| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
| |
properly value-typed.
Summary: These were temporary methods used to simplify the transition.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D72548
|
|
|
|
|
| |
Leftover change from before the MLIR merge, reviewed at accepted at
https://github.com/tensorflow/mlir/pull/338.
|
|
|
|
|
|
| |
ValuePtr was a temporary typedef during the transition to a value-typed Value.
PiperOrigin-RevId: 286945714
|
|
|
|
| |
PiperOrigin-RevId: 286906740
|
|
|
|
|
|
|
|
|
|
| |
Value being value-typed.
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rename the 'shlis' operation in the standard dialect to 'shift_left'. Add tests
for this operation (these have been missing so far) and add a lowering to the
'shl' operation in the LLVM dialect.
Add also 'shift_right_signed' (lowered to LLVM's 'ashr') and 'shift_right_unsigned'
(lowered to 'lshr').
The original plan was to name these operations 'shift.left', 'shift.right.signed'
and 'shift.right.unsigned'. This works if the operations are prefixed with 'std.'
in MLIR assembly. Unfortunately during import the short form is ambigous with
operations from a hypothetical 'shift' dialect. The best solution seems to omit
dots in standard operations for now.
Closes tensorflow/mlir#226
PiperOrigin-RevId: 286803388
|
|
|
|
|
|
|
|
|
|
|
| |
Cos, FNeg, CopySign.
Added test cases for the newly added LLVM operations and lowering features.
Closes tensorflow/mlir#300
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/300 from dfki-jugr:std_to_llvm da6168bbc1a369ae2e99ad3881fdddd82f075dd4
PiperOrigin-RevId: 286231169
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce affine.prefetch: op to prefetch using a multi-dimensional
subscript on a memref; similar to affine.load but has no effect on
semantics, but only on performance.
Provide lowering through std.prefetch, llvm.prefetch and map to llvm's
prefetch instrinsic. All attributes reflected through the lowering -
locality hint, rw, and instr/data cache.
affine.prefetch %0[%i, %j + 5], false, 3, true : memref<400x400xi32>
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closes tensorflow/mlir#225
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/225 from bondhugula:prefetch 4c3b4e93bc64d9a5719504e6d6e1657818a2ead0
PiperOrigin-RevId: 286212997
|
|
|
|
|
|
|
|
| |
in `mlir` namespace.
Aside from being cleaner, this also makes the codebase more consistent.
PiperOrigin-RevId: 286206974
|
|
|
|
| |
PiperOrigin-RevId: 286066371
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The lowering of MemRef types to the LLVM dialect is connected to the underlying
runtime representation of structured memory buffers. It has changed several
times in the past and reached the current state of a LLVM structured-typed
descriptor containing two pointers and all sizes. In several reported use
cases, a different, often simpler, lowering scheme is required. For example,
lowering statically-shaped memrefs to bare LLVM pointers to simplify aliasing
annotation. Split the pattern population functions into those include
memref-related operations and the remaining ones. Users are expected to extend
TypeConverter::convertType to handle the memref types differently.
PiperOrigin-RevId: 286030610
|
|
|
|
|
|
|
|
| |
This function has become redundant with MemRefDescriptor::getElementType and is
no longer necessary. Use the MemRefDescriptor pervasively to concentrate
descriptor-related logic in one place and drop the utility function.
PiperOrigin-RevId: 286024168
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
During the conversion from the standard dialect to the LLVM dialect,
memref-typed arguments are promoted from registers to memory and passed into
functions by pointer. This had been introduced into the lowering to work around
the abesnce of calling convention modeling in MLIR to enable better
interoperability with LLVM IR generated from C, and has been exerciced for
several months. Make this promotion the default calling covention when
converting to the LLVM dialect. This adds the documentation, simplifies the
code and makes the conversion consistent across function operations and
function types used in other places, e.g. in high-order functions or
attributes, which would not follow the same rule previously.
PiperOrigin-RevId: 285751280
|
|
|
|
|
|
|
| |
Closes tensorflow/mlir#312
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/312 from dfki-ehna:tanh 9e89b072ff91ff390ad739501745114feb3ac856
PiperOrigin-RevId: 285205674
|
|
|
|
| |
PiperOrigin-RevId: 285073483
|
|
|
|
|
|
| |
Closes tensorflow/mlir#304
PiperOrigin-RevId: 284568358
|
|
|
|
|
|
|
|
|
| |
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closes tensorflow/mlir#305
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/305 from bondhugula:value_range 21d1fae73f549e3c8e72b60876eff1b864cea39c
PiperOrigin-RevId: 284541027
|
|
|
|
|
|
| |
This allows for users to provide operand_range and result_range in builder.create<> calls, instead of requiring an explicit copy into a separate data structure like SmallVector/std::vector.
PiperOrigin-RevId: 284360710
|
|
|
|
|
|
|
|
| |
This class represents a generic abstraction over the different ways to represent a range of Values: ArrayRef<Value *>, operand_range, result_range. This class will allow for removing the many instances of explicit SmallVector<Value *, N> construction. It has the same memory cost as ArrayRef, and only suffers cost from indexing(if+elsing the different underlying representations).
This change only updates a few of the existing usages, with more to be changed in followups; e.g. 'build' API.
PiperOrigin-RevId: 284307996
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GPU functions use memory attributions, a combination of Op attributes and
region arguments, to specify function-wide buffers placed in workgroup or
private memory spaces. Introduce a lowering pattern for GPU functions to be
converted to LLVM functions taking into account memory attributions. Workgroup
attributions get transformed into module-level globals with unique names
derived from function names. Private attributions get converted into
llvm.allocas inside the function body. In both cases, we inject at the
beginning of the function the IR that obtains the raw pointer to the data and
populates a MemRef descriptor based on the MemRef type of buffer, making
attributions compose with the rest of the MemRef lowering and transparent for
use with std.load and std.store. While using raw pointers instead of
descriptors might have been more efficient, it is better implemented as a
canonicalization or a separate transformation so that non-attribution memrefs
could also benefit from it.
PiperOrigin-RevId: 284208396
|
|
|
|
|
|
|
| |
Closes tensorflow/mlir#290
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/290 from kiszk:spelling_tweaks_201912 9d9afd16a723dd65754a04698b3976f150a6054a
PiperOrigin-RevId: 284169681
|
|
|
|
|
|
|
| |
Closes tensorflow/mlir#261
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/261 from nmostafa:nmostafa/unranked 96b6e918f6ed64496f7573b2db33c0b02658ca45
PiperOrigin-RevId: 284037040
|
|
|
|
|
|
|
|
|
| |
malloc/free.
In the future, a more configurable malloc and free interface should be used and exposed via
extra parameters to the `createLowerToLLVMPass`. Until requirements are gathered, a simple CL flag allows generating code that runs successfully on hardware that cannot use the stdlib.
PiperOrigin-RevId: 283833424
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As described in the documentation, ViewOp is expected to take an optional
dynamic offset followed by a list of dynamic sizes. However, the ViewOp parser
did not include a check for the offset being a single value and accepeted a
list of values instead.
Furthermore, several tests have been exercising the wrong syntax of a ViewOp,
passing multiple values to the dyanmic stride list, which was not caught by the
parser. The trailing values could have been erronously interpreted as dynamic
sizes. This is likely due to resyntaxing of the ViewOp, with the previous
syntax taking the list of sizes before the offset. Update the tests to use the
syntax with the offset preceding the sizes.
Worse, the conversion of ViewOp to the LLVM dialect assumed the wrong order of
operands with offset in the trailing position, and erronously relied on the
permissive parsing that interpreted trailing dynamic offset values as leading
dynamic sizes. Fix the lowering to use the correct order of operands.
PiperOrigin-RevId: 283532506
|
|
|
|
|
|
|
|
|
|
|
|
| |
stride
are constant (i.e., there are no size and stride operands).
We recently added canonicalization that rewrites constant size and stride operands to
SubViewOp into static information in the type, so these patterns now occur during code
generation.
PiperOrigin-RevId: 283524688
|
|
|
|
|
|
|
|
|
| |
A recent commit introduced the Linkage attribute to the LLVM dialect and used
it in the Global Op. Also use it in LLVMFuncOp. As per LLVM Language Reference,
if the linkage attribute is omitted, the function is assumed to have external
linkage.
PiperOrigin-RevId: 283493299
|
|
|
|
|
|
| |
This turns a few manually written helper methods into auto-generated ones.
PiperOrigin-RevId: 283339617
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The current SubViewOp specification allows for either all offsets,
shape and stride to be dynamic or all of them to be static. There are
opportunities for more fine-grained canonicalization based on which of
these are static. For example, if the sizes are static, the result
memref is of static shape. The specification of SubViewOp is modified
to allow on or more of offsets, shapes and strides to be statically
specified. The verification is updated to ensure that the result type
of the subview op is consistent with which of these are static and
which are dynamic.
PiperOrigin-RevId: 281560457
|
|
|
|
|
|
|
|
|
|
|
|
| |
The command-line flag name `lower-to-llvm` for the pass performing dialect
conversion from the Standard dialect to the LLVM dialect is misleading and
inconsistent with most of the conversion passses. It leads the user to believe
that there are no restrictions on what can be converted, while in fact only a
subset of the Standard dialect can be converted (with operations from other
dialects converted by separate passes). Use `convert-std-to-llvm` that better
reflects what the pass does and is consistent with most other conversions.
PiperOrigin-RevId: 281238797
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The assertion was introduced in the early days of dialect conversion
infrastructure when we had the matching function separate from the rewriting
function. The infrastructure evolved to have a common matchAndRewrite function
and the separate matching function was dropped without chaning the rewriting
that became matchAndRewrite. This has led to assertion being triggered. Return
a matchFailure instead of failing an assertion on unsupported types.
Closes tensorflow/mlir#230
PiperOrigin-RevId: 281113741
|
|
|
|
|
|
|
|
| |
Previous commits removed all uses of LLVMTypeConverter::k*PosInMemRefDescriptor
outside of the MemRefDescriptor class. These numbers are an implementation
detail and can be hidden under a layer of more semantic APIs.
PiperOrigin-RevId: 280442444
|
|
|
|
|
|
|
|
|
|
| |
Following up on the consolidation of MemRef descriptor conversion, update
Vector-to-LLVM conversion to use the helper class that abstracts away the
implementation details of the MemRef descriptor. This also makes the types of
the attributes in emitted llvm.insert/extractelement operations consistently
i64 instead of a mix of index and i64.
PiperOrigin-RevId: 280441451
|
|
|
|
|
|
|
|
|
|
|
| |
Following up on the consolidation of MemRef descriptor conversion, update
Linalg-to-LLVM conversion to use the helper class that abstracts away the
implementation details of the MemRef descriptor. This required MemRefDescriptor
to become publicly visible. Since this conversion is heavily EDSC-based,
introduce locally an additional wrapper that uses builder and location pointed
to by the EDSC context while emitting descriptor manipulation operations.
PiperOrigin-RevId: 280429228
|
|
|
|
|
|
|
|
|
|
|
| |
Memref descriptor is becoming increasingly complex. Memrefs are manipulated by
multiple standard instructions, each of which has a non-trivial lowering to the
LLVM dialect. This leads to verbose code that manipulates the descriptors
exposing the internals of insert/extractelement opreations. Implement a wrapper
class that contains a memref descriptor and provides semantically named methods
that build the primitive IR operations instead.
PiperOrigin-RevId: 280371225
|
|
|
|
|
|
| |
A followup CL will replace usage of linalg.subview by std.subview.
PiperOrigin-RevId: 279961981
|
|
|
|
|
|
|
|
|
|
|
|
| |
This CL adds an extra pointer to the memref descriptor to allow specifying alignment.
In a previous implementation, we used 2 types: `linalg.buffer` and `view` where the buffer type was the unit of allocation/deallocation/alignment and `view` was the unit of indexing.
After multiple discussions it was decided to use a single type, which conflates both, so the memref descriptor now needs to carry both pointers.
This is consistent with the [RFC-Proposed Changes to MemRef and Tensor MLIR Types](https://groups.google.com/a/tensorflow.org/forum/#!searchin/mlir/std.view%7Csort:date/mlir/-wKHANzDNTg/4K6nUAp8AAAJ).
PiperOrigin-RevId: 279959463
|
|
|
|
|
|
| |
Now that a view op has graduated to the std dialect, we can update Linalg to use it and remove ops that have become obsolete. As a byproduct, the linalg buffer and associated ops can also disappear.
PiperOrigin-RevId: 279073591
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This CL ports the lowering of linalg.view to the newly introduced std.view.
Differences in implementation relate to std.view having slightly different semantics:
1. a static or dynamic offset can be specified.
2. the size of the (contiguous) shape is passed instead of a range.
3. static size and stride information is extracted from the memref type rather than the range.
Besides these differences, lowering behaves the same.
A future CL will update Linalg to use this unified infrastructure.
PiperOrigin-RevId: 278948853
|
|
|
|
|
|
|
|
|
|
| |
A VectorTypeCastOp can only be used to lower between statically sized contiguous memrefs of scalar and matching vector type. The sizes and strides are thus fully static and easy to determine.
A relevant test is added.
This is a step towards solving tensorflow/mlir#189.
PiperOrigin-RevId: 275538981
|
|
|
|
|
|
| |
This hook is useful when an operation is known to be dead, and no replacement values make sense.
PiperOrigin-RevId: 275052756
|
|
|
|
|
|
|
| |
This CL adds a missing lowering for splat of multi-dimensional vectors.
Additional support is also added to the runtime utils library to allow printing memrefs with such vectors.
PiperOrigin-RevId: 274794723
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Originally, the lowering of `alloc` operations has been computing the number of
bytes to allocate when lowering based on the properties of MLIR type. This does
not take into account type legalization that happens when compiling LLVM IR
down to target assembly. This legalization can widen the type, potentially
leading to out-of-bounds accesses to `alloc`ed data due to mismatches between
address computation that takes the widening into account and allocation that
does not. Use the LLVM IR's equivalent of `sizeof` to compute the number of
bytes to be allocated:
%0 = getelementptr %type* null, %indexType 0
%1 = ptrtoint %type* %0 to %indexType
adapted from
http://nondot.org/sabre/LLVMNotes/SizeOf-OffsetOf-VariableSizedStructs.txt
PiperOrigin-RevId: 274159900
|
|
|
|
|
|
|
|
|
|
|
|
| |
- dropping what looks like outdated code post some of the previous
updates
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closes tensorflow/mlir#179
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/179 from bondhugula:llfix 2a72ea441fe1b3924802273ffbe9870afeb90f91
PiperOrigin-RevId: 274158273
|
|
|
|
| |
PiperOrigin-RevId: 274154655
|
|
|
|
| |
PiperOrigin-RevId: 274152154
|
|
|
|
|
|
|
|
|
|
|
|
| |
In Standard to LLVM dialect conversion, the binary op conversion pattern
implicitly assumed some operands were of LLVM IR dialect type. This is not
necessarily true, for example if the Ops that produce those operands did not
match the existing convresion patterns. Check if all operands are of LLVM IR
dialect type and if not, fail to patch the binary op pattern.
Closes tensorflow/mlir#168
PiperOrigin-RevId: 274063207
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This function-like operation allows one to define functions that have wrapped
LLVM IR function type, in particular variadic functions. The operation was
added in parallel to the existing lowering flow, this commit only switches the
flow to use it.
Using a custom function type makes the LLVM IR dialect type system more
consistent and avoids complex conversion rules for functions that previously
had to use the built-in function type instead of a wrapped LLVM IR dialect type
and perform conversions during the analysis.
PiperOrigin-RevId: 273910855
|
|
|
|
|
|
|
|
|
|
| |
MemRefType:;getDynamicStrideOrOffset() method - NFC
This fixes global ODR-use issues, some of which manifest in Parser.cpp.
Fixes tensorflow/mlir#167.
PiperOrigin-RevId: 272886347
|
|
|
|
| |
PiperOrigin-RevId: 272851237
|
|
|
|
| |
PiperOrigin-RevId: 272768027
|