1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
|
//===-- AMDGPUInstrInfo.cpp - Base class for AMD GPU InstrInfo ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Implementation of the TargetInstrInfo class that is common to all
/// AMD GPUs.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUInstrInfo.h"
#include "AMDGPURegisterInfo.h"
#include "AMDGPUTargetMachine.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
#define GET_INSTRINFO_CTOR_DTOR
#define GET_INSTRINFO_NAMED_OPS
#define GET_INSTRMAP_INFO
#include "AMDGPUGenInstrInfo.inc"
// Pin the vtable to this file.
void AMDGPUInstrInfo::anchor() {}
AMDGPUInstrInfo::AMDGPUInstrInfo(const AMDGPUSubtarget &ST)
: AMDGPUGenInstrInfo(-1, -1), ST(ST) {}
bool AMDGPUInstrInfo::enableClusterLoads() const {
return true;
}
// FIXME: This behaves strangely. If, for example, you have 32 load + stores,
// the first 16 loads will be interleaved with the stores, and the next 16 will
// be clustered as expected. It should really split into 2 16 store batches.
//
// Loads are clustered until this returns false, rather than trying to schedule
// groups of stores. This also means we have to deal with saying different
// address space loads should be clustered, and ones which might cause bank
// conflicts.
//
// This might be deprecated so it might not be worth that much effort to fix.
bool AMDGPUInstrInfo::shouldScheduleLoadsNear(SDNode *Load0, SDNode *Load1,
int64_t Offset0, int64_t Offset1,
unsigned NumLoads) const {
assert(Offset1 > Offset0 &&
"Second offset should be larger than first offset!");
// If we have less than 16 loads in a row, and the offsets are within 64
// bytes, then schedule together.
// A cacheline is 64 bytes (for global memory).
return (NumLoads <= 16 && (Offset1 - Offset0) < 64);
}
int AMDGPUInstrInfo::getIndirectIndexBegin(const MachineFunction &MF) const {
const MachineRegisterInfo &MRI = MF.getRegInfo();
const MachineFrameInfo *MFI = MF.getFrameInfo();
int Offset = -1;
if (MFI->getNumObjects() == 0) {
return -1;
}
if (MRI.livein_empty()) {
return 0;
}
const TargetRegisterClass *IndirectRC = getIndirectAddrRegClass();
for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
LE = MRI.livein_end();
LI != LE; ++LI) {
unsigned Reg = LI->first;
if (TargetRegisterInfo::isVirtualRegister(Reg) ||
!IndirectRC->contains(Reg))
continue;
unsigned RegIndex;
unsigned RegEnd;
for (RegIndex = 0, RegEnd = IndirectRC->getNumRegs(); RegIndex != RegEnd;
++RegIndex) {
if (IndirectRC->getRegister(RegIndex) == Reg)
break;
}
Offset = std::max(Offset, (int)RegIndex);
}
return Offset + 1;
}
int AMDGPUInstrInfo::getIndirectIndexEnd(const MachineFunction &MF) const {
int Offset = 0;
const MachineFrameInfo *MFI = MF.getFrameInfo();
// Variable sized objects are not supported
if (MFI->hasVarSizedObjects()) {
return -1;
}
if (MFI->getNumObjects() == 0) {
return -1;
}
const AMDGPUSubtarget &ST = MF.getSubtarget<AMDGPUSubtarget>();
const AMDGPUFrameLowering *TFL = ST.getFrameLowering();
unsigned IgnoredFrameReg;
Offset = TFL->getFrameIndexReference(MF, -1, IgnoredFrameReg);
return getIndirectIndexBegin(MF) + Offset;
}
int AMDGPUInstrInfo::getMaskedMIMGOp(uint16_t Opcode, unsigned Channels) const {
switch (Channels) {
default: return Opcode;
case 1: return AMDGPU::getMaskedMIMGOp(Opcode, AMDGPU::Channels_1);
case 2: return AMDGPU::getMaskedMIMGOp(Opcode, AMDGPU::Channels_2);
case 3: return AMDGPU::getMaskedMIMGOp(Opcode, AMDGPU::Channels_3);
}
}
// This must be kept in sync with the SIEncodingFamily class in SIInstrInfo.td
enum SIEncodingFamily {
SI = 0,
VI = 1
};
// Wrapper for Tablegen'd function. enum Subtarget is not defined in any
// header files, so we need to wrap it in a function that takes unsigned
// instead.
namespace llvm {
namespace AMDGPU {
static int getMCOpcode(uint16_t Opcode, unsigned Gen) {
return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
}
}
}
static SIEncodingFamily subtargetEncodingFamily(const AMDGPUSubtarget &ST) {
switch (ST.getGeneration()) {
case AMDGPUSubtarget::SOUTHERN_ISLANDS:
case AMDGPUSubtarget::SEA_ISLANDS:
return SIEncodingFamily::SI;
case AMDGPUSubtarget::VOLCANIC_ISLANDS:
return SIEncodingFamily::VI;
// FIXME: This should never be called for r600 GPUs.
case AMDGPUSubtarget::R600:
case AMDGPUSubtarget::R700:
case AMDGPUSubtarget::EVERGREEN:
case AMDGPUSubtarget::NORTHERN_ISLANDS:
return SIEncodingFamily::SI;
}
}
int AMDGPUInstrInfo::pseudoToMCOpcode(int Opcode) const {
int MCOp = AMDGPU::getMCOpcode(Opcode, subtargetEncodingFamily(ST));
// -1 means that Opcode is already a native instruction.
if (MCOp == -1)
return Opcode;
// (uint16_t)-1 means that Opcode is a pseudo instruction that has
// no encoding in the given subtarget generation.
if (MCOp == (uint16_t)-1)
return -1;
return MCOp;
}
|