| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When more than one SelectPseudo instruction is handled a new MBB is
returned. This must not be done if that would result in leaving an undhandled
isel pseudo behind in the original MBB.
Fixes https://bugs.llvm.org/show_bug.cgi?id=44849.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D74352
(cherry picked from commit 0311e28e9cc01a244faa774b8cab337b45404fa9)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Code in getRoot made the assumption that every node in PendingLoads
must always itself have a dependency on the current DAG root node.
After the changes in 04a8696, it turns out that this assumption no
longer holds true, causing wrong codegen in some cases (e.g. stores
after constrained FP intrinsics might get deleted).
To fix this, we now need to make sure that the TokenFactor created
by getRoot always includes the previous root, if there is no implicit
dependency already present.
The original getControlRoot code already has exactly this check,
so this patch simply reuses that code now for getRoot as well.
This fixes the regression.
NFC if no constrained FP intrinsic is present.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We need to ensure that fpexcept.strict nodes are not optimized away even if
the result is unused. To do that, we need to chain them into the block's
terminator nodes, like already done for PendingExcepts.
This patch adds two new lists of pending chains, PendingConstrainedFP and
PendingConstrainedFPStrict to hold constrained FP intrinsic nodes without
and with fpexcept.strict markers. This allows not only to solve the above
problem, but also to relax chains a bit further by no longer flushing all
FP nodes before a store or other memory access. (They are still flushed
before nodes with other side effects.)
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D72341
|
|
|
|
|
|
|
|
| |
SystemZDAGToDAGISel::Select will attempt to split logical instruction
with a large immediate constant. This must not happen if the result
matches one of the z15 combined operations, so the code checks for
those. However, one of them was missed, causing invalid code to
be generated in the test case for PR44496.
|
|
|
|
| |
Explicitly add test for fpexcept.maytrap intrinsics.
|
|
|
|
|
| |
With recent Python the Large/spill-02.py test failed with an error:
TypeError: can't multiply sequence by non-int of type 'float'
|
|
|
|
|
|
|
| |
For consistency with GCC, the target label is moved to the brcl itself
instead of the next instruction.
Review: Ulrich Weigand
|
|
|
|
| |
"frame-pointer"="none" as cleanups after D56351
|
|
|
|
| |
as cleanups after D56351
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix several several additional problems with the int <-> FP conversion
logic both in common code and in the X86 target. In particular:
- The STRICT_FP_TO_UINT expansion emits a floating-point compare. This
compare can raise exceptions and therefore needs to be a strict compare.
I've made it signaling (even though quiet would also be correct) as
signaling is the more usual default for an LT. This code exists both
in common code and in the X86 target.
- The STRICT_UINT_TO_FP expansion algorithm was incorrect for strict mode:
it emitted two STRICT_SINT_TO_FP nodes and then used a select to choose one
of the results. This can cause spurious exceptions by the STRICT_SINT_TO_FP
that ends up not chosen. I've fixed the algorithm to use only a single
STRICT_SINT_TO_FP instead.
- The !isStrictFPEnabled logic in DoInstructionSelection would sometimes do
the wrong thing because it calls getOperationAction using the result VT.
But for some opcodes, incuding [SU]INT_TO_FP, getOperationAction needs to
be called using the operand VT.
- Remove some (obsolete) code in X86DAGToDAGISel::Select that would mutate
STRICT_FP_TO_[SU]INT to non-strict versions unnecessarily.
Reviewed by: craig.topper
Differential Revision: https://reviews.llvm.org/D71840
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The SELR(Mux) instructions can be converted to two-address form as LOCR(Mux)
instructions whenever one of the sources are the same reg as dest. By adding
this mapping in getTwoOperandOpcode(), we get:
- Two-address hints in getRegAllocationHints() for select register
instructions.
- No need anymore for special handling in SystemZShortenInst.cpp -
shortenSelect() removed.
The two-address hints are now added before the GRX32 hints, which should be
preferred.
Review: Ulrich Weigand
https://reviews.llvm.org/D68870
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It was recently discovered that the handling of CC values was actually broken
since overflow was not properly handled ('nsw' flag not checked for).
Add and sub instructions now have a new target specific instruction flag
named SystemZII::CCIfNoSignedWrap. It means that the CC result can be used
instead of a compare with 0, but only if the instruction has the 'nsw' flag
set.
This patch also adds the improvements of conversion to logical instructions
and the analyzing of add with immediates, to be able to eliminate more
compares.
Review: Ulrich Weigand
https://reviews.llvm.org/D66868
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The back-end currently has special DAGCombine code to detect
cases where two floating-point extend or truncate operations
can be combined into a single vector operation.
This patch extends that support to also handle strict FP operations.
Note that currently only the case where both operations have the
same input chain are supported. This already suffices to cover
the common case where the operations result from scalarizing a
non-legal vector type. More general cases can be supported in
the future.
|
|
|
|
|
|
|
| |
Emit the __mcount_loc section for all fentry calls.
Review: Ulrich Weigand
https://reviews.llvm.org/D71629
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add new intrinsics
llvm.experimental.constrained.minimum
llvm.experimental.constrained.maximum
as strict versions of llvm.minimum and llvm.maximum.
Includes SystemZ back-end support.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D71624
|
|
|
|
|
|
|
|
| |
Let the "mnop-mcount" function attribute simply be present or non-present.
Update SystemZ backend as well to use hasFnAttribute() instead.
Review: Ulrich Weigand
https://reviews.llvm.org/D71669
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The following intrinsics currently carry a rounding mode metadata argument:
llvm.experimental.constrained.minnum
llvm.experimental.constrained.maxnum
llvm.experimental.constrained.ceil
llvm.experimental.constrained.floor
llvm.experimental.constrained.round
llvm.experimental.constrained.trunc
This is not useful since the semantics of those intrinsics do not in any way
depend on the rounding mode. In similar cases, other constrained intrinsics
do not have the rounding mode argument. Remove it here as well.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D71218
|
|
|
|
|
|
|
|
|
| |
As of b1d8576 there is middle-end support for STRICT_[SU]INT_TO_FP,
so this patch adds SystemZ back-end support as well.
The patch is SystemZ target specific except for adding SD patterns
strict_[su]int_to_fp and any_[su]int_to_fp to TargetSelectionDAG.td
as usual.
|
|
|
|
|
|
|
|
|
|
|
| |
Now that the machine verifier will check for cases of register/immediate
MachineOperands and their correspondence to the MC instruction descriptor,
this patch adds the operand types to the descriptors where they were
previously missing. All MCOI::OPERAND_UNKNOWN operand types have been handled
to get a known type, except for G_... (global isel) instructions.
Review: Ulrich Weigand
https://reviews.llvm.org/D71494
|
|
|
|
|
|
|
|
|
| |
Any llvm function with the "packed-stack" attribute will be compiled to use
the packed stack layout which reuses unused parts of the incoming register
save area. This is needed for building the Linux kernel.
Review: Ulrich Weigand
https://reviews.llvm.org/D70821
|
|
|
|
|
| |
The backend already supports the @llvm.minimum and @llvm.maximum
intrinsics, but we had no test cases for those. Add tests.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before z14, we did not have any FMA instruction for 128-bit
floating-point, so the @llvm.fma.f128 intrinsic needs to be
expanded to a libcall on those platforms.
This worked correctly for regular FMA, but was implemented
incorrectly for the strict version. This was not noticed
because we did not have test coverage for this case.
This patch fixes that incorrect expansion and adds the
missing test cases.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for constrained floating-point comparison intrinsics.
Specifically, we add:
declare <ty2>
@llvm.experimental.constrained.fcmp(<type> <op1>, <type> <op2>,
metadata <condition code>,
metadata <exception behavior>)
declare <ty2>
@llvm.experimental.constrained.fcmps(<type> <op1>, <type> <op2>,
metadata <condition code>,
metadata <exception behavior>)
The first variant implements an IEEE "quiet" comparison (i.e. we only
get an invalid FP exception if either argument is a SNaN), while the
second variant implements an IEEE "signaling" comparison (i.e. we get
an invalid FP exception if either argument is any NaN).
The condition code is implemented as a metadata string. The same set
of predicates as for the fcmp instruction is supported (except for the
"true" and "false" predicates).
These new intrinsics are mapped by SelectionDAG codegen onto two new
ISD opcodes, ISD::STRICT_FSETCC and ISD::STRICT_FSETCCS, again
representing quiet vs. signaling comparison operations. Otherwise
those nodes look like SETCC nodes, with an additional chain argument
and result as usual for strict FP nodes. The patch includes support
for the common legalization operations for those nodes.
The patch also includes full SystemZ back-end support for the new
ISD nodes, mapping them to all available SystemZ instruction to
fully implement strict semantics (scalar and vector).
Differential Revision: https://reviews.llvm.org/D69281
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
D53794 introduced code to perform the FP_TO_UINT expansion via FP_TO_SINT in a way that would never expose floating-point exceptions in the intermediate steps. Unfortunately, I just noticed there is still a way this can happen. As discussed in D53794, the compiler now generates this sequence:
// Sel = Src < 0x8000000000000000
// Val = select Sel, Src, Src - 0x8000000000000000
// Ofs = select Sel, 0, 0x8000000000000000
// Result = fp_to_sint(Val) ^ Ofs
The problem is with the Src - 0x8000000000000000 expression. As I mentioned in the original review, that expression can never overflow or underflow if the original value is in range for FP_TO_UINT. But I missed that we can get an Inexact exception in the case where Src is a very small positive value. (In this case the result of the sub is ignored, but that doesn't help.)
Instead, I'd suggest to use the following sequence:
// Sel = Src < 0x8000000000000000
// FltOfs = select Sel, 0, 0x8000000000000000
// IntOfs = select Sel, 0, 0x8000000000000000
// Result = fp_to_sint(Val - FltOfs) ^ IntOfs
In the case where the value is already in range of FP_TO_SINT, we now simply compute Val - 0, which now definitely cannot trap (unless Val is a NaN in which case we'd want to trap anyway).
In the case where the value is not in range of FP_TO_SINT, but still in range of FP_TO_UINT, the sub can never be inexact, as Val is between 2^(n-1) and (2^n)-1, i.e. always has the 2^(n-1) bit set, and the sub is always simply clearing that bit.
There is a slight complication in the case where Val is a constant, so we know at compile time whether Sel is true or false. In that scenario, the old code would automatically optimize the sub away, while this no longer happens with the new code. Instead, I've added extra code to check for this case and then just fall back to FP_TO_SINT directly. (This seems to catch even slightly more cases.)
Original version of the patch by Ulrich Weigand. X86 changes added by Craig Topper
Differential Revision: https://reviews.llvm.org/D67105
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements the following changes:
1) SelectionDAGBuilder::visitConstrainedFPIntrinsic currently treats
each constrained intrinsic like a global barrier (e.g. a function call)
and fully serializes all pending chains. This is actually not required;
it is allowed for constrained intrinsics to be reordered w.r.t one
another or (nonvolatile) memory accesses. The MI-level scheduler already
allows for that flexibility, so it makes sense to allow it at the DAG
level as well.
This patch therefore changes the way chains for constrained intrisincs
are created, and handles them basically like load operations are handled.
This has the effect that constrained intrinsics are no longer serialized
against one another or (nonvolatile) loads. They are still serialized
against stores, but that seems hard to change with the current DAG chain
setup, and it also doesn't seem to be a big problem preventing DAG
2) The OPC_CheckFoldableChainNode check requires that each of the
intermediate nodes in a multi-node pattern match only has a single use.
This check tends to fail if those intermediate nodes are strict operations
as those have a chain output that typically indeed has another use.
However, we don't really need to consider chains here at all, since they
will all be rewritten anyway by UpdateChains later. Other parts of the
matcher therefore already ignore chains, but this hasOneUse check doesn't.
This patch replaces hasOneUse by a custom test that verifies there is no
more than one use of any non-chain output value.
In theory, this change could affect code unrelated to strict FP nodes,
but at least on SystemZ I could not find any single instance of that
happening
3) The SystemZ back-end currently does not allow matching multiply-and-
extend operations (32x32 -> 64bit or 64x64 -> 128bit FP multiply) for
strict FP operations. This was not possible in the past due to the
problems described under 1) and 2) above.
With those issues fixed, it is now possible to fully support those
instructions in strict mode as well, and this patch does so.
Differential Revision: https://reviews.llvm.org/D70913
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Context *
During register coalescing, we use rematerialization when coalescing is not
possible. That means we may rematerialize a super register when only a smaller
register is actually used.
E.g.,
0B v1 = ldimm 0xFF
1B v2 = COPY v1.low8bits
2B = v2
=>
0B v1 = ldimm 0xFF
1B v2 = ldimm 0xFF
2B = v2.low8bits
Where xB are the slot indexes.
Here v2 grew from a 8-bit register to a 16-bit register.
When that happens and subregister liveness is enabled, we create subranges for
the newly created value.
E.g., before remat, the live range of v2 looked like:
main range: [1r, 2r)
(Reads v2 is defined at index 1 slot register and used before the slot register
of index 2)
After remat, it should look like:
main range: [1r, 2r)
low 8 bits: [1r, 2r)
high 8 bits: [1r, 1d) <-- dead def
I.e., the unsused lanes of v2 should be marked as dead definition.
* The Problem *
Prior to this patch, the live-ranges from the previous exampel, would have the
full live-range for all subranges:
main range: [1r, 2r)
low 8 bits: [1r, 2r)
high 8 bits: [1r, 2r) <-- too long
* The Fix *
Technically, the code that this patch changes is not wrong:
When we create the subranges for the newly rematerialized value, we create only
one subrange for the whole bit mask.
In other words, at this point v2 live-range looks like this:
main range: [1r, 2r)
low & high: [1r, 2r)
Then, it gets wrong when we call LiveInterval::refineSubRanges on low 8 bits:
main range: [1r, 2r)
low 8 bits: [1r, 2r)
high 8 bits: [1r, 2r) <-- too long
Ideally, we would like LiveInterval::refineSubRanges to be able to do the right
thing and mark the dead lanes as such. However, this is not possible, because by
the time we update / refine the live ranges, the IR hasn't been updated yet,
therefore we actually don't have enough information to do the right thing.
Another option to fix the problem would have been to call
LiveIntervals::shrinkToUses after the IR is updated. This is not desirable as
this may have a noticeable impact on compile time.
Instead, what this patch does is when we create the subranges for the
rematerialized value, we explicitly create one subrange for the lanes that were
used before rematerialization and one for the lanes that were not used. The used
one inherits the live range of the main range and the unused one is just created
empty. The existing rematerialization code then detects that the unused one are
not live and it correctly sets dead def intervals for them.
https://llvm.org/PR41372
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
InstCombine may synthesize FMINNUM/FMAXNUM nodes from fcmp+select
sequences (where the fcmp is marked nnan). Currently, if the
target does not otherwise handle these nodes, they'll get expanded
to libcalls to fmin/fmax. However, these functions may reside in
libm, which may introduce a library dependency that was not originally
present in the source code, potentially resulting in link failures.
To fix this problem, add code to TargetLowering::expandFMINNUM_FMAXNUM
to expand FMINNUM/FMAXNUM to a compare+select sequence instead of the
libcall. This is done only if the node is marked as "nnan"; in this case,
the expansion to compare+select is always correct. This also suffices to
catch all cases where FMINNUM/FMAXNUM was synthesized as above.
Differential Revision: https://reviews.llvm.org/D70965
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
// Due to the SystemZ ABI, the DWARF CFA (Canonical Frame Address) is not
// equal to the incoming stack pointer, but to incoming stack pointer plus
// 160. The getOffsetOfLocalArea() returned value is interpreted as "the
// offset of the local area from the CFA".
The immediate offsets into the Register save area returned by
getCalleeSavedSpillSlots() should take this offset into account, which this
patch makes sure of.
Patch and review by Ulrich Weigand.
https://reviews.llvm.org/D70427
|
|
|
|
|
|
| |
This is to prepare for having the IR verifier reject mixed functions.
Note that fp-strict-mul-02.ll and fp-strict-mul-04.ll still remain
to be fixed.
|
|
|
|
|
|
| |
Now that we have fneg, prefer using it over "fsub -0.0, ...".
This helps in particular with strict FP tests, as fneg does
not raise any exceptions.
|
|
|
|
|
|
|
|
|
|
| |
Previously we mutated the node and then converted it to a libcall. But this loses the chain information.
This patch keeps the chain, but unfortunately breaks tail call optimization as the functions involved in deciding if a node is in tail call position can't handle the chain. But correct ordering seems more important to be right.
Somehow the SystemZ tests improved. I looked at one of them and it seemed that we're handling the split vector elements in a different order and that made the copies work better.
Differential Revision: https://reviews.llvm.org/D70334
|
|
|
|
|
|
| |
Preparation for: https://reviews.llvm.org/D70079
https://reviews.llvm.org/D70077
|
|
|
|
|
|
|
| |
This is a special calling convention to be used by the GHC compiler.
Author: Stefan Schulze Frielinghaus
Differential Revision: https://reviews.llvm.org/D69024
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Demand that an immediate offset to a PC relative address fits in 32 bits, or
else load it into a register and perform a separate add.
Verify in the assembler that such immediate offsets fit the bitwidth.
Even though the final address of a Load Address Relative Long may fit in 32
bits even with a >32 bit offset (depending on where the symbol lives relative
to PC), the GNU toolchain demands the offset by itself to be in range. This
patch adapts the same behavior for llvm.
Review: Ulrich Weigand
https://reviews.llvm.org/D69749
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A set of function attributes is required in any function that uses constrained
floating point intrinsics. None of our tests use these attributes.
This patch fixes this.
These tests have been tested against the IR verifier changes in D68233.
Reviewed by: andrew.w.kaylor, cameron.mcinally, uweigand
Approved by: andrew.w.kaylor
Differential Revision: https://reviews.llvm.org/D67925
llvm-svn: 373761
|
|
|
|
|
|
|
|
| |
SystemZPostRewrite needs to be run before (it may emit COPYs) the Post-RA
pseudo pass also at -O0, so it should be added in addPostRegAlloc().
Review: Ulrich Weigand
llvm-svn: 373182
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These two test cases use -march=systemz instead of a triple. In
particular, the used file format is then based on the default host
triple. This leads to different behaviour on different platforms.
The SystemZ implementation uses the integrated assembler for a
long time now. The mature-mc-support test can be fully enabled.
Differential Revision: https://reviews.llvm.org/D68129
llvm-svn: 373098
|
|
|
|
|
|
|
|
|
|
| |
With -pg -mfentry -mnop-mcount, a nop is emitted instead of the call to
fentry.
Review: Ulrich Weigand
https://reviews.llvm.org/D67765
llvm-svn: 372950
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Merge more Select pseudo instructions in emitSelect() by allowing other
instructions between them as long as they do not clobber CC.
Debug value instructions are now moved down to below the new PHIs instead of
erasing them.
Review: Ulrich Weigand
https://reviews.llvm.org/D67619
llvm-svn: 372873
|
|
|
|
|
|
|
|
|
|
|
| |
The recently announced IBM z15 processor implements the architecture
already supported as "arch13" in LLVM. This patch adds support for
"z15" as an alternate architecture name for arch13.
The patch also uses z15 in a number of places where we used arch13
as long as the official name was not yet announced.
llvm-svn: 372435
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
mir parsing
Summary:
This catches malformed mir files which specify alignment as log2 instead of pow2.
See https://reviews.llvm.org/D65945 for reference,
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: MatzeB, qcolombet, dschuff, arsenm, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, s.egerton, pzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67433
llvm-svn: 371608
|
|
|
|
|
|
|
|
| |
Since NaN is very rare in normal programs, so the probability for floating point unordered comparison should be extremely small. Current probability is 3/8, it is too large, this patch changes it to a tiny number.
Differential Revision: https://reviews.llvm.org/D65303
llvm-svn: 371541
|
|
|
|
|
|
|
|
|
|
| |
Handle the remaining cases also by handling asm goto in
SystemZInstrInfo::getBranchInfo().
Review: Ulrich Weigand
https://reviews.llvm.org/D67151
llvm-svn: 371048
|
|
|
|
|
|
|
|
| |
SystemZInstrInfo::analyzeBranch() needs to check for INLINEASM_BR
instructions, or it will crash.
Review: Ulrich Weigand
llvm-svn: 370753
|
|
|
|
|
|
|
| |
SystemZAsmPrinter now properly emits function calls to __fentry__.
Review: Ulrich Weigand
llvm-svn: 370743
|
|
|
|
|
|
|
|
|
|
|
| |
Now that constrained fpto[su]i intrinsic are available,
add codegen support to the SystemZ backend.
In addition to pure back-end changes, I've also needed
to add the strict_fp_to_[su]int and any_fp_to_[su]int
pattern fragments in the obvious way.
llvm-svn: 370674
|
|
|
|
|
|
| |
To help show the diffs from an upcoming SimplifyDemandedBits patch.
llvm-svn: 367216
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch introduces the DAG version of SimplifyMultipleUseDemandedBits, which attempts to peek through ops (mainly and/or/xor so far) that don't contribute to the demandedbits/elts of a node - which means we can do this even in cases where we have multiple uses of an op, which normally requires us to demanded all bits/elts. The intention is to remove a similar instruction - SelectionDAG::GetDemandedBits - once SimplifyMultipleUseDemandedBits has matured.
The InstCombine version of SimplifyMultipleUseDemandedBits can constant fold which I haven't added here yet, and so far I've only wired this up to some basic binops (and/or/xor/add/sub/mul) to demonstrate its use.
We do see a couple of regressions that need to be addressed:
AMDGPU unsigned dot product codegen retains an AND mask (for ZERO_EXTEND) that it previously removed (but otherwise the dotproduct codegen is a lot better).
X86/AVX2 has poor handling of vector ANY_EXTEND/ANY_EXTEND_VECTOR_INREG - it prematurely gets converted to ZERO_EXTEND_VECTOR_INREG.
The code owners have confirmed its ok for these cases to fixed up in future patches.
Differential Revision: https://reviews.llvm.org/D63281
llvm-svn: 366799
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reimplement scheduling constraints for strict FP instructions in
ScheduleDAGInstrs::buildSchedGraph to allow for more relaxed
scheduling. Specifially, allow one strict FP instruction to
be scheduled across another, as long as it is not moved across
any global barrier.
Differential Revision: https://reviews.llvm.org/D64412
Reviewed By: cameron.mcinally
llvm-svn: 366222
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes https://bugs.llvm.org/show_bug.cgi?id=42606 by extending
D64213. Instead of only checking if the carry comes from a matching
operation, we now check the full chain of carries. Otherwise we might
custom lower the outermost addcarry, but then generically legalize
an inner addcarry.
Differential Revision: https://reviews.llvm.org/D64658
llvm-svn: 365949
|