| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
| |
llvm-svn: 286386
|
|
|
|
|
|
|
|
|
| |
represents a relocatable immediate."
Suspected to be the cause of a sanitizer-windows bot failure:
Assertion failed: isImm() && "Wrong MachineOperand accessor", file C:\b\slave\sanitizer-windows\llvm\include\llvm/CodeGen/MachineOperand.h, line 420
llvm-svn: 286385
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
immediate.
A relocatable immediate is either an immediate operand or an operand that
can be relocated by the linker to an immediate, such as a regular symbol
in non-PIC code.
Start using relocImm for 32-bit and 64-bit MOV instructions, and for operands
of type "imm32_su". Remove a number of now-redundant patterns.
Differential Revision: https://reviews.llvm.org/D25812
llvm-svn: 286384
|
|
|
|
| |
llvm-svn: 286383
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D26439
llvm-svn: 286382
|
|
|
|
|
|
|
|
|
|
|
| |
For pairs of 32-bit registers: isub_lo, isub_hi.
For pairs of vector registers: vsub_lo, vsub_hi.
Add generic subreg indices: ps_sub_lo, ps_sub_hi, and a function
HexagonRegisterInfo::getHexagonSubRegIndex(RegClass, GenericSubreg)
that returns the appropriate subreg index for RegClass.
llvm-svn: 286377
|
|
|
|
| |
llvm-svn: 286368
|
|
|
|
|
| |
Review: U Weigand
llvm-svn: 286362
|
|
|
|
| |
llvm-svn: 286361
|
|
|
|
|
|
|
| |
The default duration constructor does not zero-initialize the object, we need to
do that manually.
llvm-svn: 286359
|
|
|
|
|
|
|
|
| |
The name/comment of the third argument to the ScheduleDAGMI constructor
is RemoveKillFlags and not IsPostRA. Only the comments are changed.
Review: A Trick
llvm-svn: 286350
|
|
|
|
|
|
|
|
|
|
|
| |
Scalar Evolution asserts when not all the operands of an Add Recurrence
Expression are loop invariants. Loop Strength Reduction should only
create affine Add Recurrences, so that both the start and the step of
the expression are loop invariants.
Differential Revision: https://reviews.llvm.org/D26185
llvm-svn: 286347
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds support for fptoui to 2i32 from both 2f64 and 2f32, building on Simon's change for the signed version in r284459 and using AVX-512 instructions.
If we don't have VLX support we need to use a 512-bit operation for v2f64->v2i32 and extract the result.
It also recognises that cvttpd2udq zeroes the upper 64-bits of the xmm result.
Differential Revision: https://reviews.llvm.org/D26331
llvm-svn: 286345
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: This allows the SSE intrinsic to use the EVEX instruction when available. It also fixes EVEX to not use a weird (v4i32 (fp_to_sint v2f64)) node and it merges some isel patterns. This also fixes some cases that weren't combining vzmovl with cvttpd2dq to remove extra moves.
Reviewers: delena, zvi, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26330
llvm-svn: 286344
|
|
|
|
|
|
|
|
| |
256-bits of a 512-bit vector to use a 256-bit aligned store.
Previously we were only checking for 16 byte alignment instead of 32 byte alignment. Fixes PR30947.
llvm-svn: 286342
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
set is also enabled.
Summary:
This is needed to make the v64i8 and v32i16 types legal for the 512-bit VBMI instructions. Fixes PR30912.
Reviewers: delena, zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26322
llvm-svn: 286339
|
|
|
|
|
|
|
|
| |
This reverts commit r286297.
Introduces a dependency from libAnalysis to libObject, which I missed
during the review.
llvm-svn: 286329
|
|
|
|
|
|
|
|
|
| |
The BitcodeReader no longer produces BitcodeDiagnosticInfo diagnostics.
The only remaining reference was in the gold plugin; the code there has been
dead since we stopped producing InvalidBitcodeSignature error codes in r225562.
While at it remove the InvalidBitcodeSignature error code.
llvm-svn: 286326
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: For functions with profile data, we are confident that loop sink will be optimal in sinking code.
Reviewers: davidxl, hfinkel
Subscribers: mehdi_amini, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D26155
llvm-svn: 286325
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D26430
llvm-svn: 286323
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The smallest tests that expose this are codegen tests (because SelectionDAGBuilder::visitSelect() uses matchSelectPattern
to create UMAX/UMIN nodes), but it's also possible to see the effects in IR alone with folds of min/max pairs.
If these were written as unsigned compares in IR, InstCombine canonicalizes the unsigned compares to signed compares.
Ie, running the optimizer pessimizes the codegen for this case without this patch:
define <4 x i32> @umax_vec(<4 x i32> %x) {
%cmp = icmp ugt <4 x i32> %x, <i32 2147483647, i32 2147483647, i32 2147483647, i32 2147483647>
%sel = select <4 x i1> %cmp, <4 x i32> %x, <4 x i32> <i32 2147483647, i32 2147483647, i32 2147483647, i32 2147483647>
ret <4 x i32> %sel
}
$ ./opt umax.ll -S | ./llc -o - -mattr=avx
vpmaxud LCPI0_0(%rip), %xmm0, %xmm0
$ ./opt -instcombine umax.ll -S | ./llc -o - -mattr=avx
vpxor %xmm1, %xmm1, %xmm1
vpcmpgtd %xmm0, %xmm1, %xmm1
vmovaps LCPI0_0(%rip), %xmm2 ## xmm2 = [2147483647,2147483647,2147483647,2147483647]
vblendvps %xmm1, %xmm0, %xmm2, %xmm0
Differential Revision: https://reviews.llvm.org/D26096
llvm-svn: 286318
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Unit tests were added to verify this functionality keeps working correctly.
Example output for raw hex bytes:
llvm::ArrayRef<uint8_t> Bytes = ...;
llvm::outs() << format_hex_bytes(Bytes);
554889e5 4881ec70 04000048 8d051002
00004c8d 05fd0100 004c8b0d d0020000
Example output for raw hex bytes with offsets:
llvm::outs() << format_hex_bytes(Bytes, 0x100000d10);
0x0000000100000d10: 554889e5 4881ec70 04000048 8d051002
0x0000000100000d20: 00004c8d 05fd0100 004c8b0d d0020000
Example output for raw hex bytes with ASCII with offsets:
llvm::outs() << format_hex_bytes_with_ascii(Bytes, 0x100000d10);
0x0000000100000d10: 554889e5 4881ec70 04000048 8d051002 |UH.?H.?p...H....|
0x0000000100000d20: 00004c8d 05fd0100 004c8b0d d0020000 |..L..?...L..?...|
The default groups bytes into 4 byte groups, but this can be changed to 1 byte:
llvm::outs() << format_hex_bytes(Bytes, 0x100000d10, 16 /*NumPerLine*/, 1 /*ByteGroupSize*/);
0x0000000100000d10: 55 48 89 e5 48 81 ec 70 04 00 00 48 8d 05 10 02
0x0000000100000d20: 00 00 4c 8d 05 fd 01 00 00 4c 8b 0d d0 02 00 00
llvm::outs() << format_hex_bytes(Bytes, 0x100000d10, 16 /*NumPerLine*/, 2 /*ByteGroupSize*/);
0x0000000100000d10: 5548 89e5 4881 ec70 0400 0048 8d05 1002
0x0000000100000d20: 0000 4c8d 05fd 0100 004c 8b0d d002 0000
llvm::outs() << format_hex_bytes(Bytes, 0x100000d10, 8 /*NumPerLine*/, 1 /*ByteGroupSize*/);
0x0000000100000d10: 55 48 89 e5 48 81 ec 70
0x0000000100000d18: 04 00 00 48 8d 05 10 02
0x0000000100000d20: 00 00 4c 8d 05 fd 01 00
0x0000000100000d28: 00 4c 8b 0d d0 02 00 00
https://reviews.llvm.org/D26405
llvm-svn: 286316
|
|
|
|
|
|
|
|
|
|
| |
As the test change shows, we can increase the critical path by adding
a 'not' instruction, so make sure that we're actually removing an
instruction if we do this transform.
This transform could also cause us to miss folds of min/max pairs.
llvm-svn: 286315
|
|
|
|
| |
llvm-svn: 286314
|
|
|
|
| |
llvm-svn: 286305
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously support had been added for using CodeViewRecordIO
to read (deserialize) CodeView type records. This patch adds
support for writing those same records. With this patch,
reading and writing of CodeView type records finally uses a single
codepath.
Differential Revision: https://reviews.llvm.org/D26253
llvm-svn: 286304
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
if it is more specific than the one in its DW_AT_specification.
If a static member is an array, the translation unit containing the
member definition may have a more specific type (including its length)
than TUs only seeing the class declaration. This patch adds a
DW_AT_type to the member's DW_TAG_variable in addition to the
DW_AT_specification in these cases. The member type in the
DW_AT_specification still shows the more generic type (without the
length) to avoid defeating type uniquing.
The DWARF standard discourages “duplicating” a DW_AT_type in a member
variable definition but doesn’t explicitly forbid it. Having the more
specific type (with the array length) available is what allows the
debugger to print the contents of a static array member variable.
https://reviews.llvm.org/D26368
rdar://problem/28706946
llvm-svn: 286302
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
release builds.
Summary:
There are two variables here that break. This change constrains both of them to
debug builds (via DEBUG() or #ifndef NDEBUG).
Reviewers: bkramer, t.p.northover
Subscribers: mehdi_amini, vkalintiris
Differential Revision: https://reviews.llvm.org/D26421
llvm-svn: 286300
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch uses the same approach added for inline asm in r285513 to
similarly prevent promotion/renaming of locals used or defined in module
level asm.
All static global values defined in normal IR and used in module level asm
should be included on either the llvm.used or llvm.compiler.used global.
The former were already being flagged as NoRename in the summary, and
I've simply added llvm.compiler.used values to this handling.
Module level asm may also contain defs of values. We need to prevent
export of any refs to local values defined in module level asm (e.g. a
ref in normal IR), since that also requires renaming/promotion of the
local. To do that, the summary index builder looks at all values in the
module level asm string that are not marked Weak or Global, which is
exactly the set of locals that are defined. A summary is created for
each of these local defs and flagged as NoRename.
This required adding handling to the BitcodeWriter to look at GV
declarations to see if they have a summary (rather than skipping them
all).
Finally, added an assert to IRObjectFile::CollectAsmUndefinedRefs to
ensure that an MCAsmParser is available, otherwise the module asm parse
would silently fail. Initialized the asm parser in the opt tool for use
in testing this fix.
Fixes PR30610.
Reviewers: mehdi_amini
Subscribers: johanengelen, krasin, llvm-commits
Differential Revision: https://reviews.llvm.org/D26146
llvm-svn: 286297
|
|
|
|
|
|
|
|
| |
This addresses PR30746, <https://llvm.org/bugs/show_bug.cgi?id=30746>. The ASan pass iterates over entry-block instructions and checks each alloca whether it's in NonInstrumentedStaticAllocaVec, which is apparently slow. This patch gathers the instructions to move during visitAllocaInst.
Differential Revision: https://reviews.llvm.org/D26380
llvm-svn: 286296
|
|
|
|
|
|
|
|
| |
inaccessiblemem_or_argmemonly attributes
Differential Revision: https://reviews.llvm.org/D26382
llvm-svn: 286294
|
|
|
|
|
|
| |
Fix a bug in the calculation of the changed flag introduced in r285488.
llvm-svn: 286293
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
We've had support for auto upgrading old style scalar TBAA access
metadata tags into the "new" struct path aware TBAA metadata for 3 years
now. The only way to actually generate old style TBAA was explicitly
through the IRBuilder API. I think this is a good time for dropping
support for old style scalar TBAA.
I'm not removing support for textual or bitcode upgrade -- if you have
IR with the old style scalar TBAA tags that go through the AsmParser orf
the bitcode parser before LLVM sees them, they will keep working as
usual.
Note:
%val = load i32, i32* %ptr, !tbaa !N
!N = < scalar tbaa node >
is equivalent to
%val = load i32, i32* %ptr, !tbaa !M
!N = < scalar tbaa node >
!M = !{!N, !N, 0}
Reviewers: manmanren, chandlerc, sunfish
Subscribers: mcrosier, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D26229
llvm-svn: 286291
|
|
|
|
|
|
|
|
|
| |
After instruction selection we perform some checks on each VReg just before
discarding the type information. These checks were assertions before, but that
breaks the fallback path so this patch moves the logic into the main flow and
reports a better error on failure.
llvm-svn: 286289
|
|
|
|
|
|
|
|
| |
This completes assembler / disassembler support for all BFP
instructions provided by the floating-point extensions facility.
The instructions added here are not currently used for codegen.
llvm-svn: 286285
|
|
|
|
|
|
|
|
|
| |
Add several instructions that operate on the program mask
or the addressing mode. These are not really needed for
code generation under Linux, but are provided for completeness
for the assembler/disassembler.
llvm-svn: 286284
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add the 16 access registers as LLVM registers. This allows removing
a lot of special cases in the assembler and disassembler where we
were handling access registers; this can all just use the generic
register code now.
Also add a bunch of instructions to operate on access registers,
for assembler/disassembler use only. No change in code generation
intended.
llvm-svn: 286283
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D26408
llvm-svn: 286280
|
|
|
|
|
|
| |
Fixes post-commit review comment from r286177.
llvm-svn: 286275
|
|
|
|
|
|
|
|
|
|
| |
Since IMPLIFIT_DEF instructions are omitted in the output, when the output
of an IMPLICIT_DEF instruction is stackified, the resulting register lacks
an explicit push, leading to a push/pop mismatch. Fix this by converting
such IMPLICIT_DEFs into CONST_I32 0 instructions so that they have explicit
pushes.
llvm-svn: 286274
|
|
|
|
|
|
| |
This is helpful when multiple instructions are inserted.
llvm-svn: 286273
|
|
|
|
|
|
|
|
|
|
|
| |
Erasing reverse_iterators is problematic; iterate manually.
While there, keep track of the range of inserted instructions.
It can miss instructions inserted elsewhere, but those are harder
to track.
Differential Revision: http://reviews.llvm.org/D22924
llvm-svn: 286272
|
|
|
|
|
|
|
|
|
|
| |
For example, it invalidates the domtree, causing assertions
in later passes which need dominator infos. Make it preserve
GlobalsAA, as suggested by Eli.
Differential Revision: https://reviews.llvm.org/D26381
llvm-svn: 286271
|
|
|
|
| |
llvm-svn: 286270
|
|
|
|
|
|
|
|
|
|
| |
Define a couple of additional semantic classes and use them
throughout the .td files to make them more consistent and
more easily readable.
No functional change.
llvm-svn: 286268
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This changes the InstRR (and related) patterns to no longer
automatically add an "r" at the end of the mnemonic. This
makes the .td files more obviously understandable, and also
allows using the patterns for those few instructions that
do not follow the *r scheme.
Also add some more sub-formats of the RRF format class, to
match operand names and sequence from the PoP better.
No functional change.
llvm-svn: 286267
|
|
|
|
|
|
|
|
|
|
|
| |
Now that we've added instruction format subclasses like
InstRIb, it makes sense to rename the old InstRI to InstRIa.
Similar for InstRX, InstRXY, InstRS, InstRSY, and InstSS.
No functional change.
llvm-svn: 286266
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: t.p.northover, rengolin
Subscribers: llvm-commits, aemerson
Differential Revision: https://reviews.llvm.org/D26309
llvm-svn: 286265
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rework patterns for branches, call & return instructions,
compare-and-branch, compare-and-trap, and conditional move
instructions.
In particular, simplify creation of patterns for the extended
opcodes of instructions that take a CC mask.
Also, use semantical instruction classes for all the instructions
instead of open-coding them in SystemZInstrInfo.td.
Adds a couple of the basic branch instructions (that are unused
for codegen) for the assembler/disassembler.
llvm-svn: 286263
|
|
|
|
| |
llvm-svn: 286260
|