//===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// This file implements classes for searching and anlyzing source code clones. /// //===----------------------------------------------------------------------===// #include "clang/Analysis/CloneDetection.h" #include "clang/AST/ASTContext.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/Stmt.h" #include "clang/AST/StmtVisitor.h" #include "llvm/ADT/StringRef.h" using namespace clang; StmtSequence::StmtSequence(const CompoundStmt *Stmt, ASTContext &Context, unsigned StartIndex, unsigned EndIndex) : S(Stmt), Context(&Context), StartIndex(StartIndex), EndIndex(EndIndex) { assert(Stmt && "Stmt must not be a nullptr"); assert(StartIndex < EndIndex && "Given array should not be empty"); assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt"); } StmtSequence::StmtSequence(const Stmt *Stmt, ASTContext &Context) : S(Stmt), Context(&Context), StartIndex(0), EndIndex(0) {} StmtSequence::StmtSequence() : S(nullptr), Context(nullptr), StartIndex(0), EndIndex(0) {} bool StmtSequence::contains(const StmtSequence &Other) const { // If both sequences reside in different translation units, they can never // contain each other. if (Context != Other.Context) return false; const SourceManager &SM = Context->getSourceManager(); // Otherwise check if the start and end locations of the current sequence // surround the other sequence. bool StartIsInBounds = SM.isBeforeInTranslationUnit(getStartLoc(), Other.getStartLoc()) || getStartLoc() == Other.getStartLoc(); if (!StartIsInBounds) return false; bool EndIsInBounds = SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) || Other.getEndLoc() == getEndLoc(); return EndIsInBounds; } StmtSequence::iterator StmtSequence::begin() const { if (!holdsSequence()) { return &S; } auto CS = cast(S); return CS->body_begin() + StartIndex; } StmtSequence::iterator StmtSequence::end() const { if (!holdsSequence()) { return reinterpret_cast(&S) + 1; } auto CS = cast(S); return CS->body_begin() + EndIndex; } SourceLocation StmtSequence::getStartLoc() const { return front()->getLocStart(); } SourceLocation StmtSequence::getEndLoc() const { return back()->getLocEnd(); } namespace { /// \brief Analyzes the pattern of the referenced variables in a statement. class VariablePattern { /// \brief Describes an occurence of a variable reference in a statement. struct VariableOccurence { /// The index of the associated VarDecl in the Variables vector. size_t KindID; VariableOccurence(size_t KindID) : KindID(KindID) {} }; /// All occurences of referenced variables in the order of appearance. std::vector Occurences; /// List of referenced variables in the order of appearance. /// Every item in this list is unique. std::vector Variables; /// \brief Adds a new variable referenced to this pattern. /// \param VarDecl The declaration of the variable that is referenced. void addVariableOccurence(const VarDecl *VarDecl) { // First check if we already reference this variable for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) { if (Variables[KindIndex] == VarDecl) { // If yes, add a new occurence that points to the existing entry in // the Variables vector. Occurences.emplace_back(KindIndex); return; } } // If this variable wasn't already referenced, add it to the list of // referenced variables and add a occurence that points to this new entry. Occurences.emplace_back(Variables.size()); Variables.push_back(VarDecl); } /// \brief Adds each referenced variable from the given statement. void addVariables(const Stmt *S) { // Sometimes we get a nullptr (such as from IfStmts which often have nullptr // children). We skip such statements as they don't reference any // variables. if (!S) return; // Check if S is a reference to a variable. If yes, add it to the pattern. if (auto D = dyn_cast(S)) { if (auto VD = dyn_cast(D->getDecl()->getCanonicalDecl())) addVariableOccurence(VD); } // Recursively check all children of the given statement. for (const Stmt *Child : S->children()) { addVariables(Child); } } public: /// \brief Creates an VariablePattern object with information about the given /// StmtSequence. VariablePattern(const StmtSequence &Sequence) { for (const Stmt *S : Sequence) addVariables(S); } /// \brief Compares this pattern with the given one. /// \param Other The given VariablePattern to compare with. /// \return Returns true if and only if the references variables in this /// object follow the same pattern than the ones in the given /// VariablePattern. /// /// For example, the following statements all have the same pattern: /// /// if (a < b) return a; return b; /// if (x < y) return x; return y; /// if (u2 < u1) return u2; return u1; /// /// but the following statement has a different pattern (note the changed /// variables in the return statements). /// /// if (a < b) return b; return a; /// /// This function should only be called if the related statements of the given /// pattern and the statements of this objects are clones of each other. bool comparePattern(const VariablePattern &Other) { assert(Other.Occurences.size() == Occurences.size()); for (unsigned i = 0; i < Occurences.size(); ++i) { if (Occurences[i].KindID != Other.Occurences[i].KindID) { return false; } } return true; } }; } namespace { /// \brief Collects the data of a single Stmt. /// /// This class defines what a code clone is: If it collects for two statements /// the same data, then those two statements are considered to be clones of each /// other. class StmtDataCollector : public ConstStmtVisitor { ASTContext &Context; std::vector &CollectedData; public: /// \brief Collects data of the given Stmt. /// \param S The given statement. /// \param Context The ASTContext of S. /// \param D The given data vector to which all collected data is appended. StmtDataCollector(const Stmt *S, ASTContext &Context, std::vector &D) : Context(Context), CollectedData(D) { Visit(S); } // Below are utility methods for appending different data to the vector. void addData(CloneDetector::DataPiece Integer) { CollectedData.push_back(Integer); } // FIXME: The functions below add long strings to the data vector which are // probably not good for performance. Replace the strings with pointer values // or a some other unique integer. void addData(llvm::StringRef Str) { if (Str.empty()) return; const size_t OldSize = CollectedData.size(); const size_t PieceSize = sizeof(CloneDetector::DataPiece); // Calculate how many vector units we need to accomodate all string bytes. size_t RoundedUpPieceNumber = (Str.size() + PieceSize - 1) / PieceSize; // Allocate space for the string in the data vector. CollectedData.resize(CollectedData.size() + RoundedUpPieceNumber); // Copy the string to the allocated space at the end of the vector. std::memcpy(CollectedData.data() + OldSize, Str.data(), Str.size()); } void addData(const QualType &QT) { addData(QT.getAsString()); } // The functions below collect the class specific data of each Stmt subclass. // Utility macro for defining a visit method for a given class. This method // calls back to the ConstStmtVisitor to visit all parent classes. #define DEF_ADD_DATA(CLASS, CODE) \ void Visit##CLASS(const CLASS *S) { \ CODE; \ ConstStmtVisitor::Visit##CLASS(S); \ } DEF_ADD_DATA(Stmt, { addData(S->getStmtClass()); }) DEF_ADD_DATA(Expr, { addData(S->getType()); }) //--- Builtin functionality ----------------------------------------------// DEF_ADD_DATA(ArrayTypeTraitExpr, { addData(S->getTrait()); }) DEF_ADD_DATA(ExpressionTraitExpr, { addData(S->getTrait()); }) DEF_ADD_DATA(PredefinedExpr, { addData(S->getIdentType()); }) DEF_ADD_DATA(TypeTraitExpr, { addData(S->getTrait()); for (unsigned i = 0; i < S->getNumArgs(); ++i) addData(S->getArg(i)->getType()); }) //--- Calls --------------------------------------------------------------// DEF_ADD_DATA(CallExpr, { // Function pointers don't have a callee and we just skip hashing it. if (S->getDirectCallee()) addData(S->getDirectCallee()->getQualifiedNameAsString()); }) //--- Exceptions ---------------------------------------------------------// DEF_ADD_DATA(CXXCatchStmt, { addData(S->getCaughtType()); }) //--- C++ OOP Stmts ------------------------------------------------------// DEF_ADD_DATA(CXXDeleteExpr, { addData(S->isArrayFormAsWritten()); addData(S->isGlobalDelete()); }) //--- Casts --------------------------------------------------------------// DEF_ADD_DATA(ObjCBridgedCastExpr, { addData(S->getBridgeKind()); }) //--- Miscellaneous Exprs ------------------------------------------------// DEF_ADD_DATA(BinaryOperator, { addData(S->getOpcode()); }) DEF_ADD_DATA(UnaryOperator, { addData(S->getOpcode()); }) //--- Control flow -------------------------------------------------------// DEF_ADD_DATA(GotoStmt, { addData(S->getLabel()->getName()); }) DEF_ADD_DATA(IndirectGotoStmt, { if (S->getConstantTarget()) addData(S->getConstantTarget()->getName()); }) DEF_ADD_DATA(LabelStmt, { addData(S->getDecl()->getName()); }) DEF_ADD_DATA(MSDependentExistsStmt, { addData(S->isIfExists()); }) DEF_ADD_DATA(AddrLabelExpr, { addData(S->getLabel()->getName()); }) //--- Objective-C --------------------------------------------------------// DEF_ADD_DATA(ObjCIndirectCopyRestoreExpr, { addData(S->shouldCopy()); }) DEF_ADD_DATA(ObjCPropertyRefExpr, { addData(S->isSuperReceiver()); addData(S->isImplicitProperty()); }) DEF_ADD_DATA(ObjCAtCatchStmt, { addData(S->hasEllipsis()); }) //--- Miscellaneous Stmts ------------------------------------------------// DEF_ADD_DATA(CXXFoldExpr, { addData(S->isRightFold()); addData(S->getOperator()); }) DEF_ADD_DATA(GenericSelectionExpr, { for (unsigned i = 0; i < S->getNumAssocs(); ++i) { addData(S->getAssocType(i)); } }) DEF_ADD_DATA(LambdaExpr, { for (const LambdaCapture &C : S->captures()) { addData(C.isPackExpansion()); addData(C.getCaptureKind()); if (C.capturesVariable()) addData(C.getCapturedVar()->getType()); } addData(S->isGenericLambda()); addData(S->isMutable()); }) DEF_ADD_DATA(DeclStmt, { auto numDecls = std::distance(S->decl_begin(), S->decl_end()); addData(static_cast(numDecls)); for (const Decl *D : S->decls()) { if (const VarDecl *VD = dyn_cast(D)) { addData(VD->getType()); } } }) DEF_ADD_DATA(AsmStmt, { addData(S->isSimple()); addData(S->isVolatile()); addData(S->generateAsmString(Context)); for (unsigned i = 0; i < S->getNumInputs(); ++i) { addData(S->getInputConstraint(i)); } for (unsigned i = 0; i < S->getNumOutputs(); ++i) { addData(S->getOutputConstraint(i)); } for (unsigned i = 0; i < S->getNumClobbers(); ++i) { addData(S->getClobber(i)); } }) DEF_ADD_DATA(AttributedStmt, { for (const Attr *A : S->getAttrs()) { addData(std::string(A->getSpelling())); } }) }; } // end anonymous namespace namespace { /// Generates CloneSignatures for a set of statements and stores the results in /// a CloneDetector object. class CloneSignatureGenerator { CloneDetector &CD; ASTContext &Context; /// \brief Generates CloneSignatures for all statements in the given statement /// tree and stores them in the CloneDetector. /// /// \param S The root of the given statement tree. /// \return The CloneSignature of the root statement. CloneDetector::CloneSignature generateSignatures(const Stmt *S) { // Create an empty signature that will be filled in this method. CloneDetector::CloneSignature Signature; // Collect all relevant data from S and put it into the empty signature. StmtDataCollector(S, Context, Signature.Data); // Storage for the signatures of the direct child statements. This is only // needed if the current statement is a CompoundStmt. std::vector ChildSignatures; const CompoundStmt *CS = dyn_cast(S); // The signature of a statement includes the signatures of its children. // Therefore we create the signatures for every child and add them to the // current signature. for (const Stmt *Child : S->children()) { // Some statements like 'if' can have nullptr children that we will skip. if (!Child) continue; // Recursive call to create the signature of the child statement. This // will also create and store all clone groups in this child statement. auto ChildSignature = generateSignatures(Child); // Add the collected data to the signature of the current statement. Signature.add(ChildSignature); // If the current statement is a CompoundStatement, we need to store the // signature for the generation of the sub-sequences. if (CS) ChildSignatures.push_back(ChildSignature); } // If the current statement is a CompoundStmt, we also need to create the // clone groups from the sub-sequences inside the children. if (CS) handleSubSequences(CS, ChildSignatures); // Save the signature for the current statement in the CloneDetector object. CD.add(StmtSequence(S, Context), Signature); return Signature; } /// \brief Adds all possible sub-sequences in the child array of the given /// CompoundStmt to the CloneDetector. /// \param CS The given CompoundStmt. /// \param ChildSignatures A list of calculated signatures for each child in /// the given CompoundStmt. void handleSubSequences( const CompoundStmt *CS, const std::vector &ChildSignatures) { // FIXME: This function has quadratic runtime right now. Check if skipping // this function for too long CompoundStmts is an option. // The length of the sub-sequence. We don't need to handle sequences with // the length 1 as they are already handled in CollectData(). for (unsigned Length = 2; Length <= CS->size(); ++Length) { // The start index in the body of the CompoundStmt. We increase the // position until the end of the sub-sequence reaches the end of the // CompoundStmt body. for (unsigned Pos = 0; Pos <= CS->size() - Length; ++Pos) { // Create an empty signature and add the signatures of all selected // child statements to it. CloneDetector::CloneSignature SubSignature; for (unsigned i = Pos; i < Pos + Length; ++i) { SubSignature.add(ChildSignatures[i]); } // Save the signature together with the information about what children // sequence we selected. CD.add(StmtSequence(CS, Context, Pos, Pos + Length), SubSignature); } } } public: explicit CloneSignatureGenerator(CloneDetector &CD, ASTContext &Context) : CD(CD), Context(Context) {} /// \brief Generates signatures for all statements in the given function body. void consumeCodeBody(const Stmt *S) { generateSignatures(S); } }; } // end anonymous namespace void CloneDetector::analyzeCodeBody(const Decl *D) { assert(D); assert(D->hasBody()); CloneSignatureGenerator Generator(*this, D->getASTContext()); Generator.consumeCodeBody(D->getBody()); } void CloneDetector::add(const StmtSequence &S, const CloneSignature &Signature) { // StringMap only works with StringRefs, so we create one for our data vector. auto &Data = Signature.Data; StringRef DataRef = StringRef(reinterpret_cast(Data.data()), Data.size() * sizeof(unsigned)); // Search with the help of the signature if we already have encountered a // clone of the given StmtSequence. auto I = CloneGroupIndexes.find(DataRef); if (I == CloneGroupIndexes.end()) { // We haven't found an existing clone group, so we create a new clone group // for this StmtSequence and store the index of it in our search map. CloneGroupIndexes[DataRef] = CloneGroups.size(); CloneGroups.emplace_back(S, Signature.Complexity); return; } // We have found an existing clone group and can expand it with the given // StmtSequence. CloneGroups[I->getValue()].Sequences.push_back(S); } namespace { /// \brief Returns true if and only if \p Stmt contains at least one other /// sequence in the \p Group. bool containsAnyInGroup(StmtSequence &Stmt, CloneDetector::CloneGroup &Group) { for (StmtSequence &GroupStmt : Group.Sequences) { if (Stmt.contains(GroupStmt)) return true; } return false; } /// \brief Returns true if and only if all sequences in \p OtherGroup are /// contained by a sequence in \p Group. bool containsGroup(CloneDetector::CloneGroup &Group, CloneDetector::CloneGroup &OtherGroup) { // We have less sequences in the current group than we have in the other, // so we will never fulfill the requirement for returning true. This is only // possible because we know that a sequence in Group can contain at most // one sequence in OtherGroup. if (Group.Sequences.size() < OtherGroup.Sequences.size()) return false; for (StmtSequence &Stmt : Group.Sequences) { if (!containsAnyInGroup(Stmt, OtherGroup)) return false; } return true; } } // end anonymous namespace /// \brief Finds all actual clone groups in a single group of presumed clones. /// \param Result Output parameter to which all found groups are added. Every /// clone in a group that was added this way follows the same /// variable pattern as the other clones in its group. /// \param Group A group of clones. The clones are allowed to have a different /// variable pattern. static void createCloneGroups(std::vector &Result, const CloneDetector::CloneGroup &Group) { // We remove the Sequences one by one, so a list is more appropriate. std::list UnassignedSequences(Group.Sequences.begin(), Group.Sequences.end()); // Search for clones as long as there could be clones in UnassignedSequences. while (UnassignedSequences.size() > 1) { // Pick the first Sequence as a protoype for a new clone group. StmtSequence Prototype = UnassignedSequences.front(); UnassignedSequences.pop_front(); CloneDetector::CloneGroup FilteredGroup(Prototype, Group.Complexity); // Analyze the variable pattern of the prototype. Every other StmtSequence // needs to have the same pattern to get into the new clone group. VariablePattern PrototypeFeatures(Prototype); // Search all remaining StmtSequences for an identical variable pattern // and assign them to our new clone group. auto I = UnassignedSequences.begin(), E = UnassignedSequences.end(); while (I != E) { if (VariablePattern(*I).comparePattern(PrototypeFeatures)) { FilteredGroup.Sequences.push_back(*I); I = UnassignedSequences.erase(I); continue; } ++I; } // Add a valid clone group to the list of found clone groups. if (!FilteredGroup.isValid()) continue; Result.push_back(FilteredGroup); } } void CloneDetector::findClones(std::vector &Result, unsigned MinGroupComplexity) { // Add every valid clone group that fulfills the complexity requirement. for (const CloneGroup &Group : CloneGroups) { if (Group.isValid() && Group.Complexity >= MinGroupComplexity) { createCloneGroups(Result, Group); } } std::vector IndexesToRemove; // Compare every group in the result with the rest. If one groups contains // another group, we only need to return the bigger group. // Note: This doesn't scale well, so if possible avoid calling any heavy // function from this loop to minimize the performance impact. for (unsigned i = 0; i < Result.size(); ++i) { for (unsigned j = 0; j < Result.size(); ++j) { // Don't compare a group with itself. if (i == j) continue; if (containsGroup(Result[j], Result[i])) { IndexesToRemove.push_back(i); break; } } } // Erasing a list of indexes from the vector should be done with decreasing // indexes. As IndexesToRemove is constructed with increasing values, we just // reverse iterate over it to get the desired order. for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) { Result.erase(Result.begin() + *I); } }