| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
| |
This reverts commit 4624a1e8ac8a3f69cc887403b976f538f587744a. Causing
problems downstream.
(cherry picked from commit 0133cc60e4e230ee2c176c23eff5aa2f4ee17a75)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is based on the use of code constantly checking for an attribute on
a model and instead represents the distinct operaion with a different
op. Instead, this op can be used to provide better filtering.
Reviewers: herhut, mravishankar, antiagainst, rriddle
Reviewed By: herhut, antiagainst, rriddle
Subscribers: liufengdb, aartbik, jholewinski, mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, csigg, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72336
|
|
|
|
|
|
|
|
|
|
| |
properly value-typed.
Summary: These were temporary methods used to simplify the transition.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D72548
|
|
|
|
|
|
| |
ValuePtr was a temporary typedef during the transition to a value-typed Value.
PiperOrigin-RevId: 286945714
|
|
|
|
| |
PiperOrigin-RevId: 286906740
|
|
|
|
|
|
|
|
|
|
| |
Value being value-typed.
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
|
|
|
|
|
|
|
|
|
|
|
| |
LLVM IR supports linkage on global objects such as global variables and
functions. Introduce the Linkage attribute into the LLVM dialect, backed by an
integer storage. Use this attribute on LLVM::GlobalOp and make it mandatory.
Implement parsing/printing of the attribute and conversion to LLVM IR.
See tensorflow/mlir#277.
PiperOrigin-RevId: 283309328
|
|
|
|
|
|
| |
Fix registered size of indirect MemRefType kernel arguments.
PiperOrigin-RevId: 281362940
|
|
|
|
| |
PiperOrigin-RevId: 280431812
|
|
|
|
|
|
| |
Closes tensorflow/mlir#177
PiperOrigin-RevId: 275692653
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This function-like operation allows one to define functions that have wrapped
LLVM IR function type, in particular variadic functions. The operation was
added in parallel to the existing lowering flow, this commit only switches the
flow to use it.
Using a custom function type makes the LLVM IR dialect type system more
consistent and avoids complex conversion rules for functions that previously
had to use the built-in function type instead of a wrapped LLVM IR dialect type
and perform conversions during the analysis.
PiperOrigin-RevId: 273910855
|
|
|
|
|
|
|
|
|
|
|
| |
Originally, we were attaching attributes containing CUBIN blobs to the kernel
function called by `gpu.launch_func`. This kernel is now contained in a nested
module that is used as a compilation unit. Attach compiled CUBIN blobs to the
module rather than to the function since we were compiling the module. This
also avoids duplication of the attribute on multiple kernels within the same
module.
PiperOrigin-RevId: 273497303
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Originally, the CUBIN getter function was introduced as a mechanism to
circumvent the absence of globals in the LLVM dialect. It would allocate memory
and populate it with the CUBIN data. LLVM dialect now supports globals and they
are already used to store CUBIN data, making the getter function a trivial
address computation of a global. Emit the address computation directly at the
place of `gpu.launch_func` instead of putting it in a function and calling it.
This simplifies the conversion flow and prepares it for using the
DialectConversion infrastructure.
PiperOrigin-RevId: 273496221
|
|
|
|
|
|
|
|
|
|
|
| |
Now that the accessor function is a trivial getter of the global variable, it
makes less sense to have the getter generation as a separate pass. Move the
getter generation into the lowering of `gpu.launch_func` to CUDA calls. This
change is mostly code motion, but the process can be simplified further by
generating the addressof inplace instead of using a call. This is will be done
in a follow-up.
PiperOrigin-RevId: 273492517
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The kernel function called by gpu.launch_func is now placed into an isolated
nested module during the outlining stage to simplify separate compilation.
Until recently, modules did not have names and could not be referenced. This
limitation was circumvented by introducing a stub kernel at the same name at
the same nesting level as the module containing the actual kernel. This
relation is only effective in one direction: from actual kernel function to its
launch_func "caller".
Leverage the recently introduced symbol name attributes on modules to refer to
a specific nested module from `gpu.launch_func`. This removes the implicit
connection between the identically named stub and kernel functions. It also
enables support for `gpu.launch_func`s to call different kernels located in the
same module.
PiperOrigin-RevId: 273491891
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
boundaries in LLVMLowering.
The strided MemRef RFC discusses a normalized descriptor and interaction with library calls (https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).
Lowering of nested LLVM structs as value types does not play nicely with externally compiled C/C++ functions due to ABI issues.
Solving the ABI problem generally is a very complex problem and most likely involves taking
a dependence on clang that we do not want atm.
A simple workaround is to pass pointers to memref descriptors at function boundaries, which this CL implement.
PiperOrigin-RevId: 271591708
|
|
|
|
|
|
| |
Operation (NFC)
PiperOrigin-RevId: 270727180
|
|
|
|
|
|
|
|
| |
Roll forward of commit 5684a12.
When outlining GPU kernels, put the kernel function inside a nested module. Then use a nested pipeline to generate the cubins, independently per kernel. In a final pass, move the cubins back to the parent module.
PiperOrigin-RevId: 270639748
|
|
|
|
| |
PiperOrigin-RevId: 270126672
|
|
|
|
|
|
| |
When outlining GPU kernels, put the kernel function inside a nested module. Then use a nested pipeline to generate the cubins, independently per kernel. In a final pass, move the cubins back to the parent module.
PiperOrigin-RevId: 269987720
|
|
|
|
| |
PiperOrigin-RevId: 269803466
|
|
|
|
| |
PiperOrigin-RevId: 269327909
|
|
|
|
|
|
| |
These directives were temporary during the generalization of FunctionPass/ModulePass to OpPass.
PiperOrigin-RevId: 268970259
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change refactors and cleans up the implementation of the operation walk methods. After this refactoring is that the explicit template parameter for the operation type is no longer needed for the explicit op walks. For example:
op->walk<AffineForOp>([](AffineForOp op) { ... });
is now accomplished via:
op->walk([](AffineForOp op) { ... });
PiperOrigin-RevId: 266209552
|
|
|
|
|
|
|
|
|
|
|
|
| |
This conversion has been using a stack-allocated array of i8 to store the
null-terminated kernel name in order to pass it to the CUDA wrappers expecting
a C string because the LLVM dialect was missing support for globals. Now that
the suport is introduced, use a global instead.
Refactor global string construction from GenerateCubinAccessors into a common
utility function living in the LLVM namespace.
PiperOrigin-RevId: 264382489
|
|
|
|
| |
PiperOrigin-RevId: 264193915
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The linalg.view type used to be lowered to a struct containing a data pointer, offset, sizes/strides information. This was problematic when passing to external functions due to ABI, struct padding and alignment issues.
The linalg.view type is now lowered to LLVMIR as a *pointer* to a struct containing the data pointer, offset and sizes/strides. This simplifies the interfacing with external library functions and makes it trivial to add new functions without creating a shim that would go from a value type struct to a pointer type.
The consequences are that:
1. lowering explicitly uses llvm.alloca in lieu of llvm.undef and performs the proper llvm.load/llvm.store where relevant.
2. the shim creation function `getLLVMLibraryCallDefinition` disappears.
3. views are passed by pointer, scalars are passed by value. In the future, other structs will be passed by pointer (on a per-need basis).
PiperOrigin-RevId: 264183671
|
|
|
|
|
|
|
|
| |
Switch to C++14 standard method as llvm::make_unique has been removed (
https://reviews.llvm.org/D66259). Also mark some targets as c++14 to ease next
integrates.
PiperOrigin-RevId: 263953918
|
|
|
|
|
|
|
|
|
|
|
|
| |
The GenerateCubinAccessors was generating functions that fill
dynamically-allocated memory with the binary constant of a CUBIN attached as a
stirng attribute to the GPU kernel. This approach was taken to circumvent the
missing support for global constants in the LLVM dialect (and MLIR in general).
Global constants were recently added to the LLVM dialect. Change the
GenerateCubinAccessors pass to emit a global constant array of characters and a
function that returns a pointer to the first character in the array.
PiperOrigin-RevId: 263092052
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since raw pointers are always passed around for IR construct without
implying any ownership transfer, it can be error prone to have implicit
ownership transferred the same way.
For example this code can seem harmless:
Pass *pass = ....
pm.addPass(pass);
pm.addPass(pass);
pm.run(module);
PiperOrigin-RevId: 263053082
|
|
|
|
|
|
|
| |
Per tacit agreement, individual dialects should now live in lib/Dialect/Name
with headers in include/mlir/Dialect/Name and tests in test/Dialect/Name.
PiperOrigin-RevId: 259896851
|
|
|
|
|
|
| |
This field wasn't updated as the insertion point changed, making it potentially dangerous given the multi-level of MLIR(e.g. 'createBlock' would always insert the new block in 'region'). This also allows for building an OpBuilder with just a context.
PiperOrigin-RevId: 257829135
|
|
|
|
|
|
| |
This allows for the attribute to hold symbolic references to other operations than FuncOp. This also allows for removing the dependence on FuncOp from the base Builder.
PiperOrigin-RevId: 257650017
|
|
|
|
|
|
| |
This allows for removing the last direct reference to FuncOp from ModuleOp.
PiperOrigin-RevId: 257498296
|
|
|
|
|
|
| |
Module is a legacy name that only exists as a typedef of ModuleOp.
PiperOrigin-RevId: 257427248
|
|
|
|
|
|
| |
This allows for giving a Module a more interesting location than 'Unknown'.
PiperOrigin-RevId: 257310117
|
|
|
|
| |
PiperOrigin-RevId: 257293379
|
|
|
|
|
|
| |
Modules can now contain more than just Functions, this just updates the iteration API to reflect that. The 'begin'/'end' methods have also been updated to iterate over opaque Operations.
PiperOrigin-RevId: 257099084
|
|
|
|
|
|
|
|
| |
This tool allows to execute MLIR IR snippets written in the GPU dialect
on a CUDA capable GPU. For this to work, a working CUDA install is required
and the build has to be configured with MLIR_CUDA_RUNNER_ENABLED set to 1.
PiperOrigin-RevId: 256551415
|
|
|
|
|
|
| |
As with Functions, Module will soon become an operation, which are value-typed. This eases the transition from Module to ModuleOp. A new class, OwningModuleRef is provided to allow for owning a reference to a Module, and will auto-delete the held module on destruction.
PiperOrigin-RevId: 256196193
|
|
|
|
|
|
| |
Move the data members out of Function and into a new impl storage class 'FunctionStorage'. This allows for Function to become value typed, which will greatly simplify the transition of Function to FuncOp(given that FuncOp is also value typed).
PiperOrigin-RevId: 255983022
|
|
|
|
|
|
|
|
|
| |
annotations.
Getters are required as there are currently no global constants in MLIR and this
is an easy way to unblock CUDA execution while waiting for those.
PiperOrigin-RevId: 255169002
|
|
|
|
|
|
|
|
|
|
|
| |
The actual transformation from PTX source to a CUDA binary is now factored out,
enabling compiling and testing the transformations independently of a CUDA
runtime.
MLIR has still to be built with NVPTX target support for the conversions to be
built and tested.
PiperOrigin-RevId: 255167139
|
|
|
|
|
|
| |
Also some mild cleanup of the kernel to cubin conversion pass.
PiperOrigin-RevId: 254959303
|
|
|
|
|
|
|
|
|
|
| |
PTX backend in LLVM expects additional module-level metadata
`!nvvm.annotations` that lists functions that can be used as GPU kernels.
Generate this metadata based on the `gpu.kernel` attribute attached to
functions. This attribute is added automatically by the kernel outlining pass
in the GPU dialect lowering flow.
PiperOrigin-RevId: 254957345
|
|
|
|
|
|
|
|
| |
This does not map the calls to the CUDA libary directly but uses a slim wrapper
ABI on top that has more convenient types for code generation and is stable. Such
ABI is expected to be provided by the actual runner.
PiperOrigin-RevId: 253983833
|
|
a CUBIN blob for execution on CUDA GPUs.
This is a first in a series of patches to build a simple CUDA runner to allow
experimenting with MLIR code on GPUs.
PiperOrigin-RevId: 253758915
|