//===- lib/ReaderWriter/MachO/MachONormalizedFileBinaryReader.cpp ---------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file For mach-o object files, this implementation converts from /// mach-o on-disk binary format to in-memory normalized mach-o. /// /// +---------------+ /// | binary mach-o | /// +---------------+ /// | /// | /// v /// +------------+ /// | normalized | /// +------------+ #include "MachONormalizedFile.h" #include "MachONormalizedFileBinaryUtils.h" #include "ReferenceKinds.h" #include "lld/Core/Error.h" #include "lld/Core/LLVM.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Errc.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileOutputBuffer.h" #include "llvm/Support/Host.h" #include "llvm/Support/MachO.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm::MachO; namespace lld { namespace mach_o { namespace normalized { // Utility to call a lambda expression on each load command. static std::error_code forEachLoadCommand( StringRef lcRange, unsigned lcCount, bool swap, bool is64, std::function func) { const char* p = lcRange.begin(); for (unsigned i=0; i < lcCount; ++i) { const load_command *lc = reinterpret_cast(p); load_command lcCopy; const load_command *slc = lc; if (swap) { memcpy(&lcCopy, lc, sizeof(load_command)); swapStruct(lcCopy); slc = &lcCopy; } if ( (p + slc->cmdsize) > lcRange.end() ) return make_error_code(llvm::errc::executable_format_error); if (func(slc->cmd, slc->cmdsize, p)) return std::error_code(); p += slc->cmdsize; } return std::error_code(); } static std::error_code appendRelocations(Relocations &relocs, StringRef buffer, bool swap, bool bigEndian, uint32_t reloff, uint32_t nreloc) { if ((reloff + nreloc*8) > buffer.size()) return make_error_code(llvm::errc::executable_format_error); const any_relocation_info* relocsArray = reinterpret_cast(buffer.begin()+reloff); for(uint32_t i=0; i < nreloc; ++i) { relocs.push_back(unpackRelocation(relocsArray[i], swap, bigEndian)); } return std::error_code(); } static std::error_code appendIndirectSymbols(IndirectSymbols &isyms, StringRef buffer, bool swap, bool bigEndian, uint32_t istOffset, uint32_t istCount, uint32_t startIndex, uint32_t count) { if ((istOffset + istCount*4) > buffer.size()) return make_error_code(llvm::errc::executable_format_error); if (startIndex+count > istCount) return make_error_code(llvm::errc::executable_format_error); const uint32_t *indirectSymbolArray = reinterpret_cast(buffer.begin()+istOffset); for(uint32_t i=0; i < count; ++i) { isyms.push_back(read32(swap, indirectSymbolArray[startIndex+i])); } return std::error_code(); } template static T readBigEndian(T t) { if (llvm::sys::IsLittleEndianHost) return SwapByteOrder(t); return t; } /// Reads a mach-o file and produces an in-memory normalized view. ErrorOr> readBinary(std::unique_ptr &mb, const MachOLinkingContext::Arch arch) { // Make empty NormalizedFile. std::unique_ptr f(new NormalizedFile()); const char *start = mb->getBufferStart(); size_t objSize = mb->getBufferSize(); // Determine endianness and pointer size for mach-o file. const mach_header *mh = reinterpret_cast(start); bool isFat = mh->magic == llvm::MachO::FAT_CIGAM || mh->magic == llvm::MachO::FAT_MAGIC; if (isFat) { uint32_t cputype = MachOLinkingContext::cpuTypeFromArch(arch); uint32_t cpusubtype = MachOLinkingContext::cpuSubtypeFromArch(arch); const fat_header *fh = reinterpret_cast(start); uint32_t nfat_arch = readBigEndian(fh->nfat_arch); const fat_arch *fa = reinterpret_cast(start + sizeof(fat_header)); bool foundArch = false; while (nfat_arch-- > 0) { if (readBigEndian(fa->cputype) == cputype && readBigEndian(fa->cpusubtype) == cpusubtype) { foundArch = true; break; } fa++; } if (!foundArch) { return make_error_code(llvm::errc::executable_format_error); } objSize = readBigEndian(fa->size); uint32_t offset = readBigEndian(fa->offset); if ((offset + objSize) > mb->getBufferSize()) return make_error_code(llvm::errc::executable_format_error); start += offset; mh = reinterpret_cast(start); } bool is64, swap; switch (mh->magic) { case llvm::MachO::MH_MAGIC: is64 = false; swap = false; break; case llvm::MachO::MH_MAGIC_64: is64 = true; swap = false; break; case llvm::MachO::MH_CIGAM: is64 = false; swap = true; break; case llvm::MachO::MH_CIGAM_64: is64 = true; swap = true; break; default: return make_error_code(llvm::errc::executable_format_error); } // Endian swap header, if needed. mach_header headerCopy; const mach_header *smh = mh; if (swap) { memcpy(&headerCopy, mh, sizeof(mach_header)); swapStruct(headerCopy); smh = &headerCopy; } // Validate head and load commands fit in buffer. const uint32_t lcCount = smh->ncmds; const char *lcStart = start + (is64 ? sizeof(mach_header_64) : sizeof(mach_header)); StringRef lcRange(lcStart, smh->sizeofcmds); if (lcRange.end() > (start + objSize)) return make_error_code(llvm::errc::executable_format_error); // Normalize architecture f->arch = MachOLinkingContext::archFromCpuType(smh->cputype, smh->cpusubtype); bool isBigEndianArch = MachOLinkingContext::isBigEndian(f->arch); // Copy file type and flags f->fileType = HeaderFileType(smh->filetype); f->flags = smh->flags; // Pre-scan load commands looking for indirect symbol table. uint32_t indirectSymbolTableOffset = 0; uint32_t indirectSymbolTableCount = 0; std::error_code ec = forEachLoadCommand(lcRange, lcCount, swap, is64, [&](uint32_t cmd, uint32_t size, const char *lc) -> bool { if (cmd == LC_DYSYMTAB) { const dysymtab_command *d = reinterpret_cast(lc); indirectSymbolTableOffset = read32(swap, d->indirectsymoff); indirectSymbolTableCount = read32(swap, d->nindirectsyms); return true; } return false; }); if (ec) return ec; // Walk load commands looking for segments/sections and the symbol table. ec = forEachLoadCommand(lcRange, lcCount, swap, is64, [&] (uint32_t cmd, uint32_t size, const char* lc) -> bool { if (is64) { if (cmd == LC_SEGMENT_64) { const segment_command_64 *seg = reinterpret_cast(lc); const unsigned sectionCount = (swap ? SwapByteOrder(seg->nsects) : seg->nsects); const section_64 *sects = reinterpret_cast (lc + sizeof(segment_command_64)); const unsigned lcSize = sizeof(segment_command_64) + sectionCount*sizeof(section_64); // Verify sections don't extend beyond end of segment load command. if (lcSize > size) return true; for (unsigned i=0; i < sectionCount; ++i) { const section_64 *sect = §s[i]; Section section; section.segmentName = getString16(sect->segname); section.sectionName = getString16(sect->sectname); section.type = (SectionType)(read32(swap, sect->flags) & SECTION_TYPE); section.attributes = read32(swap, sect->flags) & SECTION_ATTRIBUTES; section.alignment = read32(swap, sect->align); section.address = read64(swap, sect->addr); const uint8_t *content = (uint8_t *)start + read32(swap, sect->offset); size_t contentSize = read64(swap, sect->size); // Note: this assign() is copying the content bytes. Ideally, // we can use a custom allocator for vector to avoid the copy. section.content = llvm::makeArrayRef(content, contentSize); appendRelocations(section.relocations, mb->getBuffer(), swap, isBigEndianArch, read32(swap, sect->reloff), read32(swap, sect->nreloc)); if (section.type == S_NON_LAZY_SYMBOL_POINTERS) { appendIndirectSymbols(section.indirectSymbols, mb->getBuffer(), swap, isBigEndianArch, indirectSymbolTableOffset, indirectSymbolTableCount, read32(swap, sect->reserved1), contentSize/4); } f->sections.push_back(section); } } } else { if (cmd == LC_SEGMENT) { const segment_command *seg = reinterpret_cast(lc); const unsigned sectionCount = (swap ? SwapByteOrder(seg->nsects) : seg->nsects); const section *sects = reinterpret_cast (lc + sizeof(segment_command)); const unsigned lcSize = sizeof(segment_command) + sectionCount*sizeof(section); // Verify sections don't extend beyond end of segment load command. if (lcSize > size) return true; for (unsigned i=0; i < sectionCount; ++i) { const section *sect = §s[i]; Section section; section.segmentName = getString16(sect->segname); section.sectionName = getString16(sect->sectname); section.type = (SectionType)(read32(swap, sect->flags) & SECTION_TYPE); section.attributes = read32(swap, sect->flags) & SECTION_ATTRIBUTES; section.alignment = read32(swap, sect->align); section.address = read32(swap, sect->addr); const uint8_t *content = (uint8_t *)start + read32(swap, sect->offset); size_t contentSize = read32(swap, sect->size); // Note: this assign() is copying the content bytes. Ideally, // we can use a custom allocator for vector to avoid the copy. section.content = llvm::makeArrayRef(content, contentSize); appendRelocations(section.relocations, mb->getBuffer(), swap, isBigEndianArch, read32(swap, sect->reloff), read32(swap, sect->nreloc)); if (section.type == S_NON_LAZY_SYMBOL_POINTERS) { appendIndirectSymbols(section.indirectSymbols, mb->getBuffer(), swap, isBigEndianArch, indirectSymbolTableOffset, indirectSymbolTableCount, read32(swap, sect->reserved1), contentSize/4); } f->sections.push_back(section); } } } if (cmd == LC_SYMTAB) { const symtab_command *st = reinterpret_cast(lc); const char *strings = start + read32(swap, st->stroff); const uint32_t strSize = read32(swap, st->strsize); // Validate string pool and symbol table all in buffer. if ( read32(swap, st->stroff)+read32(swap, st->strsize) > objSize ) return true; if (is64) { const uint32_t symOffset = read32(swap, st->symoff); const uint32_t symCount = read32(swap, st->nsyms); if ( symOffset+(symCount*sizeof(nlist_64)) > objSize) return true; const nlist_64 *symbols = reinterpret_cast(start + symOffset); // Convert each nlist_64 to a lld::mach_o::normalized::Symbol. for(uint32_t i=0; i < symCount; ++i) { const nlist_64 *sin = &symbols[i]; nlist_64 tempSym; if (swap) { tempSym = *sin; swapStruct(tempSym); sin = &tempSym; } Symbol sout; if (sin->n_strx > strSize) return true; sout.name = &strings[sin->n_strx]; sout.type = (NListType)(sin->n_type & N_TYPE); sout.scope = (sin->n_type & (N_PEXT|N_EXT)); sout.sect = sin->n_sect; sout.desc = sin->n_desc; sout.value = sin->n_value; if (sout.type == N_UNDF) f->undefinedSymbols.push_back(sout); else if (sout.scope == (SymbolScope)N_EXT) f->globalSymbols.push_back(sout); else f->localSymbols.push_back(sout); } } else { const uint32_t symOffset = read32(swap, st->symoff); const uint32_t symCount = read32(swap, st->nsyms); if ( symOffset+(symCount*sizeof(nlist)) > objSize) return true; const nlist *symbols = reinterpret_cast(start + symOffset); // Convert each nlist to a lld::mach_o::normalized::Symbol. for(uint32_t i=0; i < symCount; ++i) { const nlist *sin = &symbols[i]; nlist tempSym; if (swap) { tempSym = *sin; swapStruct(tempSym); sin = &tempSym; } Symbol sout; if (sin->n_strx > strSize) return true; sout.name = &strings[sin->n_strx]; sout.type = (NListType)(sin->n_type & N_TYPE); sout.scope = (sin->n_type & (N_PEXT|N_EXT)); sout.sect = sin->n_sect; sout.desc = sin->n_desc; sout.value = sin->n_value; if (sout.type == N_UNDF) f->undefinedSymbols.push_back(sout); else if (sout.scope == (SymbolScope)N_EXT) f->globalSymbols.push_back(sout); else f->localSymbols.push_back(sout); } } } return false; }); if (ec) return ec; return std::move(f); } class MachOReader : public Reader { public: MachOReader(MachOLinkingContext::Arch arch) : _arch(arch) {} bool canParse(file_magic magic, StringRef ext, const MemoryBuffer &mb) const override { if (magic != llvm::sys::fs::file_magic::macho_object) return false; if (mb.getBufferSize() < 32) return false; const char *start = mb.getBufferStart(); const mach_header *mh = reinterpret_cast(start); const bool swap = (mh->magic == llvm::MachO::MH_CIGAM) || (mh->magic == llvm::MachO::MH_CIGAM_64); const uint32_t filesCpuType = read32(swap, mh->cputype); const uint32_t filesCpuSubtype = read32(swap, mh->cpusubtype); if (filesCpuType != MachOLinkingContext::cpuTypeFromArch(_arch)) return false; if (filesCpuSubtype != MachOLinkingContext::cpuSubtypeFromArch(_arch)) return false; // Is mach-o file with correct cpu type/subtype. return true; } std::error_code parseFile(std::unique_ptr &mb, const Registry ®istry, std::vector> &result) const override { // Convert binary file to normalized mach-o. auto normFile = readBinary(mb, _arch); if (std::error_code ec = normFile.getError()) return ec; // Convert normalized mach-o to atoms. auto file = normalizedToAtoms(**normFile, mb->getBufferIdentifier(), false); if (std::error_code ec = file.getError()) return ec; result.push_back(std::move(*file)); return std::error_code(); } private: MachOLinkingContext::Arch _arch; }; } // namespace normalized } // namespace mach_o void Registry::addSupportMachOObjects(StringRef archName) { MachOLinkingContext::Arch arch = MachOLinkingContext::archFromName(archName); add(std::unique_ptr(new mach_o::normalized::MachOReader(arch))); switch (arch) { case MachOLinkingContext::arch_x86_64: addKindTable(Reference::KindNamespace::mach_o, Reference::KindArch::x86_64, mach_o::KindHandler_x86_64::kindStrings); break; case MachOLinkingContext::arch_x86: addKindTable(Reference::KindNamespace::mach_o, Reference::KindArch::x86, mach_o::KindHandler_x86::kindStrings); break; case MachOLinkingContext::arch_armv6: case MachOLinkingContext::arch_armv7: case MachOLinkingContext::arch_armv7s: addKindTable(Reference::KindNamespace::mach_o, Reference::KindArch::ARM, mach_o::KindHandler_arm::kindStrings); break; default: llvm_unreachable("mach-o arch not supported"); } add(std::unique_ptr( new mach_o::MachOYamlIOTaggedDocumentHandler())); } } // namespace lld