1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
|
//===- lib/ReaderWriter/MachO/MachONormalizedFileBinaryReader.cpp ---------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file For mach-o object files, this implementation converts from
/// mach-o on-disk binary format to in-memory normalized mach-o.
///
/// +---------------+
/// | binary mach-o |
/// +---------------+
/// |
/// |
/// v
/// +------------+
/// | normalized |
/// +------------+
#include "MachONormalizedFile.h"
#include "MachONormalizedFileBinaryUtils.h"
#include "ReferenceKinds.h"
#include "lld/Core/Error.h"
#include "lld/Core/LLVM.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MachO.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <functional>
#include <system_error>
using namespace llvm::MachO;
namespace lld {
namespace mach_o {
namespace normalized {
// Utility to call a lambda expression on each load command.
static std::error_code forEachLoadCommand(
StringRef lcRange, unsigned lcCount, bool swap, bool is64,
std::function<bool(uint32_t cmd, uint32_t size, const char *lc)> func) {
const char* p = lcRange.begin();
for (unsigned i=0; i < lcCount; ++i) {
const load_command *lc = reinterpret_cast<const load_command*>(p);
load_command lcCopy;
const load_command *slc = lc;
if (swap) {
memcpy(&lcCopy, lc, sizeof(load_command));
swapStruct(lcCopy);
slc = &lcCopy;
}
if ( (p + slc->cmdsize) > lcRange.end() )
return make_error_code(llvm::errc::executable_format_error);
if (func(slc->cmd, slc->cmdsize, p))
return std::error_code();
p += slc->cmdsize;
}
return std::error_code();
}
static std::error_code appendRelocations(Relocations &relocs, StringRef buffer,
bool swap, bool bigEndian,
uint32_t reloff, uint32_t nreloc) {
if ((reloff + nreloc*8) > buffer.size())
return make_error_code(llvm::errc::executable_format_error);
const any_relocation_info* relocsArray =
reinterpret_cast<const any_relocation_info*>(buffer.begin()+reloff);
for(uint32_t i=0; i < nreloc; ++i) {
relocs.push_back(unpackRelocation(relocsArray[i], swap, bigEndian));
}
return std::error_code();
}
static std::error_code
appendIndirectSymbols(IndirectSymbols &isyms, StringRef buffer, bool swap,
bool bigEndian, uint32_t istOffset, uint32_t istCount,
uint32_t startIndex, uint32_t count) {
if ((istOffset + istCount*4) > buffer.size())
return make_error_code(llvm::errc::executable_format_error);
if (startIndex+count > istCount)
return make_error_code(llvm::errc::executable_format_error);
const uint32_t *indirectSymbolArray =
reinterpret_cast<const uint32_t*>(buffer.begin()+istOffset);
for(uint32_t i=0; i < count; ++i) {
isyms.push_back(read32(swap, indirectSymbolArray[startIndex+i]));
}
return std::error_code();
}
template <typename T> static T readBigEndian(T t) {
if (llvm::sys::IsLittleEndianHost)
return SwapByteOrder(t);
return t;
}
/// Reads a mach-o file and produces an in-memory normalized view.
ErrorOr<std::unique_ptr<NormalizedFile>>
readBinary(std::unique_ptr<MemoryBuffer> &mb,
const MachOLinkingContext::Arch arch) {
// Make empty NormalizedFile.
std::unique_ptr<NormalizedFile> f(new NormalizedFile());
const char *start = mb->getBufferStart();
size_t objSize = mb->getBufferSize();
// Determine endianness and pointer size for mach-o file.
const mach_header *mh = reinterpret_cast<const mach_header *>(start);
bool isFat = mh->magic == llvm::MachO::FAT_CIGAM ||
mh->magic == llvm::MachO::FAT_MAGIC;
if (isFat) {
uint32_t cputype = MachOLinkingContext::cpuTypeFromArch(arch);
uint32_t cpusubtype = MachOLinkingContext::cpuSubtypeFromArch(arch);
const fat_header *fh = reinterpret_cast<const fat_header *>(start);
uint32_t nfat_arch = readBigEndian(fh->nfat_arch);
const fat_arch *fa =
reinterpret_cast<const fat_arch *>(start + sizeof(fat_header));
bool foundArch = false;
while (nfat_arch-- > 0) {
if (readBigEndian(fa->cputype) == cputype &&
readBigEndian(fa->cpusubtype) == cpusubtype) {
foundArch = true;
break;
}
fa++;
}
if (!foundArch) {
return make_error_code(llvm::errc::executable_format_error);
}
objSize = readBigEndian(fa->size);
uint32_t offset = readBigEndian(fa->offset);
if ((offset + objSize) > mb->getBufferSize())
return make_error_code(llvm::errc::executable_format_error);
start += offset;
mh = reinterpret_cast<const mach_header *>(start);
}
bool is64, swap;
switch (mh->magic) {
case llvm::MachO::MH_MAGIC:
is64 = false;
swap = false;
break;
case llvm::MachO::MH_MAGIC_64:
is64 = true;
swap = false;
break;
case llvm::MachO::MH_CIGAM:
is64 = false;
swap = true;
break;
case llvm::MachO::MH_CIGAM_64:
is64 = true;
swap = true;
break;
default:
return make_error_code(llvm::errc::executable_format_error);
}
// Endian swap header, if needed.
mach_header headerCopy;
const mach_header *smh = mh;
if (swap) {
memcpy(&headerCopy, mh, sizeof(mach_header));
swapStruct(headerCopy);
smh = &headerCopy;
}
// Validate head and load commands fit in buffer.
const uint32_t lcCount = smh->ncmds;
const char *lcStart =
start + (is64 ? sizeof(mach_header_64) : sizeof(mach_header));
StringRef lcRange(lcStart, smh->sizeofcmds);
if (lcRange.end() > (start + objSize))
return make_error_code(llvm::errc::executable_format_error);
// Normalize architecture
f->arch = MachOLinkingContext::archFromCpuType(smh->cputype, smh->cpusubtype);
bool isBigEndianArch = MachOLinkingContext::isBigEndian(f->arch);
// Copy file type and flags
f->fileType = HeaderFileType(smh->filetype);
f->flags = smh->flags;
// Pre-scan load commands looking for indirect symbol table.
uint32_t indirectSymbolTableOffset = 0;
uint32_t indirectSymbolTableCount = 0;
std::error_code ec = forEachLoadCommand(lcRange, lcCount, swap, is64,
[&](uint32_t cmd, uint32_t size,
const char *lc) -> bool {
if (cmd == LC_DYSYMTAB) {
const dysymtab_command *d = reinterpret_cast<const dysymtab_command*>(lc);
indirectSymbolTableOffset = read32(swap, d->indirectsymoff);
indirectSymbolTableCount = read32(swap, d->nindirectsyms);
return true;
}
return false;
});
if (ec)
return ec;
// Walk load commands looking for segments/sections and the symbol table.
ec = forEachLoadCommand(lcRange, lcCount, swap, is64,
[&] (uint32_t cmd, uint32_t size, const char* lc) -> bool {
if (is64) {
if (cmd == LC_SEGMENT_64) {
const segment_command_64 *seg =
reinterpret_cast<const segment_command_64*>(lc);
const unsigned sectionCount = (swap ? SwapByteOrder(seg->nsects)
: seg->nsects);
const section_64 *sects = reinterpret_cast<const section_64*>
(lc + sizeof(segment_command_64));
const unsigned lcSize = sizeof(segment_command_64)
+ sectionCount*sizeof(section_64);
// Verify sections don't extend beyond end of segment load command.
if (lcSize > size)
return true;
for (unsigned i=0; i < sectionCount; ++i) {
const section_64 *sect = §s[i];
Section section;
section.segmentName = getString16(sect->segname);
section.sectionName = getString16(sect->sectname);
section.type = (SectionType)(read32(swap, sect->flags)
& SECTION_TYPE);
section.attributes = read32(swap, sect->flags) & SECTION_ATTRIBUTES;
section.alignment = read32(swap, sect->align);
section.address = read64(swap, sect->addr);
const uint8_t *content =
(uint8_t *)start + read32(swap, sect->offset);
size_t contentSize = read64(swap, sect->size);
// Note: this assign() is copying the content bytes. Ideally,
// we can use a custom allocator for vector to avoid the copy.
section.content = llvm::makeArrayRef(content, contentSize);
appendRelocations(section.relocations, mb->getBuffer(),
swap, isBigEndianArch, read32(swap, sect->reloff),
read32(swap, sect->nreloc));
if (section.type == S_NON_LAZY_SYMBOL_POINTERS) {
appendIndirectSymbols(section.indirectSymbols, mb->getBuffer(),
swap, isBigEndianArch,
indirectSymbolTableOffset,
indirectSymbolTableCount,
read32(swap, sect->reserved1), contentSize/4);
}
f->sections.push_back(section);
}
}
} else {
if (cmd == LC_SEGMENT) {
const segment_command *seg =
reinterpret_cast<const segment_command*>(lc);
const unsigned sectionCount = (swap ? SwapByteOrder(seg->nsects)
: seg->nsects);
const section *sects = reinterpret_cast<const section*>
(lc + sizeof(segment_command));
const unsigned lcSize = sizeof(segment_command)
+ sectionCount*sizeof(section);
// Verify sections don't extend beyond end of segment load command.
if (lcSize > size)
return true;
for (unsigned i=0; i < sectionCount; ++i) {
const section *sect = §s[i];
Section section;
section.segmentName = getString16(sect->segname);
section.sectionName = getString16(sect->sectname);
section.type = (SectionType)(read32(swap, sect->flags)
& SECTION_TYPE);
section.attributes = read32(swap, sect->flags) & SECTION_ATTRIBUTES;
section.alignment = read32(swap, sect->align);
section.address = read32(swap, sect->addr);
const uint8_t *content =
(uint8_t *)start + read32(swap, sect->offset);
size_t contentSize = read32(swap, sect->size);
// Note: this assign() is copying the content bytes. Ideally,
// we can use a custom allocator for vector to avoid the copy.
section.content = llvm::makeArrayRef(content, contentSize);
appendRelocations(section.relocations, mb->getBuffer(),
swap, isBigEndianArch, read32(swap, sect->reloff),
read32(swap, sect->nreloc));
if (section.type == S_NON_LAZY_SYMBOL_POINTERS) {
appendIndirectSymbols(section.indirectSymbols, mb->getBuffer(),
swap, isBigEndianArch,
indirectSymbolTableOffset,
indirectSymbolTableCount,
read32(swap, sect->reserved1), contentSize/4);
}
f->sections.push_back(section);
}
}
}
if (cmd == LC_SYMTAB) {
const symtab_command *st = reinterpret_cast<const symtab_command*>(lc);
const char *strings = start + read32(swap, st->stroff);
const uint32_t strSize = read32(swap, st->strsize);
// Validate string pool and symbol table all in buffer.
if ( read32(swap, st->stroff)+read32(swap, st->strsize)
> objSize )
return true;
if (is64) {
const uint32_t symOffset = read32(swap, st->symoff);
const uint32_t symCount = read32(swap, st->nsyms);
if ( symOffset+(symCount*sizeof(nlist_64)) > objSize)
return true;
const nlist_64 *symbols =
reinterpret_cast<const nlist_64 *>(start + symOffset);
// Convert each nlist_64 to a lld::mach_o::normalized::Symbol.
for(uint32_t i=0; i < symCount; ++i) {
const nlist_64 *sin = &symbols[i];
nlist_64 tempSym;
if (swap) {
tempSym = *sin; swapStruct(tempSym); sin = &tempSym;
}
Symbol sout;
if (sin->n_strx > strSize)
return true;
sout.name = &strings[sin->n_strx];
sout.type = (NListType)(sin->n_type & N_TYPE);
sout.scope = (sin->n_type & (N_PEXT|N_EXT));
sout.sect = sin->n_sect;
sout.desc = sin->n_desc;
sout.value = sin->n_value;
if (sout.type == N_UNDF)
f->undefinedSymbols.push_back(sout);
else if (sout.scope == (SymbolScope)N_EXT)
f->globalSymbols.push_back(sout);
else
f->localSymbols.push_back(sout);
}
} else {
const uint32_t symOffset = read32(swap, st->symoff);
const uint32_t symCount = read32(swap, st->nsyms);
if ( symOffset+(symCount*sizeof(nlist)) > objSize)
return true;
const nlist *symbols =
reinterpret_cast<const nlist *>(start + symOffset);
// Convert each nlist to a lld::mach_o::normalized::Symbol.
for(uint32_t i=0; i < symCount; ++i) {
const nlist *sin = &symbols[i];
nlist tempSym;
if (swap) {
tempSym = *sin; swapStruct(tempSym); sin = &tempSym;
}
Symbol sout;
if (sin->n_strx > strSize)
return true;
sout.name = &strings[sin->n_strx];
sout.type = (NListType)(sin->n_type & N_TYPE);
sout.scope = (sin->n_type & (N_PEXT|N_EXT));
sout.sect = sin->n_sect;
sout.desc = sin->n_desc;
sout.value = sin->n_value;
if (sout.type == N_UNDF)
f->undefinedSymbols.push_back(sout);
else if (sout.scope == (SymbolScope)N_EXT)
f->globalSymbols.push_back(sout);
else
f->localSymbols.push_back(sout);
}
}
}
return false;
});
if (ec)
return ec;
return std::move(f);
}
class MachOReader : public Reader {
public:
MachOReader(MachOLinkingContext::Arch arch) : _arch(arch) {}
bool canParse(file_magic magic, StringRef ext,
const MemoryBuffer &mb) const override {
if (magic != llvm::sys::fs::file_magic::macho_object)
return false;
if (mb.getBufferSize() < 32)
return false;
const char *start = mb.getBufferStart();
const mach_header *mh = reinterpret_cast<const mach_header *>(start);
const bool swap = (mh->magic == llvm::MachO::MH_CIGAM) ||
(mh->magic == llvm::MachO::MH_CIGAM_64);
const uint32_t filesCpuType = read32(swap, mh->cputype);
const uint32_t filesCpuSubtype = read32(swap, mh->cpusubtype);
if (filesCpuType != MachOLinkingContext::cpuTypeFromArch(_arch))
return false;
if (filesCpuSubtype != MachOLinkingContext::cpuSubtypeFromArch(_arch))
return false;
// Is mach-o file with correct cpu type/subtype.
return true;
}
std::error_code
parseFile(std::unique_ptr<MemoryBuffer> &mb, const Registry ®istry,
std::vector<std::unique_ptr<File>> &result) const override {
// Convert binary file to normalized mach-o.
auto normFile = readBinary(mb, _arch);
if (std::error_code ec = normFile.getError())
return ec;
// Convert normalized mach-o to atoms.
auto file = normalizedToAtoms(**normFile, mb->getBufferIdentifier(), false);
if (std::error_code ec = file.getError())
return ec;
result.push_back(std::move(*file));
return std::error_code();
}
private:
MachOLinkingContext::Arch _arch;
};
} // namespace normalized
} // namespace mach_o
void Registry::addSupportMachOObjects(StringRef archName) {
MachOLinkingContext::Arch arch = MachOLinkingContext::archFromName(archName);
add(std::unique_ptr<Reader>(new mach_o::normalized::MachOReader(arch)));
switch (arch) {
case MachOLinkingContext::arch_x86_64:
addKindTable(Reference::KindNamespace::mach_o, Reference::KindArch::x86_64,
mach_o::KindHandler_x86_64::kindStrings);
break;
case MachOLinkingContext::arch_x86:
addKindTable(Reference::KindNamespace::mach_o, Reference::KindArch::x86,
mach_o::KindHandler_x86::kindStrings);
break;
case MachOLinkingContext::arch_armv6:
case MachOLinkingContext::arch_armv7:
case MachOLinkingContext::arch_armv7s:
addKindTable(Reference::KindNamespace::mach_o, Reference::KindArch::ARM,
mach_o::KindHandler_arm::kindStrings);
break;
default:
llvm_unreachable("mach-o arch not supported");
}
add(std::unique_ptr<YamlIOTaggedDocumentHandler>(
new mach_o::MachOYamlIOTaggedDocumentHandler()));
}
} // namespace lld
|