summaryrefslogtreecommitdiffstats
path: root/lld/lib/Passes/LayoutPass.cpp
blob: 9c8a2e17e2ddf7d33415c3e330dba397fd4c8229 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
//===- Passes/LayoutPass.cpp - Layout atoms -------------------------------===//
//
//                             The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "LayoutPass"

#include "lld/Passes/LayoutPass.h"

#include "lld/Core/Instrumentation.h"

#include "llvm/Support/Debug.h"

using namespace lld;

/// The function compares atoms by sorting atoms in the following order
/// a) Sorts atoms with the same permissions
/// b) Sorts atoms with the same content Type
/// c) Sorts atoms by Section position preference
/// d) Sorts atoms by how they follow / precede each atom
/// e) Sorts atoms on how they appear using File Ordinality
/// f) Sorts atoms on how they appear within the File
bool LayoutPass::CompareAtoms::operator()(const DefinedAtom *left,
                                          const DefinedAtom *right) {
  DEBUG(llvm::dbgs() << "Sorting " << left->name() << " " << right->name() << "\n");
  if (left == right)
    return false;

  // Sort by section position preference.
  DefinedAtom::SectionPosition leftPos = left->sectionPosition();
  DefinedAtom::SectionPosition rightPos = right->sectionPosition();

  DEBUG(llvm::dbgs() << "Sorting by sectionPos"
                     << "(" << leftPos << "," << rightPos << ")\n");

  bool leftSpecialPos = (leftPos != DefinedAtom::sectionPositionAny);
  bool rightSpecialPos = (rightPos != DefinedAtom::sectionPositionAny);
  if (leftSpecialPos || rightSpecialPos) {
    if (leftPos != rightPos)
      return leftPos < rightPos;
  }

  DEBUG(llvm::dbgs() << "Sorting by override\n");

  AtomToOrdinalT::const_iterator lPos = _layout._ordinalOverrideMap.find(left);
  AtomToOrdinalT::const_iterator rPos = _layout._ordinalOverrideMap.find(right);
  AtomToOrdinalT::const_iterator end = _layout._ordinalOverrideMap.end();
  if (lPos != end) {
    if (rPos != end) {
      // both left and right are overridden, so compare overridden ordinals
      if (lPos->second != rPos->second)
        return lPos->second < rPos->second;
    } else {
      // left is overridden and right is not, so left < right
      return true;
    }
  } else {
    if (rPos != end) {
      // right is overridden and left is not, so right < left
      return false;
    } else {
      // neither are overridden,
      // fall into default sorting below
    }
  }

  // Sort same permissions together.
  DefinedAtom::ContentPermissions leftPerms = left->permissions();
  DefinedAtom::ContentPermissions rightPerms = right->permissions();

  DEBUG(llvm::dbgs() << "Sorting by contentPerms"
                     << "(" << leftPerms << "," << rightPerms << ")\n");

  if (leftPerms != rightPerms)
    return leftPerms < rightPerms;

  // Sort same content types together.
  DefinedAtom::ContentType leftType = left->contentType();
  DefinedAtom::ContentType rightType = right->contentType();

  DEBUG(llvm::dbgs() << "Sorting by contentType"
                     << "(" << leftType << "," << rightType << ")\n");

  if (leftType != rightType)
    return leftType < rightType;

  // TO DO: Sort atoms in customs sections together.

  // Sort by .o order.
  const File *leftFile = &left->file();
  const File *rightFile = &right->file();

  DEBUG(llvm::dbgs()
        << "Sorting by .o order("
        << "(" << leftFile->ordinal() << "," << rightFile->ordinal() << ")"
        << "[" << leftFile->path() << "," << rightFile->path() << "]\n");

  if (leftFile != rightFile)
    return leftFile->ordinal() < rightFile->ordinal();

  // Sort by atom order with .o file.
  uint64_t leftOrdinal = left->ordinal();
  uint64_t rightOrdinal = right->ordinal();

  DEBUG(llvm::dbgs() << "Sorting by ordinal(" << left->ordinal() << ","
                     << right->ordinal() << ")\n");

  if (leftOrdinal != rightOrdinal)
    return leftOrdinal < rightOrdinal;

  DEBUG(llvm::dbgs() << "Unordered\n");

  return false;
}

// Returns the atom immediately followed by the given atom in the followon
// chain.
const DefinedAtom *LayoutPass::findAtomFollowedBy(
    const DefinedAtom *targetAtom) {
  // Start from the beginning of the chain and follow the chain until
  // we find the targetChain.
  const DefinedAtom *atom = _followOnRoots[targetAtom];
  while (true) {
    const DefinedAtom *prevAtom = atom;
    AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom);
    // The target atom must be in the chain of its root.
    assert(targetFollowOnAtomsIter != _followOnNexts.end());
    atom = targetFollowOnAtomsIter->second;
    if (atom == targetAtom)
      return prevAtom;
  }
}

// Check if all the atoms followed by the given target atom are of size zero.
// When this method is called, an atom being added is not of size zero and
// will be added to the head of the followon chain. All the atoms between the
// atom and the targetAtom (specified by layout-after) need to be of size zero
// in this case. Otherwise the desired layout is impossible.
bool LayoutPass::checkAllPrevAtomsZeroSize(const DefinedAtom *targetAtom) {
  const DefinedAtom *atom = _followOnRoots[targetAtom];
  while (true) {
    if (atom == targetAtom)
      return true;
    if (atom->size() != 0)
      // TODO: print warning that an impossible layout is being desired by the
      // user.
      return false;
    AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom);
    // The target atom must be in the chain of its root.
    assert(targetFollowOnAtomsIter != _followOnNexts.end());
    atom = targetFollowOnAtomsIter->second;
  }
}

// Set the root of all atoms in targetAtom's chain to the given root.
void LayoutPass::setChainRoot(const DefinedAtom *targetAtom,
                              const DefinedAtom *root) {
  // Walk through the followon chain and override each node's root.
  while (true) {
    _followOnRoots[targetAtom] = root;
    AtomToAtomT::iterator targetFollowOnAtomsIter =
        _followOnNexts.find(targetAtom);
    if (targetFollowOnAtomsIter == _followOnNexts.end())
      return;
    targetAtom = targetFollowOnAtomsIter->second;
  }
}

/// This pass builds the followon tables described by two DenseMaps
/// followOnRoots and followonNexts.
/// The followOnRoots map contains a mapping of a DefinedAtom to its root
/// The followOnNexts map contains a mapping of what DefinedAtom follows the
/// current Atom
/// The algorithm follows a very simple approach
/// a) If the atom is first seen, then make that as the root atom
/// b) The targetAtom which this Atom contains, has the root thats set to the
///    root of the current atom
/// c) If the targetAtom is part of a different tree and the root of the
///    targetAtom is itself, Chain all the atoms that are contained in the tree
///    to the current Tree
/// d) If the targetAtom is part of a different chain and the root of the
///    targetAtom until the targetAtom has all atoms of size 0, then chain the
///    targetAtoms and its tree to the current chain
void LayoutPass::buildFollowOnTable(MutableFile::DefinedAtomRange &range) {
  ScopedTask task(getDefaultDomain(), "LayoutPass::buildFollowOnTable");
  // Set the initial size of the followon and the followonNext hash to the
  // number of atoms that we have.
  _followOnRoots.resize(range.size());
  _followOnNexts.resize(range.size());
  for (const DefinedAtom *ai : range) {
    for (const Reference *r : *ai) {
      if (r->kind() != lld::Reference::kindLayoutAfter)
        continue;
      const DefinedAtom *targetAtom = llvm::dyn_cast<DefinedAtom>(r->target());
      _followOnNexts[ai] = targetAtom;

      // If we find a followon for the first time, lets make that atom as the
      // root atom.
      if (_followOnRoots.count(ai) == 0)
        _followOnRoots[ai] = ai;

      auto iter = _followOnRoots.find(targetAtom);
      if (iter == _followOnRoots.end()) {
        // If the targetAtom is not a root of any chain, lets make the root of
        // the targetAtom to the root of the current chain.
        _followOnRoots[targetAtom] = _followOnRoots[ai];
      } else if (iter->second == targetAtom) {
        // If the targetAtom is the root of a chain, the chain becomes part of
        // the current chain. Rewrite the subchain's root to the current
        // chain's root.
        setChainRoot(targetAtom, _followOnRoots[ai]);
      } else {
        // The targetAtom is already a part of a chain. If the current atom is
        // of size zero, we can insert it in the middle of the chain just
        // before the target atom, while not breaking other atom's followon
        // relationships. If it's not, we can only insert the current atom at
        // the beginning of the chain. All the atoms followed by the target
        // atom must be of size zero in that case to satisfy the followon
        // relationships.
        size_t currentAtomSize = ai->size();
        if (currentAtomSize == 0) {
          const DefinedAtom *targetPrevAtom = findAtomFollowedBy(targetAtom);
          _followOnNexts[targetPrevAtom] = ai;
          _followOnRoots[ai] = _followOnRoots[targetPrevAtom];
        } else {
          if (!checkAllPrevAtomsZeroSize(targetAtom))
            break;
          _followOnNexts[ai] = _followOnRoots[targetAtom];
          setChainRoot(_followOnRoots[targetAtom], _followOnRoots[ai]);
        }
      }
    }
  }
}

/// This pass builds the followon tables using InGroup relationships
/// The algorithm follows a very simple approach
/// a) If the rootAtom is not part of any root, create a new root with the
///    as the head
/// b) If the current Atom root is not found, then make the current atoms root
///    point to the rootAtom
/// c) If the root of the current Atom is itself a root of some other tree
///    make all the atoms in the chain point to the ingroup reference
/// d) Check to see if the current atom is part of the chain from the rootAtom
///    if not add the atom to the chain, so that the current atom is part of the
///    the chain where the rootAtom is in
void LayoutPass::buildInGroupTable(MutableFile::DefinedAtomRange &range) {
  ScopedTask task(getDefaultDomain(), "LayoutPass::buildInGroupTable");
  // This table would convert precededby references to follow on
  // references so that we have only one table
  for (const DefinedAtom *ai : range) {
    for (const Reference *r : *ai) {
      if (r->kind() == lld::Reference::kindInGroup) {
        const DefinedAtom *rootAtom = llvm::dyn_cast<DefinedAtom>(r->target());
        // If the root atom is not part of any root
        // create a new root
        if (_followOnRoots.count(rootAtom) == 0) {
          _followOnRoots[rootAtom] = rootAtom;
        }
        // If the current Atom has not been seen yet and there is no root
        // that has been set, set the root of the atom to the targetAtom
        // as the targetAtom points to the ingroup root
        auto iter = _followOnRoots.find(ai);
        if (iter == _followOnRoots.end()) {
          _followOnRoots[ai] = rootAtom;
        } else if (iter->second == ai) {
          if (iter->second != rootAtom)
            setChainRoot(iter->second, rootAtom);
        } else {
          // TODO : Flag an error that the root of the tree
          // is different, Here is an example
          // Say there are atoms
          // chain 1 : a->b->c
          // chain 2 : d->e->f
          // and e,f have their ingroup reference as a
          // this could happen only if the root of e,f that is d
          // has root as 'a'
          continue;
        }

        // Check if the current atom is part of the chain
        bool isAtomInChain = false;
        const DefinedAtom *lastAtom = rootAtom;
        while (true) {
          AtomToAtomT::iterator followOnAtomsIter =
                  _followOnNexts.find(lastAtom);
          if (followOnAtomsIter != _followOnNexts.end()) {
            lastAtom = followOnAtomsIter->second;
            if (lastAtom == ai) {
              isAtomInChain = true;
              break;
            }
          }
          else
            break;
        } // findAtomInChain

        if (!isAtomInChain)
          _followOnNexts[lastAtom] = ai;
      }
    }
  }
}

/// This pass builds the followon tables using Preceded By relationships
/// The algorithm follows a very simple approach
/// a) If the targetAtom is not part of any root and the current atom is not
///    part of any root, create a chain with the current atom as root and
///    the targetAtom as following the current atom
/// b) Chain the targetAtom to the current Atom if the targetAtom is not part
///    of any chain and the currentAtom has no followOn's
/// c) If the targetAtom is part of a different tree and the root of the
///    targetAtom is itself, and if the current atom is not part of any root
///    chain all the atoms together
/// d) If the current atom has no followon and the root of the targetAtom is
///    not equal to the root of the current atom(the targetAtom is not in the
///    same chain), chain all the atoms that are lead by the targetAtom into
///    the current chain
void LayoutPass::buildPrecededByTable(MutableFile::DefinedAtomRange &range) {
  ScopedTask task(getDefaultDomain(), "LayoutPass::buildPrecededByTable");
  // This table would convert precededby references to follow on
  // references so that we have only one table
  for (const DefinedAtom *ai : range) {
    for (const Reference *r : *ai) {
      if (r->kind() == lld::Reference::kindLayoutBefore) {
        const DefinedAtom *targetAtom = llvm::dyn_cast<DefinedAtom>(r->target());
        // Is the targetAtom not chained
        if (_followOnRoots.count(targetAtom) == 0) {
          // Is the current atom not part of any root ?
          if (_followOnRoots.count(ai) == 0) {
            _followOnRoots[ai] = ai;
            _followOnNexts[ai] = targetAtom;
            _followOnRoots[targetAtom] = _followOnRoots[ai];
          } else if (_followOnNexts.count(ai) == 0) {
            // Chain the targetAtom to the current Atom
            // if the currentAtom has no followon references
            _followOnNexts[ai] = targetAtom;
            _followOnRoots[targetAtom] = _followOnRoots[ai];
          }
        } else if (_followOnRoots.find(targetAtom)->second == targetAtom) {
          // Is the targetAtom in chain with the targetAtom as the root ?
          bool changeRoots = false;
          if (_followOnRoots.count(ai) == 0) {
            _followOnRoots[ai] = ai;
            _followOnNexts[ai] = targetAtom;
            _followOnRoots[targetAtom] = _followOnRoots[ai];
            changeRoots = true;
          } else if (_followOnNexts.count(ai) == 0) {
            // Chain the targetAtom to the current Atom
            // if the currentAtom has no followon references
            if (_followOnRoots[ai] != _followOnRoots[targetAtom]) {
              _followOnNexts[ai] = targetAtom;
              _followOnRoots[targetAtom] = _followOnRoots[ai];
              changeRoots = true;
            }
          }
          // Change the roots of the targetAtom and its chain to
          // the current atoms root
          if (changeRoots) {
            setChainRoot(_followOnRoots[targetAtom], _followOnRoots[ai]);
          }
        }   // Is targetAtom root
      }     // kindLayoutBefore
    }       // Reference
  }         // atom iteration
}           // end function


/// Build an ordinal override map by traversing the followon chain, and
/// assigning ordinals to each atom, if the atoms have their ordinals
/// already assigned skip the atom and move to the next. This is the
/// main map thats used to sort the atoms while comparing two atoms together
void LayoutPass::buildOrdinalOverrideMap(MutableFile::DefinedAtomRange &range) {
  ScopedTask task(getDefaultDomain(), "LayoutPass::buildOrdinalOverrideMap");
  uint64_t index = 0;
  for (const DefinedAtom *ai : range) {
    const DefinedAtom *atom = ai;
    if (_ordinalOverrideMap.find(atom) != _ordinalOverrideMap.end())
      continue;
    AtomToAtomT::iterator start = _followOnRoots.find(atom);
    if (start != _followOnRoots.end()) {
      for (const DefinedAtom *nextAtom = start->second; nextAtom != NULL;
           nextAtom = _followOnNexts[nextAtom]) {
        AtomToOrdinalT::iterator pos = _ordinalOverrideMap.find(nextAtom);
        if (pos == _ordinalOverrideMap.end()) {
          _ordinalOverrideMap[nextAtom] = index++;
        }
      }
    } else {
      _ordinalOverrideMap[atom] = index++;
    }
  }
}

/// Perform the actual pass
void LayoutPass::perform(MutableFile &mergedFile) {
  MutableFile::DefinedAtomRange atomRange = mergedFile.definedAtoms();

  // Build follow on tables
  buildFollowOnTable(atomRange);

  // Build Ingroup reference table
  buildInGroupTable(atomRange);

  // Build preceded by tables
  buildPrecededByTable(atomRange);

  // Build override maps
  buildOrdinalOverrideMap(atomRange);

  DEBUG_WITH_TYPE("layout", {
    llvm::dbgs() << "unsorted atoms:\n";
    for (const DefinedAtom *atom : atomRange) {
      llvm::dbgs() << "  file=" << atom->file().path()
                   << ", name=" << atom->name()
                   << ", size=" << atom->size()
                   << ", type=" << atom->contentType()
                   << ", ordinal=" << atom->ordinal()
                   << "\n";
    }
  });

  // sort the atoms
  std::sort(atomRange.begin(), atomRange.end(), _compareAtoms);

  DEBUG_WITH_TYPE("layout", {
    llvm::dbgs() << "sorted atoms:\n";
    for (const DefinedAtom *atom : atomRange) {
      llvm::dbgs() << "  file=" << atom->file().path()
                   << ", name=" << atom->name()
                   << ", size=" << atom->size()
                   << ", type=" << atom->contentType()
                   << ", ordinal=" << atom->ordinal()
                   << "\n";
    }
  });

}
OpenPOWER on IntegriCloud