summaryrefslogtreecommitdiffstats
path: root/clang/lib/Analysis/CloneDetection.cpp
blob: 27815f30aead89e8945cfd83018152c5370a2931 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
//===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
///  This file implements classes for searching and anlyzing source code clones.
///
//===----------------------------------------------------------------------===//

#include "clang/Analysis/CloneDetection.h"

#include "clang/AST/ASTContext.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtVisitor.h"
#include "llvm/ADT/StringRef.h"

using namespace clang;

StmtSequence::StmtSequence(const CompoundStmt *Stmt, ASTContext &Context,
                           unsigned StartIndex, unsigned EndIndex)
    : S(Stmt), Context(&Context), StartIndex(StartIndex), EndIndex(EndIndex) {
  assert(Stmt && "Stmt must not be a nullptr");
  assert(StartIndex < EndIndex && "Given array should not be empty");
  assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt");
}

StmtSequence::StmtSequence(const Stmt *Stmt, ASTContext &Context)
    : S(Stmt), Context(&Context), StartIndex(0), EndIndex(0) {}

StmtSequence::StmtSequence()
    : S(nullptr), Context(nullptr), StartIndex(0), EndIndex(0) {}

bool StmtSequence::contains(const StmtSequence &Other) const {
  // If both sequences reside in different translation units, they can never
  // contain each other.
  if (Context != Other.Context)
    return false;

  const SourceManager &SM = Context->getSourceManager();

  // Otherwise check if the start and end locations of the current sequence
  // surround the other sequence.
  bool StartIsInBounds =
      SM.isBeforeInTranslationUnit(getStartLoc(), Other.getStartLoc()) ||
      getStartLoc() == Other.getStartLoc();
  if (!StartIsInBounds)
    return false;

  bool EndIsInBounds =
      SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) ||
      Other.getEndLoc() == getEndLoc();
  return EndIsInBounds;
}

StmtSequence::iterator StmtSequence::begin() const {
  if (!holdsSequence()) {
    return &S;
  }
  auto CS = cast<CompoundStmt>(S);
  return CS->body_begin() + StartIndex;
}

StmtSequence::iterator StmtSequence::end() const {
  if (!holdsSequence()) {
    return reinterpret_cast<StmtSequence::iterator>(&S) + 1;
  }
  auto CS = cast<CompoundStmt>(S);
  return CS->body_begin() + EndIndex;
}

SourceLocation StmtSequence::getStartLoc() const {
  return front()->getLocStart();
}

SourceLocation StmtSequence::getEndLoc() const { return back()->getLocEnd(); }

namespace {

/// \brief Analyzes the pattern of the referenced variables in a statement.
class VariablePattern {

  /// \brief Describes an occurence of a variable reference in a statement.
  struct VariableOccurence {
    /// The index of the associated VarDecl in the Variables vector.
    size_t KindID;

    VariableOccurence(size_t KindID) : KindID(KindID) {}
  };

  /// All occurences of referenced variables in the order of appearance.
  std::vector<VariableOccurence> Occurences;
  /// List of referenced variables in the order of appearance.
  /// Every item in this list is unique.
  std::vector<const VarDecl *> Variables;

  /// \brief Adds a new variable referenced to this pattern.
  /// \param VarDecl The declaration of the variable that is referenced.
  void addVariableOccurence(const VarDecl *VarDecl) {
    // First check if we already reference this variable
    for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) {
      if (Variables[KindIndex] == VarDecl) {
        // If yes, add a new occurence that points to the existing entry in
        // the Variables vector.
        Occurences.emplace_back(KindIndex);
        return;
      }
    }
    // If this variable wasn't already referenced, add it to the list of
    // referenced variables and add a occurence that points to this new entry.
    Occurences.emplace_back(Variables.size());
    Variables.push_back(VarDecl);
  }

  /// \brief Adds each referenced variable from the given statement.
  void addVariables(const Stmt *S) {
    // Sometimes we get a nullptr (such as from IfStmts which often have nullptr
    // children). We skip such statements as they don't reference any
    // variables.
    if (!S)
      return;

    // Check if S is a reference to a variable. If yes, add it to the pattern.
    if (auto D = dyn_cast<DeclRefExpr>(S)) {
      if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl()))
        addVariableOccurence(VD);
    }

    // Recursively check all children of the given statement.
    for (const Stmt *Child : S->children()) {
      addVariables(Child);
    }
  }

public:
  /// \brief Creates an VariablePattern object with information about the given
  ///        StmtSequence.
  VariablePattern(const StmtSequence &Sequence) {
    for (const Stmt *S : Sequence)
      addVariables(S);
  }

  /// \brief Compares this pattern with the given one.
  /// \param Other The given VariablePattern to compare with.
  /// \return Returns true if and only if the references variables in this
  ///         object follow the same pattern than the ones in the given
  ///         VariablePattern.
  ///
  /// For example, the following statements all have the same pattern:
  ///
  ///   if (a < b) return a; return b;
  ///   if (x < y) return x; return y;
  ///   if (u2 < u1) return u2; return u1;
  ///
  /// but the following statement has a different pattern (note the changed
  /// variables in the return statements).
  ///
  ///   if (a < b) return b; return a;
  ///
  /// This function should only be called if the related statements of the given
  /// pattern and the statements of this objects are clones of each other.
  bool comparePattern(const VariablePattern &Other) {
    assert(Other.Occurences.size() == Occurences.size());
    for (unsigned i = 0; i < Occurences.size(); ++i) {
      if (Occurences[i].KindID != Other.Occurences[i].KindID) {
        return false;
      }
    }
    return true;
  }
};
}

namespace {
/// \brief Collects the data of a single Stmt.
///
/// This class defines what a code clone is: If it collects for two statements
/// the same data, then those two statements are considered to be clones of each
/// other.
class StmtDataCollector : public ConstStmtVisitor<StmtDataCollector> {

  ASTContext &Context;
  std::vector<CloneDetector::DataPiece> &CollectedData;

public:
  /// \brief Collects data of the given Stmt.
  /// \param S The given statement.
  /// \param Context The ASTContext of S.
  /// \param D The given data vector to which all collected data is appended.
  StmtDataCollector(const Stmt *S, ASTContext &Context,
                    std::vector<CloneDetector::DataPiece> &D)
      : Context(Context), CollectedData(D) {
    Visit(S);
  }

  // Below are utility methods for appending different data to the vector.

  void addData(CloneDetector::DataPiece Integer) {
    CollectedData.push_back(Integer);
  }

  // FIXME: The functions below add long strings to the data vector which are
  // probably not good for performance. Replace the strings with pointer values
  // or a some other unique integer.

  void addData(llvm::StringRef Str) {
    if (Str.empty())
      return;

    const size_t OldSize = CollectedData.size();

    const size_t PieceSize = sizeof(CloneDetector::DataPiece);
    // Calculate how many vector units we need to accomodate all string bytes.
    size_t RoundedUpPieceNumber = (Str.size() + PieceSize - 1) / PieceSize;
    // Allocate space for the string in the data vector.
    CollectedData.resize(CollectedData.size() + RoundedUpPieceNumber);

    // Copy the string to the allocated space at the end of the vector.
    std::memcpy(CollectedData.data() + OldSize, Str.data(), Str.size());
  }

  void addData(const QualType &QT) { addData(QT.getAsString()); }

// The functions below collect the class specific data of each Stmt subclass.

// Utility macro for defining a visit method for a given class. This method
// calls back to the ConstStmtVisitor to visit all parent classes.
#define DEF_ADD_DATA(CLASS, CODE)                                              \
  void Visit##CLASS(const CLASS *S) {                                          \
    CODE;                                                                      \
    ConstStmtVisitor<StmtDataCollector>::Visit##CLASS(S);                      \
  }

  DEF_ADD_DATA(Stmt, { addData(S->getStmtClass()); })
  DEF_ADD_DATA(Expr, { addData(S->getType()); })

  //--- Builtin functionality ----------------------------------------------//
  DEF_ADD_DATA(ArrayTypeTraitExpr, { addData(S->getTrait()); })
  DEF_ADD_DATA(ExpressionTraitExpr, { addData(S->getTrait()); })
  DEF_ADD_DATA(PredefinedExpr, { addData(S->getIdentType()); })
  DEF_ADD_DATA(TypeTraitExpr, {
    addData(S->getTrait());
    for (unsigned i = 0; i < S->getNumArgs(); ++i)
      addData(S->getArg(i)->getType());
  })

  //--- Calls --------------------------------------------------------------//
  DEF_ADD_DATA(CallExpr, {
    // Function pointers don't have a callee and we just skip hashing it.
    if (S->getDirectCallee())
      addData(S->getDirectCallee()->getQualifiedNameAsString());
  })

  //--- Exceptions ---------------------------------------------------------//
  DEF_ADD_DATA(CXXCatchStmt, { addData(S->getCaughtType()); })

  //--- C++ OOP Stmts ------------------------------------------------------//
  DEF_ADD_DATA(CXXDeleteExpr, {
    addData(S->isArrayFormAsWritten());
    addData(S->isGlobalDelete());
  })

  //--- Casts --------------------------------------------------------------//
  DEF_ADD_DATA(ObjCBridgedCastExpr, { addData(S->getBridgeKind()); })

  //--- Miscellaneous Exprs ------------------------------------------------//
  DEF_ADD_DATA(BinaryOperator, { addData(S->getOpcode()); })
  DEF_ADD_DATA(UnaryOperator, { addData(S->getOpcode()); })

  //--- Control flow -------------------------------------------------------//
  DEF_ADD_DATA(GotoStmt, { addData(S->getLabel()->getName()); })
  DEF_ADD_DATA(IndirectGotoStmt, {
    if (S->getConstantTarget())
      addData(S->getConstantTarget()->getName());
  })
  DEF_ADD_DATA(LabelStmt, { addData(S->getDecl()->getName()); })
  DEF_ADD_DATA(MSDependentExistsStmt, { addData(S->isIfExists()); })
  DEF_ADD_DATA(AddrLabelExpr, { addData(S->getLabel()->getName()); })

  //--- Objective-C --------------------------------------------------------//
  DEF_ADD_DATA(ObjCIndirectCopyRestoreExpr, { addData(S->shouldCopy()); })
  DEF_ADD_DATA(ObjCPropertyRefExpr, {
    addData(S->isSuperReceiver());
    addData(S->isImplicitProperty());
  })
  DEF_ADD_DATA(ObjCAtCatchStmt, { addData(S->hasEllipsis()); })

  //--- Miscellaneous Stmts ------------------------------------------------//
  DEF_ADD_DATA(CXXFoldExpr, {
    addData(S->isRightFold());
    addData(S->getOperator());
  })
  DEF_ADD_DATA(GenericSelectionExpr, {
    for (unsigned i = 0; i < S->getNumAssocs(); ++i) {
      addData(S->getAssocType(i));
    }
  })
  DEF_ADD_DATA(LambdaExpr, {
    for (const LambdaCapture &C : S->captures()) {
      addData(C.isPackExpansion());
      addData(C.getCaptureKind());
      if (C.capturesVariable())
        addData(C.getCapturedVar()->getType());
    }
    addData(S->isGenericLambda());
    addData(S->isMutable());
  })
  DEF_ADD_DATA(DeclStmt, {
    auto numDecls = std::distance(S->decl_begin(), S->decl_end());
    addData(static_cast<CloneDetector::DataPiece>(numDecls));
    for (const Decl *D : S->decls()) {
      if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
        addData(VD->getType());
      }
    }
  })
  DEF_ADD_DATA(AsmStmt, {
    addData(S->isSimple());
    addData(S->isVolatile());
    addData(S->generateAsmString(Context));
    for (unsigned i = 0; i < S->getNumInputs(); ++i) {
      addData(S->getInputConstraint(i));
    }
    for (unsigned i = 0; i < S->getNumOutputs(); ++i) {
      addData(S->getOutputConstraint(i));
    }
    for (unsigned i = 0; i < S->getNumClobbers(); ++i) {
      addData(S->getClobber(i));
    }
  })
  DEF_ADD_DATA(AttributedStmt, {
    for (const Attr *A : S->getAttrs()) {
      addData(std::string(A->getSpelling()));
    }
  })
};
} // end anonymous namespace

namespace {
/// Generates CloneSignatures for a set of statements and stores the results in
/// a CloneDetector object.
class CloneSignatureGenerator {

  CloneDetector &CD;
  ASTContext &Context;

  /// \brief Generates CloneSignatures for all statements in the given statement
  /// tree and stores them in the CloneDetector.
  ///
  /// \param S The root of the given statement tree.
  /// \return The CloneSignature of the root statement.
  CloneDetector::CloneSignature generateSignatures(const Stmt *S) {
    // Create an empty signature that will be filled in this method.
    CloneDetector::CloneSignature Signature;

    // Collect all relevant data from S and put it into the empty signature.
    StmtDataCollector(S, Context, Signature.Data);

    // Storage for the signatures of the direct child statements. This is only
    // needed if the current statement is a CompoundStmt.
    std::vector<CloneDetector::CloneSignature> ChildSignatures;
    const CompoundStmt *CS = dyn_cast<const CompoundStmt>(S);

    // The signature of a statement includes the signatures of its children.
    // Therefore we create the signatures for every child and add them to the
    // current signature.
    for (const Stmt *Child : S->children()) {
      // Some statements like 'if' can have nullptr children that we will skip.
      if (!Child)
        continue;

      // Recursive call to create the signature of the child statement. This
      // will also create and store all clone groups in this child statement.
      auto ChildSignature = generateSignatures(Child);

      // Add the collected data to the signature of the current statement.
      Signature.add(ChildSignature);

      // If the current statement is a CompoundStatement, we need to store the
      // signature for the generation of the sub-sequences.
      if (CS)
        ChildSignatures.push_back(ChildSignature);
    }

    // If the current statement is a CompoundStmt, we also need to create the
    // clone groups from the sub-sequences inside the children.
    if (CS)
      handleSubSequences(CS, ChildSignatures);

    // Save the signature for the current statement in the CloneDetector object.
    CD.add(StmtSequence(S, Context), Signature);

    return Signature;
  }

  /// \brief Adds all possible sub-sequences in the child array of the given
  ///        CompoundStmt to the CloneDetector.
  /// \param CS The given CompoundStmt.
  /// \param ChildSignatures A list of calculated signatures for each child in
  ///                        the given CompoundStmt.
  void handleSubSequences(
      const CompoundStmt *CS,
      const std::vector<CloneDetector::CloneSignature> &ChildSignatures) {

    // FIXME: This function has quadratic runtime right now. Check if skipping
    // this function for too long CompoundStmts is an option.

    // The length of the sub-sequence. We don't need to handle sequences with
    // the length 1 as they are already handled in CollectData().
    for (unsigned Length = 2; Length <= CS->size(); ++Length) {
      // The start index in the body of the CompoundStmt. We increase the
      // position until the end of the sub-sequence reaches the end of the
      // CompoundStmt body.
      for (unsigned Pos = 0; Pos <= CS->size() - Length; ++Pos) {
        // Create an empty signature and add the signatures of all selected
        // child statements to it.
        CloneDetector::CloneSignature SubSignature;

        for (unsigned i = Pos; i < Pos + Length; ++i) {
          SubSignature.add(ChildSignatures[i]);
        }

        // Save the signature together with the information about what children
        // sequence we selected.
        CD.add(StmtSequence(CS, Context, Pos, Pos + Length), SubSignature);
      }
    }
  }

public:
  explicit CloneSignatureGenerator(CloneDetector &CD, ASTContext &Context)
      : CD(CD), Context(Context) {}

  /// \brief Generates signatures for all statements in the given function body.
  void consumeCodeBody(const Stmt *S) { generateSignatures(S); }
};
} // end anonymous namespace

void CloneDetector::analyzeCodeBody(const Decl *D) {
  assert(D);
  assert(D->hasBody());
  CloneSignatureGenerator Generator(*this, D->getASTContext());
  Generator.consumeCodeBody(D->getBody());
}

void CloneDetector::add(const StmtSequence &S,
                        const CloneSignature &Signature) {
  // StringMap only works with StringRefs, so we create one for our data vector.
  auto &Data = Signature.Data;
  StringRef DataRef = StringRef(reinterpret_cast<const char *>(Data.data()),
                                Data.size() * sizeof(unsigned));

  // Search with the help of the signature if we already have encountered a
  // clone of the given StmtSequence.
  auto I = CloneGroupIndexes.find(DataRef);
  if (I == CloneGroupIndexes.end()) {
    // We haven't found an existing clone group, so we create a new clone group
    // for this StmtSequence and store the index of it in our search map.
    CloneGroupIndexes[DataRef] = CloneGroups.size();
    CloneGroups.emplace_back(S, Signature.Complexity);
    return;
  }

  // We have found an existing clone group and can expand it with the given
  // StmtSequence.
  CloneGroups[I->getValue()].Sequences.push_back(S);
}

namespace {
/// \brief Returns true if and only if \p Stmt contains at least one other
/// sequence in the \p Group.
bool containsAnyInGroup(StmtSequence &Stmt, CloneDetector::CloneGroup &Group) {
  for (StmtSequence &GroupStmt : Group.Sequences) {
    if (Stmt.contains(GroupStmt))
      return true;
  }
  return false;
}

/// \brief Returns true if and only if all sequences in \p OtherGroup are
/// contained by a sequence in \p Group.
bool containsGroup(CloneDetector::CloneGroup &Group,
                   CloneDetector::CloneGroup &OtherGroup) {
  // We have less sequences in the current group than we have in the other,
  // so we will never fulfill the requirement for returning true. This is only
  // possible because we know that a sequence in Group can contain at most
  // one sequence in OtherGroup.
  if (Group.Sequences.size() < OtherGroup.Sequences.size())
    return false;

  for (StmtSequence &Stmt : Group.Sequences) {
    if (!containsAnyInGroup(Stmt, OtherGroup))
      return false;
  }
  return true;
}
} // end anonymous namespace

/// \brief Finds all actual clone groups in a single group of presumed clones.
/// \param Result Output parameter to which all found groups are added. Every
///               clone in a group that was added this way follows the same
///               variable pattern as the other clones in its group.
/// \param Group A group of clones. The clones are allowed to have a different
///              variable pattern.
static void createCloneGroups(std::vector<CloneDetector::CloneGroup> &Result,
                              const CloneDetector::CloneGroup &Group) {
  // We remove the Sequences one by one, so a list is more appropriate.
  std::list<StmtSequence> UnassignedSequences(Group.Sequences.begin(),
                                              Group.Sequences.end());

  // Search for clones as long as there could be clones in UnassignedSequences.
  while (UnassignedSequences.size() > 1) {

    // Pick the first Sequence as a protoype for a new clone group.
    StmtSequence Prototype = UnassignedSequences.front();
    UnassignedSequences.pop_front();

    CloneDetector::CloneGroup FilteredGroup(Prototype, Group.Complexity);

    // Analyze the variable pattern of the prototype. Every other StmtSequence
    // needs to have the same pattern to get into the new clone group.
    VariablePattern PrototypeFeatures(Prototype);

    // Search all remaining StmtSequences for an identical variable pattern
    // and assign them to our new clone group.
    auto I = UnassignedSequences.begin(), E = UnassignedSequences.end();
    while (I != E) {
      if (VariablePattern(*I).comparePattern(PrototypeFeatures)) {
        FilteredGroup.Sequences.push_back(*I);
        I = UnassignedSequences.erase(I);
        continue;
      }
      ++I;
    }

    // Add a valid clone group to the list of found clone groups.
    if (!FilteredGroup.isValid())
      continue;

    Result.push_back(FilteredGroup);
  }
}

void CloneDetector::findClones(std::vector<CloneGroup> &Result,
                               unsigned MinGroupComplexity) {
  // Add every valid clone group that fulfills the complexity requirement.
  for (const CloneGroup &Group : CloneGroups) {
    if (Group.isValid() && Group.Complexity >= MinGroupComplexity) {
      createCloneGroups(Result, Group);
    }
  }

  std::vector<unsigned> IndexesToRemove;

  // Compare every group in the result with the rest. If one groups contains
  // another group, we only need to return the bigger group.
  // Note: This doesn't scale well, so if possible avoid calling any heavy
  // function from this loop to minimize the performance impact.
  for (unsigned i = 0; i < Result.size(); ++i) {
    for (unsigned j = 0; j < Result.size(); ++j) {
      // Don't compare a group with itself.
      if (i == j)
        continue;

      if (containsGroup(Result[j], Result[i])) {
        IndexesToRemove.push_back(i);
        break;
      }
    }
  }

  // Erasing a list of indexes from the vector should be done with decreasing
  // indexes. As IndexesToRemove is constructed with increasing values, we just
  // reverse iterate over it to get the desired order.
  for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) {
    Result.erase(Result.begin() + *I);
  }
}
OpenPOWER on IntegriCloud