//===- Passes/LayoutPass.cpp - Layout atoms -------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// #define DEBUG_TYPE "LayoutPass" #include "lld/Passes/LayoutPass.h" #include "lld/Core/Instrumentation.h" #include "llvm/Support/Debug.h" using namespace lld; /// The function compares atoms by sorting atoms in the following order /// a) Sorts atoms with the same permissions /// b) Sorts atoms with the same content Type /// c) Sorts atoms by Section position preference /// d) Sorts atoms by how they follow / precede each atom /// e) Sorts atoms on how they appear using File Ordinality /// f) Sorts atoms on how they appear within the File bool LayoutPass::CompareAtoms::operator()(const DefinedAtom *left, const DefinedAtom *right) { DEBUG(llvm::dbgs() << "Sorting " << left->name() << " " << right->name() << "\n"); if (left == right) return false; // Sort by section position preference. DefinedAtom::SectionPosition leftPos = left->sectionPosition(); DefinedAtom::SectionPosition rightPos = right->sectionPosition(); DEBUG(llvm::dbgs() << "Sorting by sectionPos" << "(" << leftPos << "," << rightPos << ")\n"); bool leftSpecialPos = (leftPos != DefinedAtom::sectionPositionAny); bool rightSpecialPos = (rightPos != DefinedAtom::sectionPositionAny); if (leftSpecialPos || rightSpecialPos) { if (leftPos != rightPos) return leftPos < rightPos; } DEBUG(llvm::dbgs() << "Sorting by override\n"); AtomToOrdinalT::const_iterator lPos = _layout._ordinalOverrideMap.find(left); AtomToOrdinalT::const_iterator rPos = _layout._ordinalOverrideMap.find(right); AtomToOrdinalT::const_iterator end = _layout._ordinalOverrideMap.end(); if (lPos != end) { if (rPos != end) { // both left and right are overridden, so compare overridden ordinals if (lPos->second != rPos->second) return lPos->second < rPos->second; } else { // left is overridden and right is not, so left < right return true; } } else { if (rPos != end) { // right is overridden and left is not, so right < left return false; } else { // neither are overridden, // fall into default sorting below } } // Sort same permissions together. DefinedAtom::ContentPermissions leftPerms = left->permissions(); DefinedAtom::ContentPermissions rightPerms = right->permissions(); DEBUG(llvm::dbgs() << "Sorting by contentPerms" << "(" << leftPerms << "," << rightPerms << ")\n"); if (leftPerms != rightPerms) return leftPerms < rightPerms; // Sort same content types together. DefinedAtom::ContentType leftType = left->contentType(); DefinedAtom::ContentType rightType = right->contentType(); DEBUG(llvm::dbgs() << "Sorting by contentType" << "(" << leftType << "," << rightType << ")\n"); if (leftType != rightType) return leftType < rightType; // TO DO: Sort atoms in customs sections together. // Sort by .o order. const File *leftFile = &left->file(); const File *rightFile = &right->file(); DEBUG(llvm::dbgs() << "Sorting by .o order(" << "(" << leftFile->ordinal() << "," << rightFile->ordinal() << ")" << "[" << leftFile->path() << "," << rightFile->path() << "]\n"); if (leftFile != rightFile) return leftFile->ordinal() < rightFile->ordinal(); // Sort by atom order with .o file. uint64_t leftOrdinal = left->ordinal(); uint64_t rightOrdinal = right->ordinal(); DEBUG(llvm::dbgs() << "Sorting by ordinal(" << left->ordinal() << "," << right->ordinal() << ")\n"); if (leftOrdinal != rightOrdinal) return leftOrdinal < rightOrdinal; DEBUG(llvm::dbgs() << "Unordered\n"); return false; } // Returns the atom immediately followed by the given atom in the followon // chain. const DefinedAtom *LayoutPass::findAtomFollowedBy( const DefinedAtom *targetAtom) { // Start from the beginning of the chain and follow the chain until // we find the targetChain. const DefinedAtom *atom = _followOnRoots[targetAtom]; while (true) { const DefinedAtom *prevAtom = atom; AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom); // The target atom must be in the chain of its root. assert(targetFollowOnAtomsIter != _followOnNexts.end()); atom = targetFollowOnAtomsIter->second; if (atom == targetAtom) return prevAtom; } } // Check if all the atoms followed by the given target atom are of size zero. // When this method is called, an atom being added is not of size zero and // will be added to the head of the followon chain. All the atoms between the // atom and the targetAtom (specified by layout-after) need to be of size zero // in this case. Otherwise the desired layout is impossible. bool LayoutPass::checkAllPrevAtomsZeroSize(const DefinedAtom *targetAtom) { const DefinedAtom *atom = _followOnRoots[targetAtom]; while (true) { if (atom == targetAtom) return true; if (atom->size() != 0) // TODO: print warning that an impossible layout is being desired by the // user. return false; AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(atom); // The target atom must be in the chain of its root. assert(targetFollowOnAtomsIter != _followOnNexts.end()); atom = targetFollowOnAtomsIter->second; } } // Set the root of all atoms in targetAtom's chain to the given root. void LayoutPass::setChainRoot(const DefinedAtom *targetAtom, const DefinedAtom *root) { // Walk through the followon chain and override each node's root. while (true) { _followOnRoots[targetAtom] = root; AtomToAtomT::iterator targetFollowOnAtomsIter = _followOnNexts.find(targetAtom); if (targetFollowOnAtomsIter == _followOnNexts.end()) return; targetAtom = targetFollowOnAtomsIter->second; } } /// This pass builds the followon tables described by two DenseMaps /// followOnRoots and followonNexts. /// The followOnRoots map contains a mapping of a DefinedAtom to its root /// The followOnNexts map contains a mapping of what DefinedAtom follows the /// current Atom /// The algorithm follows a very simple approach /// a) If the atom is first seen, then make that as the root atom /// b) The targetAtom which this Atom contains, has the root thats set to the /// root of the current atom /// c) If the targetAtom is part of a different tree and the root of the /// targetAtom is itself, Chain all the atoms that are contained in the tree /// to the current Tree /// d) If the targetAtom is part of a different chain and the root of the /// targetAtom until the targetAtom has all atoms of size 0, then chain the /// targetAtoms and its tree to the current chain void LayoutPass::buildFollowOnTable(MutableFile::DefinedAtomRange &range) { ScopedTask task(getDefaultDomain(), "LayoutPass::buildFollowOnTable"); // Set the initial size of the followon and the followonNext hash to the // number of atoms that we have. _followOnRoots.resize(range.size()); _followOnNexts.resize(range.size()); for (const DefinedAtom *ai : range) { for (const Reference *r : *ai) { if (r->kind() != lld::Reference::kindLayoutAfter) continue; const DefinedAtom *targetAtom = llvm::dyn_cast(r->target()); _followOnNexts[ai] = targetAtom; // If we find a followon for the first time, lets make that atom as the // root atom. if (_followOnRoots.count(ai) == 0) _followOnRoots[ai] = ai; auto iter = _followOnRoots.find(targetAtom); if (iter == _followOnRoots.end()) { // If the targetAtom is not a root of any chain, lets make the root of // the targetAtom to the root of the current chain. _followOnRoots[targetAtom] = _followOnRoots[ai]; } else if (iter->second == targetAtom) { // If the targetAtom is the root of a chain, the chain becomes part of // the current chain. Rewrite the subchain's root to the current // chain's root. setChainRoot(targetAtom, _followOnRoots[ai]); } else { // The targetAtom is already a part of a chain. If the current atom is // of size zero, we can insert it in the middle of the chain just // before the target atom, while not breaking other atom's followon // relationships. If it's not, we can only insert the current atom at // the beginning of the chain. All the atoms followed by the target // atom must be of size zero in that case to satisfy the followon // relationships. size_t currentAtomSize = ai->size(); if (currentAtomSize == 0) { const DefinedAtom *targetPrevAtom = findAtomFollowedBy(targetAtom); _followOnNexts[targetPrevAtom] = ai; _followOnRoots[ai] = _followOnRoots[targetPrevAtom]; } else { if (!checkAllPrevAtomsZeroSize(targetAtom)) break; _followOnNexts[ai] = _followOnRoots[targetAtom]; setChainRoot(_followOnRoots[targetAtom], _followOnRoots[ai]); } } } } } /// This pass builds the followon tables using InGroup relationships /// The algorithm follows a very simple approach /// a) If the rootAtom is not part of any root, create a new root with the /// as the head /// b) If the current Atom root is not found, then make the current atoms root /// point to the rootAtom /// c) If the root of the current Atom is itself a root of some other tree /// make all the atoms in the chain point to the ingroup reference /// d) Check to see if the current atom is part of the chain from the rootAtom /// if not add the atom to the chain, so that the current atom is part of the /// the chain where the rootAtom is in void LayoutPass::buildInGroupTable(MutableFile::DefinedAtomRange &range) { ScopedTask task(getDefaultDomain(), "LayoutPass::buildInGroupTable"); // This table would convert precededby references to follow on // references so that we have only one table for (const DefinedAtom *ai : range) { for (const Reference *r : *ai) { if (r->kind() == lld::Reference::kindInGroup) { const DefinedAtom *rootAtom = llvm::dyn_cast(r->target()); // If the root atom is not part of any root // create a new root if (_followOnRoots.count(rootAtom) == 0) { _followOnRoots[rootAtom] = rootAtom; } // If the current Atom has not been seen yet and there is no root // that has been set, set the root of the atom to the targetAtom // as the targetAtom points to the ingroup root auto iter = _followOnRoots.find(ai); if (iter == _followOnRoots.end()) { _followOnRoots[ai] = rootAtom; } else if (iter->second == ai) { if (iter->second != rootAtom) setChainRoot(iter->second, rootAtom); } else { // TODO : Flag an error that the root of the tree // is different, Here is an example // Say there are atoms // chain 1 : a->b->c // chain 2 : d->e->f // and e,f have their ingroup reference as a // this could happen only if the root of e,f that is d // has root as 'a' continue; } // Check if the current atom is part of the chain bool isAtomInChain = false; const DefinedAtom *lastAtom = rootAtom; while (true) { AtomToAtomT::iterator followOnAtomsIter = _followOnNexts.find(lastAtom); if (followOnAtomsIter != _followOnNexts.end()) { lastAtom = followOnAtomsIter->second; if (lastAtom == ai) { isAtomInChain = true; break; } } else break; } // findAtomInChain if (!isAtomInChain) _followOnNexts[lastAtom] = ai; } } } } /// This pass builds the followon tables using Preceded By relationships /// The algorithm follows a very simple approach /// a) If the targetAtom is not part of any root and the current atom is not /// part of any root, create a chain with the current atom as root and /// the targetAtom as following the current atom /// b) Chain the targetAtom to the current Atom if the targetAtom is not part /// of any chain and the currentAtom has no followOn's /// c) If the targetAtom is part of a different tree and the root of the /// targetAtom is itself, and if the current atom is not part of any root /// chain all the atoms together /// d) If the current atom has no followon and the root of the targetAtom is /// not equal to the root of the current atom(the targetAtom is not in the /// same chain), chain all the atoms that are lead by the targetAtom into /// the current chain void LayoutPass::buildPrecededByTable(MutableFile::DefinedAtomRange &range) { ScopedTask task(getDefaultDomain(), "LayoutPass::buildPrecededByTable"); // This table would convert precededby references to follow on // references so that we have only one table for (const DefinedAtom *ai : range) { for (const Reference *r : *ai) { if (r->kind() == lld::Reference::kindLayoutBefore) { const DefinedAtom *targetAtom = llvm::dyn_cast(r->target()); // Is the targetAtom not chained if (_followOnRoots.count(targetAtom) == 0) { // Is the current atom not part of any root ? if (_followOnRoots.count(ai) == 0) { _followOnRoots[ai] = ai; _followOnNexts[ai] = targetAtom; _followOnRoots[targetAtom] = _followOnRoots[ai]; } else if (_followOnNexts.count(ai) == 0) { // Chain the targetAtom to the current Atom // if the currentAtom has no followon references _followOnNexts[ai] = targetAtom; _followOnRoots[targetAtom] = _followOnRoots[ai]; } } else if (_followOnRoots.find(targetAtom)->second == targetAtom) { // Is the targetAtom in chain with the targetAtom as the root ? bool changeRoots = false; if (_followOnRoots.count(ai) == 0) { _followOnRoots[ai] = ai; _followOnNexts[ai] = targetAtom; _followOnRoots[targetAtom] = _followOnRoots[ai]; changeRoots = true; } else if (_followOnNexts.count(ai) == 0) { // Chain the targetAtom to the current Atom // if the currentAtom has no followon references if (_followOnRoots[ai] != _followOnRoots[targetAtom]) { _followOnNexts[ai] = targetAtom; _followOnRoots[targetAtom] = _followOnRoots[ai]; changeRoots = true; } } // Change the roots of the targetAtom and its chain to // the current atoms root if (changeRoots) { setChainRoot(_followOnRoots[targetAtom], _followOnRoots[ai]); } } // Is targetAtom root } // kindLayoutBefore } // Reference } // atom iteration } // end function /// Build an ordinal override map by traversing the followon chain, and /// assigning ordinals to each atom, if the atoms have their ordinals /// already assigned skip the atom and move to the next. This is the /// main map thats used to sort the atoms while comparing two atoms together void LayoutPass::buildOrdinalOverrideMap(MutableFile::DefinedAtomRange &range) { ScopedTask task(getDefaultDomain(), "LayoutPass::buildOrdinalOverrideMap"); uint64_t index = 0; for (const DefinedAtom *ai : range) { const DefinedAtom *atom = ai; if (_ordinalOverrideMap.find(atom) != _ordinalOverrideMap.end()) continue; AtomToAtomT::iterator start = _followOnRoots.find(atom); if (start != _followOnRoots.end()) { for (const DefinedAtom *nextAtom = start->second; nextAtom != NULL; nextAtom = _followOnNexts[nextAtom]) { AtomToOrdinalT::iterator pos = _ordinalOverrideMap.find(nextAtom); if (pos == _ordinalOverrideMap.end()) { _ordinalOverrideMap[nextAtom] = index++; } } } else { _ordinalOverrideMap[atom] = index++; } } } /// Perform the actual pass void LayoutPass::perform(MutableFile &mergedFile) { MutableFile::DefinedAtomRange atomRange = mergedFile.definedAtoms(); // Build follow on tables buildFollowOnTable(atomRange); // Build Ingroup reference table buildInGroupTable(atomRange); // Build preceded by tables buildPrecededByTable(atomRange); // Build override maps buildOrdinalOverrideMap(atomRange); DEBUG_WITH_TYPE("layout", { llvm::dbgs() << "unsorted atoms:\n"; for (const DefinedAtom *atom : atomRange) { llvm::dbgs() << " file=" << atom->file().path() << ", name=" << atom->name() << ", size=" << atom->size() << ", type=" << atom->contentType() << ", ordinal=" << atom->ordinal() << "\n"; } }); // sort the atoms std::sort(atomRange.begin(), atomRange.end(), _compareAtoms); DEBUG_WITH_TYPE("layout", { llvm::dbgs() << "sorted atoms:\n"; for (const DefinedAtom *atom : atomRange) { llvm::dbgs() << " file=" << atom->file().path() << ", name=" << atom->name() << ", size=" << atom->size() << ", type=" << atom->contentType() << ", ordinal=" << atom->ordinal() << "\n"; } }); }