//===- ICF.cpp ------------------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // ICF is short for Identical Code Folding. That is a size optimization to // identify and merge two or more read-only sections (typically functions) // that happened to have the same contents. It usually reduces output size // by a few percent. // // In ICF, two sections are considered identical if they have the same // section flags, section data, and relocations. Relocations are tricky, // because two relocations are considered the same if they have the same // relocation types, values, and if they point to the same sections *in // terms of ICF*. // // Here is an example. If foo and bar defined below are compiled to the // same machine instructions, ICF can and should merge the two, although // their relocations point to each other. // // void foo() { bar(); } // void bar() { foo(); } // // If you merge the two, their relocations point to the same section and // thus you know they are mergeable, but how do we know they are mergeable // in the first place? This is not an easy problem to solve. // // What we are doing in LLD is some sort of coloring algorithm. // // We color non-identical sections in different colors repeatedly. // Sections in the same color when the algorithm terminates are considered // identical. Here are the details: // // 1. First, we color all sections using their hash values of section // types, section contents, and numbers of relocations. At this moment, // relocation targets are not taken into account. We just color // sections that apparently differ in different colors. // // 2. Next, for each color C, we visit sections in color C to compare // relocation target colors. We recolor sections A and B in different // colors if A's and B's relocations are different in terms of target // colors. // // 3. If we recolor some section in step 2, relocations that were // previously pointing to the same color targets may now be pointing to // different colors. Therefore, repeat 2 until a convergence is // obtained. // // 4. For each color C, pick an arbitrary section in color C, and merges // other sections in color C with it. // // For small programs, this algorithm needs 3-5 iterations. For large // programs such as Chromium, it takes more than 20 iterations. // // We parallelize each step so that multiple threads can work on different // colors concurrently. That gave us a large performance boost when // applying ICF on large programs. For example, MSVC link.exe or GNU gold // takes 10-20 seconds to apply ICF on Chromium, whose output size is // about 1.5 GB, but LLD can finish it in less than 2 seconds on a 2.8 GHz // 40 core machine. Even without threading, LLD's ICF is still faster than // MSVC or gold though. // //===----------------------------------------------------------------------===// #include "ICF.h" #include "Config.h" #include "SymbolTable.h" #include "lld/Core/Parallel.h" #include "llvm/ADT/Hashing.h" #include "llvm/Object/ELF.h" #include "llvm/Support/ELF.h" #include #include using namespace lld; using namespace lld::elf; using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; namespace { struct Range { size_t Begin; size_t End; }; template class ICF { public: void run(); private: void segregate(Range *R, bool Constant); template bool constantEq(ArrayRef RelsA, ArrayRef RelsB); template bool variableEq(const InputSection *A, ArrayRef RelsA, const InputSection *B, ArrayRef RelsB); bool equalsConstant(const InputSection *A, const InputSection *B); bool equalsVariable(const InputSection *A, const InputSection *B); std::vector *> Sections; std::vector Ranges; std::mutex Mu; uint32_t NextId = 1; int Cnt = 0; }; } // Returns a hash value for S. Note that the information about // relocation targets is not included in the hash value. template static uint32_t getHash(InputSection *S) { return hash_combine(S->Flags, S->getSize(), S->NumRelocations); } // Returns true if section S is subject of ICF. template static bool isEligible(InputSection *S) { // .init and .fini contains instructions that must be executed to // initialize and finalize the process. They cannot and should not // be merged. return S->Live && (S->Flags & SHF_ALLOC) && !(S->Flags & SHF_WRITE) && S->Name != ".init" && S->Name != ".fini"; } // Split R into smaller ranges by recoloring its members. template void ICF::segregate(Range *R, bool Constant) { // This loop rearranges sections in range R so that all sections // that are equal in terms of equals{Constant,Variable} are contiguous // in Sections vector. // // The algorithm is quadratic in the worst case, but that is not an // issue in practice because the number of the distinct sections in // [R.Begin, R.End] is usually very small. while (R->End - R->Begin > 1) { size_t Begin = R->Begin; size_t End = R->End; // Divide range R into two. Let Mid be the start index of the // second group. auto Bound = std::stable_partition( Sections.begin() + Begin + 1, Sections.begin() + End, [&](InputSection *S) { if (Constant) return equalsConstant(Sections[Begin], S); return equalsVariable(Sections[Begin], S); }); size_t Mid = Bound - Sections.begin(); if (Mid == End) return; // Now we split [Begin, End) into [Begin, Mid) and [Mid, End). uint32_t Id; Range *NewRange; { std::lock_guard Lock(Mu); Ranges.push_back({Mid, End}); NewRange = &Ranges.back(); Id = NextId++; } R->End = Mid; // Update the new group member colors. // // Note on Color[0] and Color[1]: we have two storages for colors. // At the beginning of each iteration of the main loop, both have // the same color. Color[0] contains the current color, and Color[1] // contains the next color which will be used in the next iteration. // // Recall that other threads may be working on other ranges. They // may be reading colors that we are about to update. We cannot // update colors in place because it breaks the invariance that // all sections in the same group must have the same color. In // other words, the following for loop is not an atomic operation, // and that is observable from other threads. // // By writing new colors to write-only places, we can keep the invariance. for (size_t I = Mid; I < End; ++I) Sections[I]->Color[(Cnt + 1) % 2] = Id; R = NewRange; } } // Compare two lists of relocations. template template bool ICF::constantEq(ArrayRef RelsA, ArrayRef RelsB) { auto Eq = [](const RelTy &A, const RelTy &B) { return A.r_offset == B.r_offset && A.getType(Config->Mips64EL) == B.getType(Config->Mips64EL) && getAddend(A) == getAddend(B); }; return RelsA.size() == RelsB.size() && std::equal(RelsA.begin(), RelsA.end(), RelsB.begin(), Eq); } // Compare "non-moving" part of two InputSections, namely everything // except relocation targets. template bool ICF::equalsConstant(const InputSection *A, const InputSection *B) { if (A->NumRelocations != B->NumRelocations || A->Flags != B->Flags || A->getSize() != B->getSize() || A->Data != B->Data) return false; if (A->AreRelocsRela) return constantEq(A->relas(), B->relas()); return constantEq(A->rels(), B->rels()); } // Compare two lists of relocations. Returns true if all pairs of // relocations point to the same section in terms of ICF. template template bool ICF::variableEq(const InputSection *A, ArrayRef RelsA, const InputSection *B, ArrayRef RelsB) { auto Eq = [&](const RelTy &RA, const RelTy &RB) { // The two sections must be identical. SymbolBody &SA = A->getFile()->getRelocTargetSym(RA); SymbolBody &SB = B->getFile()->getRelocTargetSym(RB); if (&SA == &SB) return true; // Or, the two sections must have the same color. auto *DA = dyn_cast>(&SA); auto *DB = dyn_cast>(&SB); if (!DA || !DB) return false; if (DA->Value != DB->Value) return false; auto *X = dyn_cast>(DA->Section); auto *Y = dyn_cast>(DB->Section); if (!X || !Y) return false; if (X->Color[Cnt % 2] == 0) return false; // Performance hack for single-thread. If no other threads are // running, we can safely read next colors as there is no race // condition. This optimization may reduce the number of // iterations of the main loop because we can see results of the // same iteration. size_t Idx = (Config->Threads ? Cnt : Cnt + 1) % 2; return X->Color[Idx] == Y->Color[Idx]; }; return std::equal(RelsA.begin(), RelsA.end(), RelsB.begin(), Eq); } // Compare "moving" part of two InputSections, namely relocation targets. template bool ICF::equalsVariable(const InputSection *A, const InputSection *B) { if (A->AreRelocsRela) return variableEq(A, A->relas(), B, B->relas()); return variableEq(A, A->rels(), B, B->rels()); } template static void foreach(IterTy Begin, IterTy End, FuncTy Fn) { if (Config->Threads) parallel_for_each(Begin, End, Fn); else std::for_each(Begin, End, Fn); } // The main function of ICF. template void ICF::run() { // Collect sections to merge. for (InputSectionBase *Sec : Symtab::X->Sections) if (auto *S = dyn_cast>(Sec)) if (isEligible(S)) Sections.push_back(S); // Initially, we use hash values to color sections. Therefore, if // two sections have the same color, they are likely (but not // guaranteed) to have the same static contents in terms of ICF. for (InputSection *S : Sections) // Set MSB to 1 to avoid collisions with non-hash colors. S->Color[0] = S->Color[1] = getHash(S) | (1 << 31); // From now on, sections in Sections are ordered so that sections in // the same color are consecutive in the vector. std::stable_sort(Sections.begin(), Sections.end(), [](InputSection *A, InputSection *B) { if (A->Color[0] != B->Color[0]) return A->Color[0] < B->Color[0]; // Within a group, put the highest alignment // requirement first, so that's the one we'll keep. return B->Alignment < A->Alignment; }); // Create ranges in which each range contains sections in the same // color. And then we are going to split ranges into more and more // smaller ranges. Note that we do not add single element ranges // because they are already the smallest. Ranges.reserve(Sections.size()); for (size_t I = 0, E = Sections.size(); I < E - 1;) { // Let J be the first index whose element has a different ID. size_t J = I + 1; while (J < E && Sections[I]->Color[0] == Sections[J]->Color[0]) ++J; if (J - I > 1) Ranges.push_back({I, J}); I = J; } // This function copies colors from former write-only space to former // read-only space, so that we can flip Color[0] and Color[1]. Note // that new colors are always be added to end of Ranges. auto Copy = [&](Range &R) { for (size_t I = R.Begin; I < R.End; ++I) Sections[I]->Color[Cnt % 2] = Sections[I]->Color[(Cnt + 1) % 2]; }; // Compare static contents and assign unique IDs for each static content. auto End = Ranges.end(); foreach(Ranges.begin(), End, [&](Range &R) { segregate(&R, true); }); foreach(End, Ranges.end(), Copy); ++Cnt; // Split ranges by comparing relocations until convergence is obtained. for (;;) { auto End = Ranges.end(); foreach(Ranges.begin(), End, [&](Range &R) { segregate(&R, false); }); foreach(End, Ranges.end(), Copy); ++Cnt; if (End == Ranges.end()) break; } log("ICF needed " + Twine(Cnt) + " iterations"); // Merge sections in the same colors. for (Range R : Ranges) { if (R.End - R.Begin == 1) continue; log("selected " + Sections[R.Begin]->Name); for (size_t I = R.Begin + 1; I < R.End; ++I) { log(" removed " + Sections[I]->Name); Sections[R.Begin]->replace(Sections[I]); } } } // ICF entry point function. template void elf::doIcf() { ICF().run(); } template void elf::doIcf(); template void elf::doIcf(); template void elf::doIcf(); template void elf::doIcf();