1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
|
//===- ICF.cpp ------------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// ICF is short for Identical Code Folding. That is a size optimization to
// identify and merge two or more read-only sections (typically functions)
// that happened to have the same contents. It usually reduces output size
// by a few percent.
//
// In ICF, two sections are considered identical if they have the same
// section flags, section data, and relocations. Relocations are tricky,
// because two relocations are considered the same if they have the same
// relocation types, values, and if they point to the same sections *in
// terms of ICF*.
//
// Here is an example. If foo and bar defined below are compiled to the
// same machine instructions, ICF can and should merge the two, although
// their relocations point to each other.
//
// void foo() { bar(); }
// void bar() { foo(); }
//
// If you merge the two, their relocations point to the same section and
// thus you know they are mergeable, but how do we know they are mergeable
// in the first place? This is not an easy problem to solve.
//
// What we are doing in LLD is some sort of coloring algorithm.
//
// We color non-identical sections in different colors repeatedly.
// Sections in the same color when the algorithm terminates are considered
// identical. Here are the details:
//
// 1. First, we color all sections using their hash values of section
// types, section contents, and numbers of relocations. At this moment,
// relocation targets are not taken into account. We just color
// sections that apparently differ in different colors.
//
// 2. Next, for each color C, we visit sections in color C to compare
// relocation target colors. We recolor sections A and B in different
// colors if A's and B's relocations are different in terms of target
// colors.
//
// 3. If we recolor some section in step 2, relocations that were
// previously pointing to the same color targets may now be pointing to
// different colors. Therefore, repeat 2 until a convergence is
// obtained.
//
// 4. For each color C, pick an arbitrary section in color C, and merges
// other sections in color C with it.
//
// For small programs, this algorithm needs 3-5 iterations. For large
// programs such as Chromium, it takes more than 20 iterations.
//
// We parallelize each step so that multiple threads can work on different
// colors concurrently. That gave us a large performance boost when
// applying ICF on large programs. For example, MSVC link.exe or GNU gold
// takes 10-20 seconds to apply ICF on Chromium, whose output size is
// about 1.5 GB, but LLD can finish it in less than 2 seconds on a 2.8 GHz
// 40 core machine. Even without threading, LLD's ICF is still faster than
// MSVC or gold though.
//
//===----------------------------------------------------------------------===//
#include "ICF.h"
#include "Config.h"
#include "SymbolTable.h"
#include "lld/Core/Parallel.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/ELF.h"
#include <algorithm>
#include <mutex>
using namespace lld;
using namespace lld::elf;
using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
namespace {
struct Range {
size_t Begin;
size_t End;
};
template <class ELFT> class ICF {
public:
void run();
private:
void segregate(Range *R, bool Constant);
template <class RelTy>
bool constantEq(ArrayRef<RelTy> RelsA, ArrayRef<RelTy> RelsB);
template <class RelTy>
bool variableEq(const InputSection<ELFT> *A, ArrayRef<RelTy> RelsA,
const InputSection<ELFT> *B, ArrayRef<RelTy> RelsB);
bool equalsConstant(const InputSection<ELFT> *A, const InputSection<ELFT> *B);
bool equalsVariable(const InputSection<ELFT> *A, const InputSection<ELFT> *B);
std::vector<InputSection<ELFT> *> Sections;
std::vector<Range> Ranges;
std::mutex Mu;
uint32_t NextId = 1;
int Cnt = 0;
};
}
// Returns a hash value for S. Note that the information about
// relocation targets is not included in the hash value.
template <class ELFT> static uint32_t getHash(InputSection<ELFT> *S) {
return hash_combine(S->Flags, S->getSize(), S->NumRelocations);
}
// Returns true if section S is subject of ICF.
template <class ELFT> static bool isEligible(InputSection<ELFT> *S) {
// .init and .fini contains instructions that must be executed to
// initialize and finalize the process. They cannot and should not
// be merged.
return S->Live && (S->Flags & SHF_ALLOC) && !(S->Flags & SHF_WRITE) &&
S->Name != ".init" && S->Name != ".fini";
}
// Split R into smaller ranges by recoloring its members.
template <class ELFT> void ICF<ELFT>::segregate(Range *R, bool Constant) {
// This loop rearranges sections in range R so that all sections
// that are equal in terms of equals{Constant,Variable} are contiguous
// in Sections vector.
//
// The algorithm is quadratic in the worst case, but that is not an
// issue in practice because the number of the distinct sections in
// [R.Begin, R.End] is usually very small.
while (R->End - R->Begin > 1) {
size_t Begin = R->Begin;
size_t End = R->End;
// Divide range R into two. Let Mid be the start index of the
// second group.
auto Bound = std::stable_partition(
Sections.begin() + Begin + 1, Sections.begin() + End,
[&](InputSection<ELFT> *S) {
if (Constant)
return equalsConstant(Sections[Begin], S);
return equalsVariable(Sections[Begin], S);
});
size_t Mid = Bound - Sections.begin();
if (Mid == End)
return;
// Now we split [Begin, End) into [Begin, Mid) and [Mid, End).
uint32_t Id;
Range *NewRange;
{
std::lock_guard<std::mutex> Lock(Mu);
Ranges.push_back({Mid, End});
NewRange = &Ranges.back();
Id = NextId++;
}
R->End = Mid;
// Update the new group member colors.
//
// Note on Color[0] and Color[1]: we have two storages for colors.
// At the beginning of each iteration of the main loop, both have
// the same color. Color[0] contains the current color, and Color[1]
// contains the next color which will be used in the next iteration.
//
// Recall that other threads may be working on other ranges. They
// may be reading colors that we are about to update. We cannot
// update colors in place because it breaks the invariance that
// all sections in the same group must have the same color. In
// other words, the following for loop is not an atomic operation,
// and that is observable from other threads.
//
// By writing new colors to write-only places, we can keep the invariance.
for (size_t I = Mid; I < End; ++I)
Sections[I]->Color[(Cnt + 1) % 2] = Id;
R = NewRange;
}
}
// Compare two lists of relocations.
template <class ELFT>
template <class RelTy>
bool ICF<ELFT>::constantEq(ArrayRef<RelTy> RelsA, ArrayRef<RelTy> RelsB) {
auto Eq = [](const RelTy &A, const RelTy &B) {
return A.r_offset == B.r_offset &&
A.getType(Config->Mips64EL) == B.getType(Config->Mips64EL) &&
getAddend<ELFT>(A) == getAddend<ELFT>(B);
};
return RelsA.size() == RelsB.size() &&
std::equal(RelsA.begin(), RelsA.end(), RelsB.begin(), Eq);
}
// Compare "non-moving" part of two InputSections, namely everything
// except relocation targets.
template <class ELFT>
bool ICF<ELFT>::equalsConstant(const InputSection<ELFT> *A,
const InputSection<ELFT> *B) {
if (A->NumRelocations != B->NumRelocations || A->Flags != B->Flags ||
A->getSize() != B->getSize() || A->Data != B->Data)
return false;
if (A->AreRelocsRela)
return constantEq(A->relas(), B->relas());
return constantEq(A->rels(), B->rels());
}
// Compare two lists of relocations. Returns true if all pairs of
// relocations point to the same section in terms of ICF.
template <class ELFT>
template <class RelTy>
bool ICF<ELFT>::variableEq(const InputSection<ELFT> *A, ArrayRef<RelTy> RelsA,
const InputSection<ELFT> *B, ArrayRef<RelTy> RelsB) {
auto Eq = [&](const RelTy &RA, const RelTy &RB) {
// The two sections must be identical.
SymbolBody &SA = A->getFile()->getRelocTargetSym(RA);
SymbolBody &SB = B->getFile()->getRelocTargetSym(RB);
if (&SA == &SB)
return true;
// Or, the two sections must have the same color.
auto *DA = dyn_cast<DefinedRegular<ELFT>>(&SA);
auto *DB = dyn_cast<DefinedRegular<ELFT>>(&SB);
if (!DA || !DB)
return false;
if (DA->Value != DB->Value)
return false;
auto *X = dyn_cast<InputSection<ELFT>>(DA->Section);
auto *Y = dyn_cast<InputSection<ELFT>>(DB->Section);
if (!X || !Y)
return false;
if (X->Color[Cnt % 2] == 0)
return false;
// Performance hack for single-thread. If no other threads are
// running, we can safely read next colors as there is no race
// condition. This optimization may reduce the number of
// iterations of the main loop because we can see results of the
// same iteration.
size_t Idx = (Config->Threads ? Cnt : Cnt + 1) % 2;
return X->Color[Idx] == Y->Color[Idx];
};
return std::equal(RelsA.begin(), RelsA.end(), RelsB.begin(), Eq);
}
// Compare "moving" part of two InputSections, namely relocation targets.
template <class ELFT>
bool ICF<ELFT>::equalsVariable(const InputSection<ELFT> *A,
const InputSection<ELFT> *B) {
if (A->AreRelocsRela)
return variableEq(A, A->relas(), B, B->relas());
return variableEq(A, A->rels(), B, B->rels());
}
template <class IterTy, class FuncTy>
static void foreach(IterTy Begin, IterTy End, FuncTy Fn) {
if (Config->Threads)
parallel_for_each(Begin, End, Fn);
else
std::for_each(Begin, End, Fn);
}
// The main function of ICF.
template <class ELFT> void ICF<ELFT>::run() {
// Collect sections to merge.
for (InputSectionBase<ELFT> *Sec : Symtab<ELFT>::X->Sections)
if (auto *S = dyn_cast<InputSection<ELFT>>(Sec))
if (isEligible(S))
Sections.push_back(S);
// Initially, we use hash values to color sections. Therefore, if
// two sections have the same color, they are likely (but not
// guaranteed) to have the same static contents in terms of ICF.
for (InputSection<ELFT> *S : Sections)
// Set MSB to 1 to avoid collisions with non-hash colors.
S->Color[0] = S->Color[1] = getHash(S) | (1 << 31);
// From now on, sections in Sections are ordered so that sections in
// the same color are consecutive in the vector.
std::stable_sort(Sections.begin(), Sections.end(),
[](InputSection<ELFT> *A, InputSection<ELFT> *B) {
if (A->Color[0] != B->Color[0])
return A->Color[0] < B->Color[0];
// Within a group, put the highest alignment
// requirement first, so that's the one we'll keep.
return B->Alignment < A->Alignment;
});
// Create ranges in which each range contains sections in the same
// color. And then we are going to split ranges into more and more
// smaller ranges. Note that we do not add single element ranges
// because they are already the smallest.
Ranges.reserve(Sections.size());
for (size_t I = 0, E = Sections.size(); I < E - 1;) {
// Let J be the first index whose element has a different ID.
size_t J = I + 1;
while (J < E && Sections[I]->Color[0] == Sections[J]->Color[0])
++J;
if (J - I > 1)
Ranges.push_back({I, J});
I = J;
}
// This function copies colors from former write-only space to former
// read-only space, so that we can flip Color[0] and Color[1]. Note
// that new colors are always be added to end of Ranges.
auto Copy = [&](Range &R) {
for (size_t I = R.Begin; I < R.End; ++I)
Sections[I]->Color[Cnt % 2] = Sections[I]->Color[(Cnt + 1) % 2];
};
// Compare static contents and assign unique IDs for each static content.
auto End = Ranges.end();
foreach(Ranges.begin(), End, [&](Range &R) { segregate(&R, true); });
foreach(End, Ranges.end(), Copy);
++Cnt;
// Split ranges by comparing relocations until convergence is obtained.
for (;;) {
auto End = Ranges.end();
foreach(Ranges.begin(), End, [&](Range &R) { segregate(&R, false); });
foreach(End, Ranges.end(), Copy);
++Cnt;
if (End == Ranges.end())
break;
}
log("ICF needed " + Twine(Cnt) + " iterations");
// Merge sections in the same colors.
for (Range R : Ranges) {
if (R.End - R.Begin == 1)
continue;
log("selected " + Sections[R.Begin]->Name);
for (size_t I = R.Begin + 1; I < R.End; ++I) {
log(" removed " + Sections[I]->Name);
Sections[R.Begin]->replace(Sections[I]);
}
}
}
// ICF entry point function.
template <class ELFT> void elf::doIcf() { ICF<ELFT>().run(); }
template void elf::doIcf<ELF32LE>();
template void elf::doIcf<ELF32BE>();
template void elf::doIcf<ELF64LE>();
template void elf::doIcf<ELF64BE>();
|