      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);

      if (Flags.isByVal()) {
        // If it's a pass-by-value aggregate, then do not dereference the stack
        // location. Instead, we should generate a reference to the stack
        // location.
        InVals.push_back(FIN);
      } else {
        SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
                                MachinePointerInfo::getFixedStack(MF, FI, 0));
        InVals.push_back(L);
      }
    }
  }


  if (IsVarArg) {
    // This will point to the next argument passed via stack.
    int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
    int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
    HMFI.setVarArgsFrameIndex(FI);
  }

  return Chain;
}

SDValue
HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
  // VASTART stores the address of the VarArgsFrameIndex slot into the
  // memory location argument.
  MachineFunction &MF = DAG.getMachineFunction();
  HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
  SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
  return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
                      MachinePointerInfo(SV));
}

SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
  const SDLoc &dl(Op);
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
  MVT ResTy = ty(Op);
  MVT OpTy = ty(LHS);

  if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
    MVT ElemTy = OpTy.getVectorElementType();
    assert(ElemTy.isScalarInteger());
    MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
                                  OpTy.getVectorNumElements());
    return DAG.getSetCC(dl, ResTy,
                        DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy),
                        DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC);
  }

  // Treat all other vector types as legal.
  if (ResTy.isVector())
    return Op;

  // Comparisons of short integers should use sign-extend, not zero-extend,
  // since we can represent small negative values in the compare instructions.
  // The LLVM default is to use zero-extend arbitrarily in these cases.
  auto isSExtFree = [this](SDValue N) {
    switch (N.getOpcode()) {
      case ISD::TRUNCATE: {
        // A sign-extend of a truncate of a sign-extend is free.
        SDValue Op = N.getOperand(0);
        if (Op.getOpcode() != ISD::AssertSext)
          return false;
        MVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT().getSimpleVT();
        unsigned ThisBW = ty(N).getSizeInBits();
        unsigned OrigBW = OrigTy.getSizeInBits();
        // The type that was sign-extended to get the AssertSext must be
        // narrower than the type of N (so that N has still the same value
        // as the original).
        return ThisBW >= OrigBW;
      }
      case ISD::LOAD:
        // We have sign-extended loads.
        return true;
    }
    return false;
  };

  if (OpTy == MVT::i8 || OpTy == MVT::i16) {
    ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
    bool IsNegative = C && C->getAPIntValue().isNegative();
    if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS))
      return DAG.getSetCC(dl, ResTy,
                          DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32),
                          DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC);
  }

  return SDValue();
}

SDValue
HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
  SDValue PredOp = Op.getOperand(0);
  SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
  EVT OpVT = Op1.getValueType();
  SDLoc DL(Op);

  if (OpVT == MVT::v2i16) {
    SDValue X1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op1);
    SDValue X2 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op2);
    SDValue SL = DAG.getNode(ISD::VSELECT, DL, MVT::v2i32, PredOp, X1, X2);
    SDValue TR = DAG.getNode(ISD::TRUNCATE, DL, MVT::v2i16, SL);
    return TR;
  }

  return SDValue();
}

static Constant *convert_i1_to_i8(const Constant *ConstVal) {
  SmallVector<Constant *, 128> NewConst;
  const ConstantVector *CV = dyn_cast<ConstantVector>(ConstVal);
  if (!CV)
    return nullptr;

  LLVMContext &Ctx = ConstVal->getContext();
  IRBuilder<> IRB(Ctx);
  unsigned NumVectorElements = CV->getNumOperands();
  assert(isPowerOf2_32(NumVectorElements) &&
         "conversion only supported for pow2 VectorSize!");

  for (unsigned i = 0; i < NumVectorElements / 8; ++i) {
    uint8_t x = 0;
    for (unsigned j = 0; j < 8; ++j) {
      uint8_t y = CV->getOperand(i * 8 + j)->getUniqueInteger().getZExtValue();
      x |= y << (7 - j);
    }
    assert((x == 0 || x == 255) && "Either all 0's or all 1's expected!");
    NewConst.push_back(IRB.getInt8(x));
  }
  return ConstantVector::get(NewConst);
}

SDValue
HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
  EVT ValTy = Op.getValueType();
  ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
  Constant *CVal = nullptr;
  bool isVTi1Type = false;
  if (const Constant *ConstVal = dyn_cast<Constant>(CPN->getConstVal())) {
    Type *CValTy = ConstVal->getType();
    if (CValTy->isVectorTy() &&
        CValTy->getVectorElementType()->isIntegerTy(1)) {
      CVal = convert_i1_to_i8(ConstVal);
      isVTi1Type = (CVal != nullptr);
    }
  }
  unsigned Align = CPN->getAlignment();
  bool IsPositionIndependent = isPositionIndependent();
  unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;

  unsigned Offset = 0;
  SDValue T;
  if (CPN->isMachineConstantPoolEntry())
    T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, Offset,
                                  TF);
  else if (isVTi1Type)
    T = DAG.getTargetConstantPool(CVal, ValTy, Align, Offset, TF);
  else
    T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, Offset, TF);

  assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
         "Inconsistent target flag encountered");

  if (IsPositionIndependent)
    return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
  return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
}

SDValue
HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
  EVT VT = Op.getValueType();
  int Idx = cast<JumpTableSDNode>(Op)->getIndex();
  if (isPositionIndependent()) {
    SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
    return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
  }

  SDValue T = DAG.getTargetJumpTable(Idx, VT);
  return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
}

SDValue
HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  MFI.setReturnAddressIsTaken(true);

  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
    return SDValue();

  EVT VT = Op.getValueType();
  SDLoc dl(Op);
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
  if (Depth) {
    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
    SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
                       MachinePointerInfo());
  }

  // Return LR, which contains the return address. Mark it an implicit live-in.
  unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
}

SDValue
HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
  MFI.setFrameAddressIsTaken(true);

  EVT VT = Op.getValueType();
  SDLoc dl(Op);
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
                                         HRI.getFrameRegister(), VT);
  while (Depth--)
    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
                            MachinePointerInfo());
  return FrameAddr;
}

SDValue
HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
  SDLoc dl(Op);
  return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
}

SDValue
HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
  SDLoc dl(Op);
  auto *GAN = cast<GlobalAddressSDNode>(Op);
  auto PtrVT = getPointerTy(DAG.getDataLayout());
  auto *GV = GAN->getGlobal();
  int64_t Offset = GAN->getOffset();

  auto &HLOF = *HTM.getObjFileLowering();
  Reloc::Model RM = HTM.getRelocationModel();

  if (RM == Reloc::Static) {
    SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
    const GlobalObject *GO = GV->getBaseObject();
    if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM))
      return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
    return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
  }

  bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
  if (UsePCRel) {
    SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
                                            HexagonII::MO_PCREL);
    return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
  }

  // Use GOT index.
  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
  SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
  return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
}

// Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
SDValue
HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
  SDLoc dl(Op);
  EVT PtrVT = getPointerTy(DAG.getDataLayout());

  Reloc::Model RM = HTM.getRelocationModel();
  if (RM == Reloc::Static) {
    SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
    return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
  }

  SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
  return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
}

SDValue
HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
      const {
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
                                               HexagonII::MO_PCREL);
  return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
}

SDValue
HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
      GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg,
      unsigned char OperandFlags) const {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
  SDLoc dl(GA);
  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
                                           GA->getValueType(0),
                                           GA->getOffset(),
                                           OperandFlags);
  // Create Operands for the call.The Operands should have the following:
  // 1. Chain SDValue
  // 2. Callee which in this case is the Global address value.
  // 3. Registers live into the call.In this case its R0, as we
  //    have just one argument to be passed.
  // 4. Glue.
  // Note: The order is important.

  const auto &HRI = *Subtarget.getRegisterInfo();
  const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C);
  assert(Mask && "Missing call preserved mask for calling convention");
  SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT),
                    DAG.getRegisterMask(Mask), Glue };
  Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);

  // Inform MFI that function has calls.
  MFI.setAdjustsStack(true);

  Glue = Chain.getValue(1);
  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue);
}

//
// Lower using the intial executable model for TLS addresses
//
SDValue
HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
      SelectionDAG &DAG) const {
  SDLoc dl(GA);
  int64_t Offset = GA->getOffset();
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  // Get the thread pointer.
  SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);

  bool IsPositionIndependent = isPositionIndependent();
  unsigned char TF =
      IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;

  // First generate the TLS symbol address
  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
                                           Offset, TF);

  SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);

  if (IsPositionIndependent) {
    // Generate the GOT pointer in case of position independent code
    SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);

    // Add the TLS Symbol address to GOT pointer.This gives
    // GOT relative relocation for the symbol.
    Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
  }

  // Load the offset value for TLS symbol.This offset is relative to
  // thread pointer.
  SDValue LoadOffset =
      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());

  // Address of the thread local variable is the add of thread
  // pointer and the offset of the variable.
  return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
}

//
// Lower using the local executable model for TLS addresses
//
SDValue
HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
      SelectionDAG &DAG) const {
  SDLoc dl(GA);
  int64_t Offset = GA->getOffset();
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  // Get the thread pointer.
  SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
  // Generate the TLS symbol address
  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
                                           HexagonII::MO_TPREL);
  SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);

  // Address of the thread local variable is the add of thread
  // pointer and the offset of the variable.
  return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
}

//
// Lower using the general dynamic model for TLS addresses
//
SDValue
HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
      SelectionDAG &DAG) const {
  SDLoc dl(GA);
  int64_t Offset = GA->getOffset();
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  // First generate the TLS symbol address
  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
                                           HexagonII::MO_GDGOT);

  // Then, generate the GOT pointer
  SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);

  // Add the TLS symbol and the GOT pointer
  SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
  SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);

  // Copy over the argument to R0
  SDValue InFlag;
  Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag);
  InFlag = Chain.getValue(1);

  unsigned Flags =
      static_cast<const HexagonSubtarget &>(DAG.getSubtarget()).useLongCalls()
          ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended
          : HexagonII::MO_GDPLT;

  return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT,
                           Hexagon::R0, Flags);
}

//
// Lower TLS addresses.
//
// For now for dynamic models, we only support the general dynamic model.
//
SDValue
HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
      SelectionDAG &DAG) const {
  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);

  switch (HTM.getTLSModel(GA->getGlobal())) {
    case TLSModel::GeneralDynamic:
    case TLSModel::LocalDynamic:
      return LowerToTLSGeneralDynamicModel(GA, DAG);
    case TLSModel::InitialExec:
      return LowerToTLSInitialExecModel(GA, DAG);
    case TLSModel::LocalExec:
      return LowerToTLSLocalExecModel(GA, DAG);
  }
  llvm_unreachable("Bogus TLS model");
}

//===----------------------------------------------------------------------===//
// TargetLowering Implementation
//===----------------------------------------------------------------------===//

HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
                                             const HexagonSubtarget &ST)
    : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
      Subtarget(ST) {
  bool IsV4 = !Subtarget.hasV5TOps();
  auto &HRI = *Subtarget.getRegisterInfo();

  setPrefLoopAlignment(4);
  setPrefFunctionAlignment(4);
  setMinFunctionAlignment(2);
  setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
  setBooleanContents(TargetLoweringBase::UndefinedBooleanContent);
  setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent);

  setMaxAtomicSizeInBitsSupported(64);
  setMinCmpXchgSizeInBits(32);

  if (EnableHexSDNodeSched)
    setSchedulingPreference(Sched::VLIW);
  else
    setSchedulingPreference(Sched::Source);

  // Limits for inline expansion of memcpy/memmove
  MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
  MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
  MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
  MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
  MaxStoresPerMemset = MaxStoresPerMemsetCL;
  MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;

  //
  // Set up register classes.
  //

  addRegisterClass(MVT::i1,    &Hexagon::PredRegsRegClass);
  addRegisterClass(MVT::v2i1,  &Hexagon::PredRegsRegClass);  // bbbbaaaa
  addRegisterClass(MVT::v4i1,  &Hexagon::PredRegsRegClass);  // ddccbbaa
  addRegisterClass(MVT::v8i1,  &Hexagon::PredRegsRegClass);  // hgfedcba
  addRegisterClass(MVT::i32,   &Hexagon::IntRegsRegClass);
  addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
  addRegisterClass(MVT::v4i8,  &Hexagon::IntRegsRegClass);
  addRegisterClass(MVT::i64,   &Hexagon::DoubleRegsRegClass);
  addRegisterClass(MVT::v8i8,  &Hexagon::DoubleRegsRegClass);
  addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
  addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);

  if (Subtarget.hasV5TOps()) {
    addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
    addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
  }

  //
  // Handling of scalar operations.
  //
  // All operations default to "legal", except:
  // - indexed loads and stores (pre-/post-incremented),
  // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
  //   ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
  //   FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
  //   FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
  // which default to "expand" for at least one type.

  // Misc operations.
  setOperationAction(ISD::ConstantFP, MVT::f32, Legal); // Default: expand
  setOperationAction(ISD::ConstantFP, MVT::f64, Legal); // Default: expand

  setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
  setOperationAction(ISD::JumpTable, MVT::i32, Custom);
  setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
  setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
  setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
  setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
  setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);

  // Custom legalize GlobalAddress nodes into CONST32.
  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
  setOperationAction(ISD::GlobalAddress, MVT::i8,  Custom);
  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);

  // Hexagon needs to optimize cases with negative constants.
  setOperationAction(ISD::SETCC, MVT::i8,    Custom);
  setOperationAction(ISD::SETCC, MVT::i16,   Custom);
  setOperationAction(ISD::SETCC, MVT::v4i8,  Custom);
  setOperationAction(ISD::SETCC, MVT::v2i16, Custom);

  // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
  setOperationAction(ISD::VASTART, MVT::Other, Custom);
  setOperationAction(ISD::VAEND,   MVT::Other, Expand);
  setOperationAction(ISD::VAARG,   MVT::Other, Expand);
  setOperationAction(ISD::VACOPY,  MVT::Other, Expand);

  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);

  if (EmitJumpTables)
    setMinimumJumpTableEntries(MinimumJumpTables);
  else
    setMinimumJumpTableEntries(std::numeric_limits<int>::max());
  setOperationAction(ISD::BR_JT, MVT::Other, Expand);

  // Hexagon has instructions for add/sub with carry. The problem with
  // modeling these instructions is that they produce 2 results: Rdd and Px.
  // To model the update of Px, we will have to use Defs[p0..p3] which will
  // cause any predicate live range to spill. So, we pretend we dont't have
  // these instructions.
  setOperationAction(ISD::ADDE, MVT::i8,  Expand);
  setOperationAction(ISD::ADDE, MVT::i16, Expand);
  setOperationAction(ISD::ADDE, MVT::i32, Expand);
  setOperationAction(ISD::ADDE, MVT::i64, Expand);
  setOperationAction(ISD::SUBE, MVT::i8,  Expand);
  setOperationAction(ISD::SUBE, MVT::i16, Expand);
  setOperationAction(ISD::SUBE, MVT::i32, Expand);
  setOperationAction(ISD::SUBE, MVT::i64, Expand);
  setOperationAction(ISD::ADDC, MVT::i8,  Expand);
  setOperationAction(ISD::ADDC, MVT::i16, Expand);
  setOperationAction(ISD::ADDC, MVT::i32, Expand);
  setOperationAction(ISD::ADDC, MVT::i64, Expand);
  setOperationAction(ISD::SUBC, MVT::i8,  Expand);
  setOperationAction(ISD::SUBC, MVT::i16, Expand);
  setOperationAction(ISD::SUBC, MVT::i32, Expand);
  setOperationAction(ISD::SUBC, MVT::i64, Expand);

  // Only add and sub that detect overflow are the saturating ones.
  for (MVT VT : MVT::integer_valuetypes()) {
    setOperationAction(ISD::UADDO, VT, Expand);
    setOperationAction(ISD::SADDO, VT, Expand);
    setOperationAction(ISD::USUBO, VT, Expand);
    setOperationAction(ISD::SSUBO, VT, Expand);
  }

  setOperationAction(ISD::CTLZ, MVT::i8,  Promote);
  setOperationAction(ISD::CTLZ, MVT::i16, Promote);
  setOperationAction(ISD::CTTZ, MVT::i8,  Promote);
  setOperationAction(ISD::CTTZ, MVT::i16, Promote);

  // In V5, popcount can count # of 1s in i64 but returns i32.
  // On V4 it will be expanded (set later).
  setOperationAction(ISD::CTPOP, MVT::i8,  Promote);
  setOperationAction(ISD::CTPOP, MVT::i16, Promote);
  setOperationAction(ISD::CTPOP, MVT::i32, Promote);
  setOperationAction(ISD::CTPOP, MVT::i64, Legal);

  setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
  setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
  setOperationAction(ISD::BSWAP, MVT::i32, Legal);
  setOperationAction(ISD::BSWAP, MVT::i64, Legal);
  setOperationAction(ISD::MUL,   MVT::i64, Legal);

  for (unsigned IntExpOp :
       { ISD::SDIV,      ISD::UDIV,      ISD::SREM,      ISD::UREM,
         ISD::SDIVREM,   ISD::UDIVREM,   ISD::ROTL,      ISD::ROTR,
         ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
         ISD::SMUL_LOHI, ISD::UMUL_LOHI }) {
    setOperationAction(IntExpOp, MVT::i32, Expand);
    setOperationAction(IntExpOp, MVT::i64, Expand);
  }

  for (unsigned FPExpOp :
       {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
        ISD::FPOW, ISD::FCOPYSIGN}) {
    setOperationAction(FPExpOp, MVT::f32, Expand);
    setOperationAction(FPExpOp, MVT::f64, Expand);
  }

  // No extending loads from i32.
  for (MVT VT : MVT::integer_valuetypes()) {
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
    setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i32, Expand);
  }
  // Turn FP truncstore into trunc + store.
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
  // Turn FP extload into load/fpextend.
  for (MVT VT : MVT::fp_valuetypes())
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);

  // Expand BR_CC and SELECT_CC for all integer and fp types.
  for (MVT VT : MVT::integer_valuetypes()) {
    setOperationAction(ISD::BR_CC,     VT, Expand);
    setOperationAction(ISD::SELECT_CC, VT, Expand);
  }
  for (MVT VT : MVT::fp_valuetypes()) {
    setOperationAction(ISD::BR_CC,     VT, Expand);
    setOperationAction(ISD::SELECT_CC, VT, Expand);
  }
  setOperationAction(ISD::BR_CC, MVT::Other, Expand);

  //
  // Handling of vector operations.
  //

  promoteLdStType(MVT::v4i8,  MVT::i32);
  promoteLdStType(MVT::v2i16, MVT::i32);
  promoteLdStType(MVT::v8i8,  MVT::i64);
  promoteLdStType(MVT::v4i16, MVT::i64);
  promoteLdStType(MVT::v2i32, MVT::i64);

  // Set the action for vector operations to "expand", then override it with
  // either "custom" or "legal" for specific cases.
  static const unsigned VectExpOps[] = {
    // Integer arithmetic:
    ISD::ADD,     ISD::SUB,     ISD::MUL,     ISD::SDIV,    ISD::UDIV,
    ISD::SREM,    ISD::UREM,    ISD::SDIVREM, ISD::UDIVREM, ISD::ADDC,
    ISD::SUBC,    ISD::SADDO,   ISD::UADDO,   ISD::SSUBO,   ISD::USUBO,
    ISD::SMUL_LOHI,             ISD::UMUL_LOHI,
    // Logical/bit:
    ISD::AND,     ISD::OR,      ISD::XOR,     ISD::ROTL,    ISD::ROTR,
    ISD::CTPOP,   ISD::CTLZ,    ISD::CTTZ,
    // Floating point arithmetic/math functions:
    ISD::FADD,    ISD::FSUB,    ISD::FMUL,    ISD::FMA,     ISD::FDIV,
    ISD::FREM,    ISD::FNEG,    ISD::FABS,    ISD::FSQRT,   ISD::FSIN,
    ISD::FCOS,    ISD::FPOW,    ISD::FLOG,    ISD::FLOG2,
    ISD::FLOG10,  ISD::FEXP,    ISD::FEXP2,   ISD::FCEIL,   ISD::FTRUNC,
    ISD::FRINT,   ISD::FNEARBYINT,            ISD::FROUND,  ISD::FFLOOR,
    ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS,
    // Misc:
    ISD::BR_CC,   ISD::SELECT_CC,             ISD::ConstantPool,
    // Vector:
    ISD::BUILD_VECTOR,          ISD::SCALAR_TO_VECTOR,
    ISD::EXTRACT_VECTOR_ELT,    ISD::INSERT_VECTOR_ELT,
    ISD::EXTRACT_SUBVECTOR,     ISD::INSERT_SUBVECTOR,
    ISD::CONCAT_VECTORS,        ISD::VECTOR_SHUFFLE
  };

  for (MVT VT : MVT::vector_valuetypes()) {
    for (unsigned VectExpOp : VectExpOps)
      setOperationAction(VectExpOp, VT, Expand);

    // Expand all extending loads and truncating stores:
    for (MVT TargetVT : MVT::vector_valuetypes()) {
      if (TargetVT == VT)
        continue;
      setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
      setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand);
      setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand);
      setTruncStoreAction(VT, TargetVT, Expand);
    }

    // Normalize all inputs to SELECT to be vectors of i32.
    if (VT.getVectorElementType() != MVT::i32) {
      MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
      setOperationAction(ISD::SELECT, VT, Promote);
      AddPromotedToType(ISD::SELECT, VT, VT32);
    }
    setOperationAction(ISD::SRA, VT, Custom);
    setOperationAction(ISD::SHL, VT, Custom);
    setOperationAction(ISD::SRL, VT, Custom);
  }

  // Extending loads from (native) vectors of i8 into (native) vectors of i16
  // are legal.
  setLoadExtAction(ISD::EXTLOAD,  MVT::v2i16, MVT::v2i8, Legal);
  setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
  setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
  setLoadExtAction(ISD::EXTLOAD,  MVT::v4i16, MVT::v4i8, Legal);
  setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
  setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);

  // Types natively supported:
  for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8,
                       MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
    setOperationAction(ISD::BUILD_VECTOR,       NativeVT, Custom);
    setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
    setOperationAction(ISD::INSERT_VECTOR_ELT,  NativeVT, Custom);
    setOperationAction(ISD::EXTRACT_SUBVECTOR,  NativeVT, Custom);
    setOperationAction(ISD::INSERT_SUBVECTOR,   NativeVT, Custom);
    setOperationAction(ISD::CONCAT_VECTORS,     NativeVT, Custom);

    setOperationAction(ISD::ADD, NativeVT, Legal);
    setOperationAction(ISD::SUB, NativeVT, Legal);
    setOperationAction(ISD::MUL, NativeVT, Legal);
    setOperationAction(ISD::AND, NativeVT, Legal);
    setOperationAction(ISD::OR,  NativeVT, Legal);
    setOperationAction(ISD::XOR, NativeVT, Legal);
  }

  // Custom lower unaligned loads.
  for (MVT VecVT : {MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8,
                    MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
    setOperationAction(ISD::LOAD, VecVT, Custom);
  }

  for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v2i32, MVT::v4i16, MVT::v2i32}) {
    setCondCodeAction(ISD::SETLT,  VT, Expand);
    setCondCodeAction(ISD::SETLE,  VT, Expand);
    setCondCodeAction(ISD::SETULT, VT, Expand);
    setCondCodeAction(ISD::SETULE, VT, Expand);
  }

  // Custom-lower bitcasts from i8 to v8i1.
  setOperationAction(ISD::BITCAST,        MVT::i8,    Custom);
  setOperationAction(ISD::SETCC,          MVT::v2i16, Custom);
  setOperationAction(ISD::VSELECT,        MVT::v2i16, Custom);
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8,  Custom);
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8,  Custom);

  // Subtarget-specific operation actions.
  //
  if (Subtarget.hasV5TOps()) {
    setOperationAction(ISD::FMA,  MVT::f64, Expand);
    setOperationAction(ISD::FADD, MVT::f64, Expand);
    setOperationAction(ISD::FSUB, MVT::f64, Expand);
    setOperationAction(ISD::FMUL, MVT::f64, Expand);

    setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
    setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);

    setOperationAction(ISD::FP_TO_UINT, MVT::i1,  Promote);
    setOperationAction(ISD::FP_TO_UINT, MVT::i8,  Promote);
    setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
    setOperationAction(ISD::FP_TO_SINT, MVT::i1,  Promote);
    setOperationAction(ISD::FP_TO_SINT, MVT::i8,  Promote);
    setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
    setOperationAction(ISD::UINT_TO_FP, MVT::i1,  Promote);
    setOperationAction(ISD::UINT_TO_FP, MVT::i8,  Promote);
    setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
    setOperationAction(ISD::SINT_TO_FP, MVT::i1,  Promote);
    setOperationAction(ISD::SINT_TO_FP, MVT::i8,  Promote);
    setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
  } else { // V4
    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Expand);
    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
    setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand);
    setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand);
    setOperationAction(ISD::FP_EXTEND,  MVT::f32, Expand);
    setOperationAction(ISD::FP_ROUND,   MVT::f64, Expand);
    setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);

    setOperationAction(ISD::CTPOP, MVT::i8,  Expand);
    setOperationAction(ISD::CTPOP, MVT::i16, Expand);
    setOperationAction(ISD::CTPOP, MVT::i32, Expand);
    setOperationAction(ISD::CTPOP, MVT::i64, Expand);

    // Expand these operations for both f32 and f64:
    for (unsigned FPExpOpV4 :
         {ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FABS, ISD::FNEG, ISD::FMA}) {
      setOperationAction(FPExpOpV4, MVT::f32, Expand);
      setOperationAction(FPExpOpV4, MVT::f64, Expand);
    }

    for (ISD::CondCode FPExpCCV4 :
         {ISD::SETOEQ, ISD::SETOGT, ISD::SETOLT, ISD::SETOGE, ISD::SETOLE,
          ISD::SETUO,  ISD::SETO}) {
      setCondCodeAction(FPExpCCV4, MVT::f32, Expand);
      setCondCodeAction(FPExpCCV4, MVT::f64, Expand);
    }
  }

  // Handling of indexed loads/stores: default is "expand".
  //
  for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::v2i16,
                 MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) {
    setIndexedLoadAction(ISD::POST_INC, VT, Legal);
    setIndexedStoreAction(ISD::POST_INC, VT, Legal);
  }

  if (Subtarget.useHVXOps())
    initializeHVXLowering();

  computeRegisterProperties(&HRI);

  //
  // Library calls for unsupported operations
  //
  bool FastMath  = EnableFastMath;

  setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
  setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
  setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
  setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
  setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
  setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
  setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
  setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");

  setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
  setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
  setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
  setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
  setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
  setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");

  if (IsV4) {
    // Handle single-precision floating point operations on V4.
    if (FastMath) {
      setLibcallName(RTLIB::ADD_F32, "__hexagon_fast_addsf3");
      setLibcallName(RTLIB::SUB_F32, "__hexagon_fast_subsf3");
      setLibcallName(RTLIB::MUL_F32, "__hexagon_fast_mulsf3");
      setLibcallName(RTLIB::OGT_F32, "__hexagon_fast_gtsf2");
      setLibcallName(RTLIB::OLT_F32, "__hexagon_fast_ltsf2");
      // Double-precision compares.
      setLibcallName(RTLIB::OGT_F64, "__hexagon_fast_gtdf2");
      setLibcallName(RTLIB::OLT_F64, "__hexagon_fast_ltdf2");
    } else {
      setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3");
      setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3");
      setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3");
      setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2");
      setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2");
      // Double-precision compares.
      setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2");
      setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2");
    }
  }

  // This is the only fast library function for sqrtd.
  if (FastMath)
    setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");

  // Prefix is: nothing  for "slow-math",
  //            "fast2_" for V4 fast-math and V5+ fast-math double-precision
  // (actually, keep fast-math and fast-math2 separate for now)
  if (FastMath) {
    setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
    setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
    setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
    setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
    // Calling __hexagon_fast2_divsf3 with fast-math on V5 (ok).
    setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
  } else {
    setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
    setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
    setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
    setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
    setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
  }

  if (Subtarget.hasV5TOps()) {
    if (FastMath)
      setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
    else
      setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
  } else {
    // V4
    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf");
    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf");
    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf");
    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf");
    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf");
    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf");
    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf");
    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf");
    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi");
    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi");
    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi");
    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi");
    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi");
    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi");
    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi");
    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi");
    setLibcallName(RTLIB::FPEXT_F32_F64,    "__hexagon_extendsfdf2");
    setLibcallName(RTLIB::FPROUND_F64_F32,  "__hexagon_truncdfsf2");
    setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2");
    setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2");
    setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2");
    setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2");
    setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2");
    setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2");
    setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2");
    setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2");
    setLibcallName(RTLIB::UO_F32,  "__hexagon_unordsf2");
    setLibcallName(RTLIB::UO_F64,  "__hexagon_unorddf2");
    setLibcallName(RTLIB::O_F32,   "__hexagon_unordsf2");
    setLibcallName(RTLIB::O_F64,   "__hexagon_unorddf2");
  }

  // These cause problems when the shift amount is non-constant.
  setLibcallName(RTLIB::SHL_I128, nullptr);
  setLibcallName(RTLIB::SRL_I128, nullptr);
  setLibcallName(RTLIB::SRA_I128, nullptr);
}

const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch ((HexagonISD::NodeType)Opcode) {
  case HexagonISD::ALLOCA:        return "HexagonISD::ALLOCA";
  case HexagonISD::AT_GOT:        return "HexagonISD::AT_GOT";
  case HexagonISD::AT_PCREL:      return "HexagonISD::AT_PCREL";
  case HexagonISD::BARRIER:       return "HexagonISD::BARRIER";
  case HexagonISD::CALL:          return "HexagonISD::CALL";
  case HexagonISD::CALLnr:        return "HexagonISD::CALLnr";
  case HexagonISD::CALLR:         return "HexagonISD::CALLR";
  case HexagonISD::COMBINE:       return "HexagonISD::COMBINE";
  case HexagonISD::CONST32_GP:    return "HexagonISD::CONST32_GP";
  case HexagonISD::CONST32:       return "HexagonISD::CONST32";
  case HexagonISD::CP:            return "HexagonISD::CP";
  case HexagonISD::DCFETCH:       return "HexagonISD::DCFETCH";
  case HexagonISD::EH_RETURN:     return "HexagonISD::EH_RETURN";
  case HexagonISD::TSTBIT:        return "HexagonISD::TSTBIT";
  case HexagonISD::EXTRACTU:      return "HexagonISD::EXTRACTU";
  case HexagonISD::INSERT:        return "HexagonISD::INSERT";
  case HexagonISD::JT:            return "HexagonISD::JT";
  case HexagonISD::RET_FLAG:      return "HexagonISD::RET_FLAG";
  case HexagonISD::TC_RETURN:     return "HexagonISD::TC_RETURN";
  case HexagonISD::VASL:          return "HexagonISD::VASL";
  case HexagonISD::VASR:          return "HexagonISD::VASR";
  case HexagonISD::VLSR:          return "HexagonISD::VLSR";
  case HexagonISD::VSPLAT:        return "HexagonISD::VSPLAT";
  case HexagonISD::VEXTRACTW:     return "HexagonISD::VEXTRACTW";
  case HexagonISD::VINSERTW0:     return "HexagonISD::VINSERTW0";
  case HexagonISD::VROR:          return "HexagonISD::VROR";
  case HexagonISD::READCYCLE:     return "HexagonISD::READCYCLE";
  case HexagonISD::VZERO:         return "HexagonISD::VZERO";
  case HexagonISD::VSPLATW:       return "HexagonISD::VSPLATW";
  case HexagonISD::D2P:           return "HexagonISD::D2P";
  case HexagonISD::P2D:           return "HexagonISD::P2D";
  case HexagonISD::V2Q:           return "HexagonISD::V2Q";
  case HexagonISD::Q2V:           return "HexagonISD::Q2V";
  case HexagonISD::QCAT:          return "HexagonISD::QCAT";
  case HexagonISD::QTRUE:         return "HexagonISD::QTRUE";
  case HexagonISD::QFALSE:        return "HexagonISD::QFALSE";
  case HexagonISD::TYPECAST:      return "HexagonISD::TYPECAST";
  case HexagonISD::VALIGN:        return "HexagonISD::VALIGN";
  case HexagonISD::VALIGNADDR:    return "HexagonISD::VALIGNADDR";
  case HexagonISD::OP_END:        break;
  }
  return nullptr;
}

// Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load
// intrinsic.
static bool isBrevLdIntrinsic(const Value *Inst) {
  unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID();
  return (ID == Intrinsic::hexagon_L2_loadrd_pbr ||
          ID == Intrinsic::hexagon_L2_loadri_pbr ||
          ID == Intrinsic::hexagon_L2_loadrh_pbr ||
          ID == Intrinsic::hexagon_L2_loadruh_pbr ||
          ID == Intrinsic::hexagon_L2_loadrb_pbr ||
          ID == Intrinsic::hexagon_L2_loadrub_pbr);
}

// Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous
// instruction. So far we only handle bitcast, extract value and bit reverse
// load intrinsic instructions. Should we handle CGEP ?
static Value *getBrevLdObject(Value *V) {
  if (Operator::getOpcode(V) == Instruction::ExtractValue ||
      Operator::getOpcode(V) == Instruction::BitCast)
    V = cast<Operator>(V)->getOperand(0);
  else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V))
    V = cast<Instruction>(V)->getOperand(0);
  return V;
}

// Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or
// a back edge. If the back edge comes from the intrinsic itself, the incoming
// edge is returned.
static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) {
  const BasicBlock *Parent = PN->getParent();
  int Idx = -1;
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
    BasicBlock *Blk = PN->getIncomingBlock(i);
    // Determine if the back edge is originated from intrinsic.
    if (Blk == Parent) {
      Value *BackEdgeVal = PN->getIncomingValue(i);
      Value *BaseVal;
      // Loop over till we return the same Value or we hit the IntrBaseVal.
      do {
        BaseVal = BackEdgeVal;
        BackEdgeVal = getBrevLdObject(BackEdgeVal);
      } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal));
      // If the getBrevLdObject returns IntrBaseVal, we should return the
      // incoming edge.
      if (IntrBaseVal == BackEdgeVal)
        continue;
      Idx = i;
      break;
    } else // Set the node to incoming edge.
      Idx = i;
  }
  assert(Idx >= 0 && "Unexpected index to incoming argument in PHI");
  return PN->getIncomingValue(Idx);
}

// Bit-reverse Load Intrinsic: Figure out the underlying object the base
// pointer points to, for the bit-reverse load intrinsic. Setting this to
// memoperand might help alias analysis to figure out the dependencies.
static Value *getUnderLyingObjectForBrevLdIntr(Value *V) {
  Value *IntrBaseVal = V;
  Value *BaseVal;
  // Loop over till we return the same Value, implies we either figure out
  // the object or we hit a PHI
  do {
    BaseVal = V;
    V = getBrevLdObject(V);
  } while (BaseVal != V);

  // Identify the object from PHINode.
  if (const PHINode *PN = dyn_cast<PHINode>(V))
    return returnEdge(PN, IntrBaseVal);
  // For non PHI nodes, the object is the last value returned by getBrevLdObject
  else
    return V;
}

/// Given an intrinsic, checks if on the target the intrinsic will need to map
/// to a MemIntrinsicNode (touches memory). If this is the case, it returns
/// true and store the intrinsic information into the IntrinsicInfo that was
/// passed to the function.
bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
                                               const CallInst &I,
                                               MachineFunction &MF,
                                               unsigned Intrinsic) const {
  switch (Intrinsic) {
  case Intrinsic::hexagon_L2_loadrd_pbr:
  case Intrinsic::hexagon_L2_loadri_pbr:
  case Intrinsic::hexagon_L2_loadrh_pbr:
  case Intrinsic::hexagon_L2_loadruh_pbr:
  case Intrinsic::hexagon_L2_loadrb_pbr:
  case Intrinsic::hexagon_L2_loadrub_pbr: {
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
    auto &Cont = I.getCalledFunction()->getParent()->getContext();
    // The intrinsic function call is of the form { ElTy, i8* }
    // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type
    // should be derived from ElTy.
    PointerType *PtrTy = I.getCalledFunction()
                             ->getReturnType()
                             ->getContainedType(0)
                             ->getPointerTo();
    Info.memVT = MVT::getVT(PtrTy->getElementType());
    llvm::Value *BasePtrVal = I.getOperand(0);
    Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal);
    // The offset value comes through Modifier register. For now, assume the
    // offset is 0.
    Info.offset = 0;
    Info.align = DL.getABITypeAlignment(Info.memVT.getTypeForEVT(Cont));
    Info.flags = MachineMemOperand::MOLoad;
    return true;
  }
  case Intrinsic::hexagon_V6_vgathermw:
  case Intrinsic::hexagon_V6_vgathermw_128B:
  case Intrinsic::hexagon_V6_vgathermh:
  case Intrinsic::hexagon_V6_vgathermh_128B:
  case Intrinsic::hexagon_V6_vgathermhw:
  case Intrinsic::hexagon_V6_vgathermhw_128B:
  case Intrinsic::hexagon_V6_vgathermwq:
  case Intrinsic::hexagon_V6_vgathermwq_128B:
  case Intrinsic::hexagon_V6_vgathermhq:
  case Intrinsic::hexagon_V6_vgathermhq_128B:
  case Intrinsic::hexagon_V6_vgathermhwq:
  case Intrinsic::hexagon_V6_vgathermhwq_128B: {
    const Module &M = *I.getParent()->getParent()->getParent();
    Info.opc = ISD::INTRINSIC_W_CHAIN;
    Type *VecTy = I.getArgOperand(1)->getType();
    Info.memVT = MVT::getVT(VecTy);
    Info.ptrVal = I.getArgOperand(0);
    Info.offset = 0;
    Info.align = M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8;
    Info.flags = MachineMemOperand::MOLoad |
                 MachineMemOperand::MOStore |
                 MachineMemOperand::MOVolatile;
    return true;
  }
  default:
    break;
  }
  return false;
}

bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
  return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2));
}

bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
  if (!VT1.isSimple() || !VT2.isSimple())
    return false;
  return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32;
}

bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
  return isOperationLegalOrCustom(ISD::FMA, VT);
}

// Should we expand the build vector with shuffles?
bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
      unsigned DefinedValues) const {
  return false;
}

bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask,
                                               EVT VT) const {
  return true;
}

TargetLoweringBase::LegalizeTypeAction
HexagonTargetLowering::getPreferredVectorAction(EVT VT) const {
  if (VT.getVectorNumElements() == 1)
    return TargetLoweringBase::TypeScalarizeVector;

  // Always widen vectors of i1.
  MVT ElemTy = VT.getSimpleVT().getVectorElementType();
  if (ElemTy == MVT::i1)
    return TargetLoweringBase::TypeWidenVector;

  if (Subtarget.useHVXOps()) {
    // If the size of VT is at least half of the vector length,
    // widen the vector. Note: the threshold was not selected in
    // any scientific way.
    ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes();
    if (llvm::find(Tys, ElemTy) != Tys.end()) {
      unsigned HwWidth = 8*Subtarget.getVectorLength();
      unsigned VecWidth = VT.getSizeInBits();
      if (VecWidth >= HwWidth/2 && VecWidth < HwWidth)
        return TargetLoweringBase::TypeWidenVector;
    }
  }
  return TargetLoweringBase::TypeSplitVector;
}

std::pair<SDValue, int>
HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const {
  if (Addr.getOpcode() == ISD::ADD) {
    SDValue Op1 = Addr.getOperand(1);
    if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode()))
      return { Addr.getOperand(0), CN->getSExtValue() };
  }
  return { Addr, 0 };
}

// Lower a vector shuffle (V1, V2, V3).  V1 and V2 are the two vectors
// to select data from, V3 is the permutation.
SDValue
HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
      const {
  const auto *SVN = cast<ShuffleVectorSDNode>(Op);
  ArrayRef<int> AM = SVN->getMask();
  assert(AM.size() <= 8 && "Unexpected shuffle mask");
  unsigned VecLen = AM.size();

  MVT VecTy = ty(Op);
  assert(!Subtarget.isHVXVectorType(VecTy, true) &&
         "HVX shuffles should be legal");
  assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length");

  SDValue Op0 = Op.getOperand(0);
  SDValue Op1 = Op.getOperand(1);
  const SDLoc &dl(Op);

  // If the inputs are not the same as the output, bail. This is not an
  // error situation, but complicates the handling and the default expansion
  // (into BUILD_VECTOR) should be adequate.
  if (ty(Op0) != VecTy || ty(Op1) != VecTy)
    return SDValue();

  // Normalize the mask so that the first non-negative index comes from
  // the first operand.
  SmallVector<int,8> Mask(AM.begin(), AM.end());
  unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data();
  if (F == AM.size())
    return DAG.getUNDEF(VecTy);
  if (AM[F] >= int(VecLen)) {
    ShuffleVectorSDNode::commuteMask(Mask);
    std::swap(Op0, Op1);
  }

  // Express the shuffle mask in terms of bytes.
  SmallVector<int,8> ByteMask;
  unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8;
  for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
    int M = Mask[i];
    if (M < 0) {
      for (unsigned j = 0; j != ElemBytes; ++j)
        ByteMask.push_back(-1);
    } else {
      for (unsigned j = 0; j != ElemBytes; ++j)
        ByteMask.push_back(M*ElemBytes + j);
    }
  }
  assert(ByteMask.size() <= 8);

  // All non-undef (non-negative) indexes are well within [0..127], so they
  // fit in a single byte. Build two 64-bit words:
  // - MaskIdx where each byte is the corresponding index (for non-negative
  //   indexes), and 0xFF for negative indexes, and
  // - MaskUnd that has 0xFF for each negative index.
  uint64_t MaskIdx = 0;
  uint64_t MaskUnd = 0;
  for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) {
    unsigned S = 8*i;
    uint64_t M = ByteMask[i] & 0xFF;
    if (M == 0xFF)
      MaskUnd |= M << S;
    MaskIdx |= M << S;
  }

  if (ByteMask.size() == 4) {
    // Identity.
    if (MaskIdx == (0x03020100 | MaskUnd))
      return Op0;
    // Byte swap.
    if (MaskIdx == (0x00010203 | MaskUnd)) {
      SDValue T0 = DAG.getBitcast(MVT::i32, Op0);
      SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0);
      return DAG.getBitcast(VecTy, T1);
    }

    // Byte packs.
    SDValue Concat10 = DAG.getNode(HexagonISD::COMBINE, dl,
                                   typeJoin({ty(Op1), ty(Op0)}), {Op1, Op0});
    if (MaskIdx == (0x06040200 | MaskUnd))
      return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG);
    if (MaskIdx == (0x07050301 | MaskUnd))
      return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG);

    SDValue Concat01 = DAG.getNode(HexagonISD::COMBINE, dl,
                                   typeJoin({ty(Op0), ty(Op1)}), {Op0, Op1});
    if (MaskIdx == (0x02000604 | MaskUnd))
      return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG);
    if (MaskIdx == (0x03010705 | MaskUnd))
      return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG);
  }

  if (ByteMask.size() == 8) {
    // Identity.
    if (MaskIdx == (0x0706050403020100ull | MaskUnd))
      return Op0;
    // Byte swap.
    if (MaskIdx == (0x0001020304050607ull | MaskUnd)) {
      SDValue T0 = DAG.getBitcast(MVT::i64, Op0);
      SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0);
      return DAG.getBitcast(VecTy, T1);
    }

    // Halfword picks.
    if (MaskIdx == (0x0d0c050409080100ull | MaskUnd))
      return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG);
    if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd))
      return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG);
    if (MaskIdx == (0x0d0c090805040100ull | MaskUnd))
      return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG);
    if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd))
      return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG);
    if (MaskIdx == (0x0706030205040100ull | MaskUnd)) {
      VectorPair P = opSplit(Op0, dl, DAG);
      return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG);
    }

    // Byte packs.
    if (MaskIdx == (0x0e060c040a020800ull | MaskUnd))
      return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG);
    if (MaskIdx == (0x0f070d050b030901ull | MaskUnd))
      return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG);
  }

  return SDValue();
}

// Create a Hexagon-specific node for shifting a vector by an integer.
SDValue
HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG)
      const {
  if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) {
    if (SDValue S = BVN->getSplatValue()) {
      unsigned NewOpc;
      switch (Op.getOpcode()) {
        case ISD::SHL:
          NewOpc = HexagonISD::VASL;
          break;
        case ISD::SRA:
          NewOpc = HexagonISD::VASR;
          break;
        case ISD::SRL:
          NewOpc = HexagonISD::VLSR;
          break;
        default:
          llvm_unreachable("Unexpected shift opcode");
      }
      return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), S);
    }
  }

  return SDValue();
}

SDValue
HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
  return getVectorShiftByInt(Op, DAG);
}

SDValue
HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
  MVT ResTy = ty(Op);
  SDValue InpV = Op.getOperand(0);
  MVT InpTy = ty(InpV);
  assert(ResTy.getSizeInBits() == InpTy.getSizeInBits());
  const SDLoc &dl(Op);

  // Handle conversion from i8 to v8i1.
  if (ResTy == MVT::v8i1) {
    SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV);
    SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32);
    return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG);
  }

  return SDValue();
}

bool
HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values,
      MVT VecTy, SelectionDAG &DAG,
      MutableArrayRef<ConstantInt*> Consts) const {
  MVT ElemTy = VecTy.getVectorElementType();
  unsigned ElemWidth = ElemTy.getSizeInBits();
  IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth);
  bool AllConst = true;

  for (unsigned i = 0, e = Values.size(); i != e; ++i) {
    SDValue V = Values[i];
    if (V.isUndef()) {
      Consts[i] = ConstantInt::get(IntTy, 0);
      continue;
    }
    // Make sure to always cast to IntTy.
    if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) {
      const ConstantInt *CI = CN->getConstantIntValue();
      Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue());
    } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) {
      const ConstantFP *CF = CN->getConstantFPValue();
      APInt A = CF->getValueAPF().bitcastToAPInt();
      Consts[i] = ConstantInt::get(IntTy, A.getZExtValue());
    } else {
      AllConst = false;
    }
  }
  return AllConst;
}

SDValue
HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl,
                                     MVT VecTy, SelectionDAG &DAG) const {
  MVT ElemTy = VecTy.getVectorElementType();
  assert(VecTy.getVectorNumElements() == Elem.size());

  SmallVector<ConstantInt*,4> Consts(Elem.size());
  bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);

  unsigned First, Num = Elem.size();
  for (First = 0; First != Num; ++First)
    if (!isUndef(Elem[First]))
      break;
  if (First == Num)
    return DAG.getUNDEF(VecTy);

  if (AllConst &&
      llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
    return getZero(dl, VecTy, DAG);

  if (ElemTy == MVT::i16) {
    assert(Elem.size() == 2);
    if (AllConst) {
      uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) |
                   Consts[1]->getZExtValue() << 16;
      return DAG.getBitcast(MVT::v2i16, DAG.getConstant(V, dl, MVT::i32));
    }
    SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32,
                         {Elem[1], Elem[0]}, DAG);
    return DAG.getBitcast(MVT::v2i16, N);
  }

  if (ElemTy == MVT::i8) {
    // First try generating a constant.
    if (AllConst) {
      int32_t V = (Consts[0]->getZExtValue() & 0xFF) |
                  (Consts[1]->getZExtValue() & 0xFF) << 8 |
                  (Consts[1]->getZExtValue() & 0xFF) << 16 |
                  Consts[2]->getZExtValue() << 24;
      return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32));
    }

    // Then try splat.
    bool IsSplat = true;
    for (unsigned i = 0; i != Num; ++i) {
      if (i == First)
        continue;
      if (Elem[i] == Elem[First] || isUndef(Elem[i]))
        continue;
      IsSplat = false;
      break;
    }
    if (IsSplat) {
      // Legalize the operand to VSPLAT.
      SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
      return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
    }

    // Generate
    //   (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) |
    //   (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16
    assert(Elem.size() == 4);
    SDValue Vs[4];
    for (unsigned i = 0; i != 4; ++i) {
      Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32);
      Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8);
    }
    SDValue S8 = DAG.getConstant(8, dl, MVT::i32);
    SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8});
    SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8});
    SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0});
    SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1});

    SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG);
    return DAG.getBitcast(MVT::v4i8, R);
  }

#ifndef NDEBUG
  dbgs() << "VecTy: " << EVT(VecTy).getEVTString() << '\n';
#endif
  llvm_unreachable("Unexpected vector element type");
}

SDValue
HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl,
                                     MVT VecTy, SelectionDAG &DAG) const {
  MVT ElemTy = VecTy.getVectorElementType();
  assert(VecTy.getVectorNumElements() == Elem.size());

  SmallVector<ConstantInt*,8> Consts(Elem.size());
  bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);

  unsigned First, Num = Elem.size();
  for (First = 0; First != Num; ++First)
    if (!isUndef(Elem[First]))
      break;
  if (First == Num)
    return DAG.getUNDEF(VecTy);

  if (AllConst &&
      llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
    return getZero(dl, VecTy, DAG);

  // First try splat if possible.
  if (ElemTy == MVT::i16) {
    bool IsSplat = true;
    for (unsigned i = 0; i != Num; ++i) {
      if (i == First)
        continue;
      if (Elem[i] == Elem[First] || isUndef(Elem[i]))
        continue;
      IsSplat = false;
      break;
    }
    if (IsSplat) {
      // Legalize the operand to VSPLAT.
      SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
      return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
    }
  }

  // Then try constant.
  if (AllConst) {
    uint64_t Val = 0;
    unsigned W = ElemTy.getSizeInBits();
    uint64_t Mask = (ElemTy == MVT::i8)  ? 0xFFull
                  : (ElemTy == MVT::i16) ? 0xFFFFull : 0xFFFFFFFFull;
    for (unsigned i = 0; i != Num; ++i)
      Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask);
    SDValue V0 = DAG.getConstant(Val, dl, MVT::i64);
    return DAG.getBitcast(VecTy, V0);
  }

  // Build two 32-bit vectors and concatenate.
  MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2);
  SDValue L = (ElemTy == MVT::i32)
                ? Elem[0]
                : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG);
  SDValue H = (ElemTy == MVT::i32)
                ? Elem[1]
                : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG);
  return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, {H, L});
}

SDValue
HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV,
                                     const SDLoc &dl, MVT ValTy, MVT ResTy,
                                     SelectionDAG &DAG) const {
  MVT VecTy = ty(VecV);
  assert(!ValTy.isVector() ||
         VecTy.getVectorElementType() == ValTy.getVectorElementType());
  unsigned VecWidth = VecTy.getSizeInBits();
  unsigned ValWidth = ValTy.getSizeInBits();
  unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits();
  assert((VecWidth % ElemWidth) == 0);
  auto *IdxN = dyn_cast<ConstantSDNode>(IdxV);

  // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon
  // without any coprocessors).
  if (ElemWidth == 1) {
    assert(VecWidth == VecTy.getVectorNumElements() && "Sanity failure");
    assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2);
    // Check if this is an extract of the lowest bit.
    if (IdxN) {
      // Extracting the lowest bit is a no-op, but it changes the type,
      // so it must be kept as an operation to avoid errors related to
      // type mismatches.
      if (IdxN->isNullValue() && ValTy.getSizeInBits() == 1)
        return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV);
    }

    // If the value extracted is a single bit, use tstbit.
    if (ValWidth == 1) {
      SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
      return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, IdxV);
    }

    // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in
    // a predicate register. The elements of the vector are repeated
    // in the register (if necessary) so that the total number is 8.
    // The extracted subvector will need to be expanded in such a way.
    unsigned Scale = VecWidth / ValWidth;

    // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to
    // position 0.
    assert(ty(IdxV) == MVT::i32);
    SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
                             DAG.getConstant(8*Scale, dl, MVT::i32));
    SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
    SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0);
    while (Scale > 1) {
      // The longest possible subvector is at most 32 bits, so it is always
      // contained in the low subregister.
      T1 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, T1);
      T1 = expandPredicate(T1, dl, DAG);
      Scale /= 2;
    }

    return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1);
  }

  assert(VecWidth == 32 || VecWidth == 64);

  // Cast everything to scalar integer types.
  MVT ScalarTy = tyScalar(VecTy);
  VecV = DAG.getBitcast(ScalarTy, VecV);

  SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
  SDValue ExtV;

  if (IdxN) {
    unsigned Off = IdxN->getZExtValue() * ElemWidth;
    if (VecWidth == 64 && ValWidth == 32) {
      assert(Off == 0 || Off == 32);
      unsigned SubIdx = Off == 0 ? Hexagon::isub_lo : Hexagon::isub_hi;
      ExtV = DAG.getTargetExtractSubreg(SubIdx, dl, MVT::i32, VecV);
    } else if (Off == 0 && (ValWidth % 8) == 0) {
      ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy));
    } else {
      SDValue OffV = DAG.getConstant(Off, dl, MVT::i32);
      // The return type of EXTRACTU must be the same as the type of the
      // input vector.
      ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
                         {VecV, WidthV, OffV});
    }
  } else {
    if (ty(IdxV) != MVT::i32)
      IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
    SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
                               DAG.getConstant(ElemWidth, dl, MVT::i32));
    ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
                       {VecV, WidthV, OffV});
  }

  // Cast ExtV to the requested result type.
  ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy));
  ExtV = DAG.getBitcast(ResTy, ExtV);
  return ExtV;
}

SDValue
HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
                                    const SDLoc &dl, MVT ValTy,
                                    SelectionDAG &DAG) const {
  MVT VecTy = ty(VecV);
  if (VecTy.getVectorElementType() == MVT::i1) {
    MVT ValTy = ty(ValV);
    assert(ValTy.getVectorElementType() == MVT::i1);
    SDValue ValR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV);
    unsigned VecLen = VecTy.getVectorNumElements();
    unsigned Scale = VecLen / ValTy.getVectorNumElements();
    assert(Scale > 1);

    for (unsigned R = Scale; R > 1; R /= 2) {
      ValR = contractPredicate(ValR, dl, DAG);
      ValR = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
                         DAG.getUNDEF(MVT::i32), ValR);
    }
    // The longest possible subvector is at most 32 bits, so it is always
    // contained in the low subregister.
    ValR = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, ValR);

    unsigned ValBytes = 64 / Scale;
    SDValue Width = DAG.getConstant(ValBytes*8, dl, MVT::i32);
    SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
                              DAG.getConstant(8, dl, MVT::i32));
    SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
    SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
                              {VecR, ValR, Width, Idx});
    return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins);
  }

  unsigned VecWidth = VecTy.getSizeInBits();
  unsigned ValWidth = ValTy.getSizeInBits();
  assert(VecWidth == 32 || VecWidth == 64);
  assert((VecWidth % ValWidth) == 0);

  // Cast everything to scalar integer types.
  MVT ScalarTy = MVT::getIntegerVT(VecWidth);
  // The actual type of ValV may be different than ValTy (which is related
  // to the vector type).
  unsigned VW = ty(ValV).getSizeInBits();
  ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV);
  VecV = DAG.getBitcast(ScalarTy, VecV);
  if (VW != VecWidth)
    ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy);

  SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
  SDValue InsV;

  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) {
    unsigned W = C->getZExtValue() * ValWidth;
    SDValue OffV = DAG.getConstant(W, dl, MVT::i32);
    InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
                       {VecV, ValV, WidthV, OffV});
  } else {
    if (ty(IdxV) != MVT::i32)
      IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
    SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV);
    InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
                       {VecV, ValV, WidthV, OffV});
  }

  return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV);
}

SDValue
HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl,
                                       SelectionDAG &DAG) const {
  assert(ty(Vec32).getSizeInBits() == 32);
  if (isUndef(Vec32))
    return DAG.getUNDEF(MVT::i64);
  return getInstr(Hexagon::S2_vsxtbh, dl, MVT::i64, {Vec32}, DAG);
}

SDValue
HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl,
                                         SelectionDAG &DAG) const {
  assert(ty(Vec64).getSizeInBits() == 64);
  if (isUndef(Vec64))
    return DAG.getUNDEF(MVT::i32);
  return getInstr(Hexagon::S2_vtrunehb, dl, MVT::i32, {Vec64}, DAG);
}

SDValue
HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG)
      const {
  if (Ty.isVector()) {
    assert(Ty.isInteger() && "Only integer vectors are supported here");
    unsigned W = Ty.getSizeInBits();
    if (W <= 64)
      return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W)));
    return DAG.getNode(HexagonISD::VZERO, dl, Ty);
  }

  if (Ty.isInteger())
    return DAG.getConstant(0, dl, Ty);
  if (Ty.isFloatingPoint())
    return DAG.getConstantFP(0.0, dl, Ty);
  llvm_unreachable("Invalid type for zero");
}

SDValue
HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
  MVT VecTy = ty(Op);
  unsigned BW = VecTy.getSizeInBits();
  const SDLoc &dl(Op);
  SmallVector<SDValue,8> Ops;
  for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
    Ops.push_back(Op.getOperand(i));

  if (BW == 32)
    return buildVector32(Ops, dl, VecTy, DAG);
  if (BW == 64)
    return buildVector64(Ops, dl, VecTy, DAG);

  if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) {
    // For each i1 element in the resulting predicate register, put 1
    // shifted by the index of the element into a general-purpose register,
    // then or them together and transfer it back into a predicate register.
    SDValue Rs[8];
    SDValue Z = getZero(dl, MVT::i32, DAG);
    // Always produce 8 bits, repeat inputs if necessary.
    unsigned Rep = 8 / VecTy.getVectorNumElements();
    for (unsigned i = 0; i != 8; ++i) {
      SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32);
      Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z);
    }
    for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) {
      for (unsigned i = 0, e = A.size()/2; i != e; ++i)
        Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]);
    }
    // Move the value directly to a predicate register.
    return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG);
  }

  return SDValue();
}

SDValue
HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
                                           SelectionDAG &DAG) const {
  MVT VecTy = ty(Op);
  const SDLoc &dl(Op);
  if (VecTy.getSizeInBits() == 64) {
    assert(Op.getNumOperands() == 2);
    return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, Op.getOperand(1),
                       Op.getOperand(0));
  }

  MVT ElemTy = VecTy.getVectorElementType();
  if (ElemTy == MVT::i1) {
    assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1);
    MVT OpTy = ty(Op.getOperand(0));
    // Scale is how many times the operands need to be contracted to match
    // the representation in the target register.
    unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements();
    assert(Scale == Op.getNumOperands() && Scale > 1);

    // First, convert all bool vectors to integers, then generate pairwise
    // inserts to form values of doubled length. Up until there are only
    // two values left to concatenate, all of these values will fit in a
    // 32-bit integer, so keep them as i32 to use 32-bit inserts.
    SmallVector<SDValue,4> Words[2];
    unsigned IdxW = 0;

    for (SDValue P : Op.getNode()->op_values()) {
      SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P);
      for (unsigned R = Scale; R > 1; R /= 2) {
        W = contractPredicate(W, dl, DAG);
        W = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
                        DAG.getUNDEF(MVT::i32), W);
      }
      W = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, W);
      Words[IdxW].push_back(W);
    }

    while (Scale > 2) {
      SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32);
      Words[IdxW ^ 1].clear();

      for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) {
        SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1];
        // Insert W1 into W0 right next to the significant bits of W0.
        SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
                                {W0, W1, WidthV, WidthV});
        Words[IdxW ^ 1].push_back(T);
      }
      IdxW ^= 1;
      Scale /= 2;
    }

    // Another sanity check. At this point there should only be two words
    // left, and Scale should be 2.
    assert(Scale == 2 && Words[IdxW].size() == 2);

    SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
                             Words[IdxW][1], Words[IdxW][0]);
    return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW);
  }

  return SDValue();
}

SDValue
HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
                                               SelectionDAG &DAG) const {
  SDValue Vec = Op.getOperand(0);
  MVT ElemTy = ty(Vec).getVectorElementType();
  return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG);
}

SDValue
HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
                                              SelectionDAG &DAG) const {
  return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op),
                       ty(Op), ty(Op), DAG);
}

SDValue
HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
                                              SelectionDAG &DAG) const {
  return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
                      SDLoc(Op), ty(Op).getVectorElementType(), DAG);
}

SDValue
HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
                                             SelectionDAG &DAG) const {
  SDValue ValV = Op.getOperand(1);
  return insertVector(Op.getOperand(0), ValV, Op.getOperand(2),
                      SDLoc(Op), ty(ValV), DAG);
}

bool
HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
  // Assuming the caller does not have either a signext or zeroext modifier, and
  // only one value is accepted, any reasonable truncation is allowed.
  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
    return false;

  // FIXME: in principle up to 64-bit could be made safe, but it would be very
  // fragile at the moment: any support for multiple value returns would be
  // liable to disallow tail calls involving i64 -> iN truncation in many cases.
  return Ty1->getPrimitiveSizeInBits() <= 32;
}

SDValue
HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG)
      const {
  LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
  unsigned HaveAlign = LN->getAlignment();
  MVT LoadTy = ty(Op);
  unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy);
  if (HaveAlign >= NeedAlign)
    return Op;

  const SDLoc &dl(Op);
  const DataLayout &DL = DAG.getDataLayout();
  LLVMContext &Ctx = *DAG.getContext();
  unsigned AS = LN->getAddressSpace();

  // If the load aligning is disabled or the load can be broken up into two
  // smaller legal loads, do the default (target-independent) expansion.
  bool DoDefault = false;
  // Handle it in the default way if this is an indexed load.
  if (!LN->isUnindexed())
    DoDefault = true;

  if (!AlignLoads) {
    if (allowsMemoryAccess(Ctx, DL, LN->getMemoryVT(), AS, HaveAlign))
      return Op;
    DoDefault = true;
  }
  if (!DoDefault && 2*HaveAlign == NeedAlign) {
    // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)".
    MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8*HaveAlign)
                                : MVT::getVectorVT(MVT::i8, HaveAlign);
    DoDefault = allowsMemoryAccess(Ctx, DL, PartTy, AS, HaveAlign);
  }
  if (DoDefault) {
    std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG);
    return DAG.getMergeValues({P.first, P.second}, dl);
  }

  // The code below generates two loads, both aligned as NeedAlign, and
  // with the distance of NeedAlign between them. For that to cover the
  // bits that need to be loaded (and without overlapping), the size of
  // the loads should be equal to NeedAlign. This is true for all loadable
  // types, but add an assertion in case something changes in the future.
  assert(LoadTy.getSizeInBits() == 8*NeedAlign);

  unsigned LoadLen = NeedAlign;
  SDValue Base = LN->getBasePtr();
  SDValue Chain = LN->getChain();
  auto BO = getBaseAndOffset(Base);
  unsigned BaseOpc = BO.first.getOpcode();
  if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0)
    return Op;

  if (BO.second % LoadLen != 0) {
    BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first,
                           DAG.getConstant(BO.second % LoadLen, dl, MVT::i32));
    BO.second -= BO.second % LoadLen;
  }
  SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR)
      ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first,
                    DAG.getConstant(NeedAlign, dl, MVT::i32))
      : BO.first;
  SDValue Base0 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second, dl);
  SDValue Base1 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second+LoadLen, dl);

  MachineMemOperand *WideMMO = nullptr;
  if (MachineMemOperand *MMO = LN->getMemOperand()) {
    MachineFunction &MF = DAG.getMachineFunction();
    WideMMO = MF.getMachineMemOperand(MMO->getPointerInfo(), MMO->getFlags(),
                    2*LoadLen, LoadLen, MMO->getAAInfo(), MMO->getRanges(),
                    MMO->getSyncScopeID(), MMO->getOrdering(),
                    MMO->getFailureOrdering());
  }

  SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO);
  SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO);

  SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy,
                                {Load1, Load0, BaseNoOff.getOperand(0)});
  SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
                                 Load0.getValue(1), Load1.getValue(1));
  SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl);
  return M;
}

SDValue
HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
  SDValue Chain     = Op.getOperand(0);
  SDValue Offset    = Op.getOperand(1);
  SDValue Handler   = Op.getOperand(2);
  SDLoc dl(Op);
  auto PtrVT = getPointerTy(DAG.getDataLayout());

  // Mark function as containing a call to EH_RETURN.
  HexagonMachineFunctionInfo *FuncInfo =
    DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
  FuncInfo->setHasEHReturn();

  unsigned OffsetReg = Hexagon::R28;

  SDValue StoreAddr =
      DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
                  DAG.getIntPtrConstant(4, dl));
  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
  Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);

  // Not needed we already use it as explict input to EH_RETURN.
  // MF.getRegInfo().addLiveOut(OffsetReg);

  return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
}

SDValue
HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
  unsigned Opc = Op.getOpcode();

  // Handle INLINEASM first.
  if (Opc == ISD::INLINEASM)
    return LowerINLINEASM(Op, DAG);

  if (isHvxOperation(Op)) {
    // If HVX lowering returns nothing, try the default lowering.
    if (SDValue V = LowerHvxOperation(Op, DAG))
      return V;
  }

  switch (Opc) {
    default:
#ifndef NDEBUG
      Op.getNode()->dumpr(&DAG);
      if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
        errs() << "Error: check for a non-legal type in this operation\n";
#endif
      llvm_unreachable("Should not custom lower this!");
    case ISD::CONCAT_VECTORS:       return LowerCONCAT_VECTORS(Op, DAG);
    case ISD::INSERT_SUBVECTOR:     return LowerINSERT_SUBVECTOR(Op, DAG);
    case ISD::INSERT_VECTOR_ELT:    return LowerINSERT_VECTOR_ELT(Op, DAG);
    case ISD::EXTRACT_SUBVECTOR:    return LowerEXTRACT_SUBVECTOR(Op, DAG);
    case ISD::EXTRACT_VECTOR_ELT:   return LowerEXTRACT_VECTOR_ELT(Op, DAG);
    case ISD::BUILD_VECTOR:         return LowerBUILD_VECTOR(Op, DAG);
    case ISD::VECTOR_SHUFFLE:       return LowerVECTOR_SHUFFLE(Op, DAG);
    case ISD::BITCAST:              return LowerBITCAST(Op, DAG);
    case ISD::LOAD:                 return LowerUnalignedLoad(Op, DAG);
    case ISD::SRA:
    case ISD::SHL:
    case ISD::SRL:                  return LowerVECTOR_SHIFT(Op, DAG);
    case ISD::ConstantPool:         return LowerConstantPool(Op, DAG);
    case ISD::JumpTable:            return LowerJumpTable(Op, DAG);
    case ISD::EH_RETURN:            return LowerEH_RETURN(Op, DAG);
    case ISD::RETURNADDR:           return LowerRETURNADDR(Op, DAG);
    case ISD::FRAMEADDR:            return LowerFRAMEADDR(Op, DAG);
    case ISD::GlobalTLSAddress:     return LowerGlobalTLSAddress(Op, DAG);
    case ISD::ATOMIC_FENCE:         return LowerATOMIC_FENCE(Op, DAG);
    case ISD::GlobalAddress:        return LowerGLOBALADDRESS(Op, DAG);
    case ISD::BlockAddress:         return LowerBlockAddress(Op, DAG);
    case ISD::GLOBAL_OFFSET_TABLE:  return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
    case ISD::VASTART:              return LowerVASTART(Op, DAG);
    case ISD::DYNAMIC_STACKALLOC:   return LowerDYNAMIC_STACKALLOC(Op, DAG);
    case ISD::SETCC:                return LowerSETCC(Op, DAG);
    case ISD::VSELECT:              return LowerVSELECT(Op, DAG);
    case ISD::INTRINSIC_WO_CHAIN:   return LowerINTRINSIC_WO_CHAIN(Op, DAG);
    case ISD::INTRINSIC_VOID:       return LowerINTRINSIC_VOID(Op, DAG);
    case ISD::PREFETCH:             return LowerPREFETCH(Op, DAG);
    case ISD::READCYCLECOUNTER:     return LowerREADCYCLECOUNTER(Op, DAG);
      break;
  }

  return SDValue();
}

void
HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
                                          SmallVectorImpl<SDValue> &Results,
                                          SelectionDAG &DAG) const {
  const SDLoc &dl(N);
  switch (N->getOpcode()) {
    case ISD::SRL:
    case ISD::SRA:
    case ISD::SHL:
      return;
    case ISD::BITCAST:
      // Handle a bitcast from v8i1 to i8.
      if (N->getValueType(0) == MVT::i8) {
        SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32,
                             N->getOperand(0), DAG);
        Results.push_back(P);
      }
      break;
  }
}

/// Returns relocation base for the given PIC jumptable.
SDValue
HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
                                                SelectionDAG &DAG) const {
  int Idx = cast<JumpTableSDNode>(Table)->getIndex();
  EVT VT = Table.getValueType();
  SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
  return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
}

//===----------------------------------------------------------------------===//
// Inline Assembly Support
//===----------------------------------------------------------------------===//

TargetLowering::ConstraintType
HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
      case 'q':
      case 'v':
        if (Subtarget.useHVXOps())
          return C_RegisterClass;
        break;
      case 'a':
        return C_RegisterClass;
      default:
        break;
    }
  }
  return TargetLowering::getConstraintType(Constraint);
}

std::pair<unsigned, const TargetRegisterClass*>
HexagonTargetLowering::getRegForInlineAsmConstraint(
    const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {

  if (Constraint.size() == 1) {
    switch (Constraint[0]) {
    case 'r':   // R0-R31
      switch (VT.SimpleTy) {
      default:
        return {0u, nullptr};
      case MVT::i1:
      case MVT::i8:
      case MVT::i16:
      case MVT::i32:
      case MVT::f32:
        return {0u, &Hexagon::IntRegsRegClass};
      case MVT::i64:
      case MVT::f64:
        return {0u, &Hexagon::DoubleRegsRegClass};
      }
      break;
    case 'a': // M0-M1
      if (VT != MVT::i32)
        return {0u, nullptr};
      return {0u, &Hexagon::ModRegsRegClass};
    case 'q': // q0-q3
      switch (VT.getSizeInBits()) {
      default:
        return {0u, nullptr};
      case 512:
      case 1024:
        return {0u, &Hexagon::HvxQRRegClass};
      }
      break;
    case 'v': // V0-V31
      switch (VT.getSizeInBits()) {
      default:
        return {0u, nullptr};
      case 512:
        return {0u, &Hexagon::HvxVRRegClass};
      case 1024:
        if (Subtarget.hasV60TOps() && Subtarget.useHVX128BOps())
          return {0u, &Hexagon::HvxVRRegClass};
        return {0u, &Hexagon::HvxWRRegClass};
      case 2048:
        return {0u, &Hexagon::HvxWRRegClass};
      }
      break;
    default:
      return {0u, nullptr};
    }
  }

  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}

/// isFPImmLegal - Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
  return Subtarget.hasV5TOps();
}

/// isLegalAddressingMode - Return true if the addressing mode represented by
/// AM is legal for this target, for a load/store of the specified type.
bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
                                                  const AddrMode &AM, Type *Ty,
                                                  unsigned AS, Instruction *I) const {
  if (Ty->isSized()) {
    // When LSR detects uses of the same base address to access different
    // types (e.g. unions), it will assume a conservative type for these
    // uses:
    //   LSR Use: Kind=Address of void in addrspace(4294967295), ...
    // The type Ty passed here would then be "void". Skip the alignment
    // checks, but do not return false right away, since that confuses
    // LSR into crashing.
    unsigned A = DL.getABITypeAlignment(Ty);
    // The base offset must be a multiple of the alignment.
    if ((AM.BaseOffs % A) != 0)
      return false;
    // The shifted offset must fit in 11 bits.
    if (!isInt<11>(AM.BaseOffs >> Log2_32(A)))
      return false;
  }

  // No global is ever allowed as a base.
  if (AM.BaseGV)
    return false;

  int Scale = AM.Scale;
  if (Scale < 0)
    Scale = -Scale;
  switch (Scale) {
  case 0:  // No scale reg, "r+i", "r", or just "i".
    break;
  default: // No scaled addressing mode.
    return false;
  }
  return true;
}

/// Return true if folding a constant offset with the given GlobalAddress is
/// legal.  It is frequently not legal in PIC relocation models.
bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
      const {
  return HTM.getRelocationModel() == Reloc::Static;
}

/// isLegalICmpImmediate - Return true if the specified immediate is legal
/// icmp immediate, that is the target has icmp instructions which can compare
/// a register against the immediate without having to materialize the
/// immediate into a register.
bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
  return Imm >= -512 && Imm <= 511;
}

/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization. Targets which want to do tail call
/// optimization should implement this function.
bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
                                 SDValue Callee,
                                 CallingConv::ID CalleeCC,
                                 bool IsVarArg,
                                 bool IsCalleeStructRet,
                                 bool IsCallerStructRet,
                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
                                 const SmallVectorImpl<SDValue> &OutVals,
                                 const SmallVectorImpl<ISD::InputArg> &Ins,
                                 SelectionDAG& DAG) const {
  const Function &CallerF = DAG.getMachineFunction().getFunction();
  CallingConv::ID CallerCC = CallerF.getCallingConv();
  bool CCMatch = CallerCC == CalleeCC;

  // ***************************************************************************
  //  Look for obvious safe cases to perform tail call optimization that do not
  //  require ABI changes.
  // ***************************************************************************

  // If this is a tail call via a function pointer, then don't do it!
  if (!isa<GlobalAddressSDNode>(Callee) &&
      !isa<ExternalSymbolSDNode>(Callee)) {
    return false;
  }

  // Do not optimize if the calling conventions do not match and the conventions
  // used are not C or Fast.
  if (!CCMatch) {
    bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
    bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
    // If R & E, then ok.
    if (!R || !E)
      return false;
  }

  // Do not tail call optimize vararg calls.
  if (IsVarArg)
    return false;

  // Also avoid tail call optimization if either caller or callee uses struct
  // return semantics.
  if (IsCalleeStructRet || IsCallerStructRet)
    return false;

  // In addition to the cases above, we also disable Tail Call Optimization if
  // the calling convention code that at least one outgoing argument needs to
  // go on the stack. We cannot check that here because at this point that
  // information is not available.
  return true;
}

/// Returns the target specific optimal type for load and store operations as
/// a result of memset, memcpy, and memmove lowering.
///
/// If DstAlign is zero that means it's safe to destination alignment can
/// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
/// a need to check it against alignment requirement, probably because the
/// source does not need to be loaded. If 'IsMemset' is true, that means it's
/// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
/// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
/// does not need to be loaded.  It returns EVT::Other if the type should be
/// determined using generic target-independent logic.
EVT HexagonTargetLowering::getOptimalMemOpType(uint64_t Size,
      unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset,
      bool MemcpyStrSrc, MachineFunction &MF) const {

  auto Aligned = [](unsigned GivenA, unsigned MinA) -> bool {
    return (GivenA % MinA) == 0;
  };

  if (Size >= 8 && Aligned(DstAlign, 8) && (IsMemset || Aligned(SrcAlign, 8)))
    return MVT::i64;
  if (Size >= 4 && Aligned(DstAlign, 4) && (IsMemset || Aligned(SrcAlign, 4)))
    return MVT::i32;
  if (Size >= 2 && Aligned(DstAlign, 2) && (IsMemset || Aligned(SrcAlign, 2)))
    return MVT::i16;

  return MVT::Other;
}

bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
      unsigned AS, unsigned Align, bool *Fast) const {
  if (Fast)
    *Fast = false;
  return Subtarget.isHVXVectorType(VT.getSimpleVT());
}

std::pair<const TargetRegisterClass*, uint8_t>
HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
      MVT VT) const {
  if (Subtarget.isHVXVectorType(VT, true)) {
    unsigned BitWidth = VT.getSizeInBits();
    unsigned VecWidth = Subtarget.getVectorLength() * 8;

    if (VT.getVectorElementType() == MVT::i1)
      return std::make_pair(&Hexagon::HvxQRRegClass, 1);
    if (BitWidth == VecWidth)
      return std::make_pair(&Hexagon::HvxVRRegClass, 1);
    assert(BitWidth == 2 * VecWidth);
    return std::make_pair(&Hexagon::HvxWRRegClass, 1);
  }

  return TargetLowering::findRepresentativeClass(TRI, VT);
}

Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
      AtomicOrdering Ord) const {
  BasicBlock *BB = Builder.GetInsertBlock();
  Module *M = BB->getParent()->getParent();
  Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
  unsigned SZ = Ty->getPrimitiveSizeInBits();
  assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
  Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
                                   : Intrinsic::hexagon_L4_loadd_locked;
  Value *Fn = Intrinsic::getDeclaration(M, IntID);
  return Builder.CreateCall(Fn, Addr, "larx");
}

/// Perform a store-conditional operation to Addr. Return the status of the
/// store. This should be 0 if the store succeeded, non-zero otherwise.
Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder,
      Value *Val, Value *Addr, AtomicOrdering Ord) const {
  BasicBlock *BB = Builder.GetInsertBlock();
  Module *M = BB->getParent()->getParent();
  Type *Ty = Val->getType();
  unsigned SZ = Ty->getPrimitiveSizeInBits();
  assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
  Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
                                   : Intrinsic::hexagon_S4_stored_locked;
  Value *Fn = Intrinsic::getDeclaration(M, IntID);
  Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
  Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
  Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
  return Ext;
}

TargetLowering::AtomicExpansionKind
HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
  // Do not expand loads and stores that don't exceed 64 bits.
  return LI->getType()->getPrimitiveSizeInBits() > 64
             ? AtomicExpansionKind::LLOnly
             : AtomicExpansionKind::None;
}

bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
  // Do not expand loads and stores that don't exceed 64 bits.
  return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64;
}

bool HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
      AtomicCmpXchgInst *AI) const {
  const DataLayout &DL = AI->getModule()->getDataLayout();
  unsigned Size = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
  return Size >= 4 && Size <= 8;
}
OpenPOWER on IntegriCloud