| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This patch reworks the AIX call lowering to use CCState. Some defensive errors
are added in this patch to protect from emitting bad code for calling convention
logic that has not been implemented by design. The use of CCState follows the
precedent of other targets and enables the reuse of calling convention logic in
LowerFormalArguments, which will be rewritten to also use CCState in a late
patch.
Patch by Chris Bowler.
Differential Revision: https://reviews.llvm.org/D69101
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
A new function pass (Transforms/CFGuard/CFGuard.cpp) inserts CFGuard checks on
indirect function calls, using either the check mechanism (X86, ARM, AArch64) or
or the dispatch mechanism (X86-64). The check mechanism requires a new calling
convention for the supported targets. The dispatch mechanism adds the target as
an operand bundle, which is processed by SelectionDAG. Another pass
(CodeGen/CFGuardLongjmp.cpp) identifies and emits valid longjmp targets, as
required by /guard:cf. This feature is enabled using the `cfguard` CC1 option.
Reviewers: thakis, rnk, theraven, pcc
Subscribers: ychen, hans, metalcanine, dmajor, tomrittervg, alex, mehdi_amini, mgorny, javed.absar, kristof.beyls, hiraditya, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D65761
|
| |
|
|
|
|
| |
This is breaking buildbot with -Werror,-Wimplicit-fallthrough on.
eg:
http://lab.llvm.org:8011/builders/ppc64le-lld-multistage-test/builds/6881
|
| |
|
|
|
|
|
|
| |
See https://bugs.llvm.org/show_bug.cgi?id=43747
Reviewers: arsenm, rampitec
Differential Revision: https://reviews.llvm.org/D69348
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Writing support for three ACLE functions:
unsigned int __cls(uint32_t x)
unsigned int __clsl(unsigned long x)
unsigned int __clsll(uint64_t x)
CLS stands for "Count number of leading sign bits".
In AArch64, these two intrinsics can be translated into the 'cls'
instruction directly. In AArch32, on the other hand, this functionality
is achieved by implementing it in terms of clz (count number of leading
zeros).
Reviewers: compnerd
Reviewed By: compnerd
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D69250
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Adds support for codegen of masked loads, with non-extending,
zero-extending and sign-extending variants.
Reviewers: huntergr, rovka, greened, dmgreen
Reviewed By: dmgreen
Subscribers: dmgreen, samparker, tschuett, kristof.beyls, hiraditya, rkruppe, psnobl, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68877
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Until this commit, these have lowered to a call to abort().
`llvm.trap()` now lowers to `unimp`, which should trap on all systems.
`llvm.debugtrap()` now lowers to `ebreak`, which is exactly what this
instruction is for.
Reviewers: asb, luismarques
Reviewed By: asb
Subscribers: hiraditya, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, kito-cheng, shiva0217, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69390
|
| |
|
|
|
|
|
| |
Detect scalar ISD::ZERO_EXTEND generated by memcmp lowering and convert
it to ISD::INSERT_SUBVECTOR.
https://reviews.llvm.org/D69464
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
LowerPATCHABLE_TYPED_EVENT_CALL
Summary:
The PATCHABLE_EVENT_CALL uses i32 in the intrinsic. This
results in the register allocator picking a 32-bit register. We
need to use the 64-bit register when forming the MOV64rr
instructions. Otherwise we print illegal assembly in the text
output.
I think prior to this it was impossible for SrcReg to be equal
to DstReg so the NOP code was not reachable.
While there use Register instead of unsigned.
Also add a FIXME for what looks like a bug.
Reviewers: dberris
Reviewed By: dberris
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69365
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
pairwise.
Summary:
We don't pattern match pairwise shuffles in SelectionDAG. So we
should only return the optimized costs if its not a pairwise
shuffle.
I think SLP vectorizer gives priority to non pairwise shuffle if
the cost is the same. And the look up for reduction intrinsics
passes false for the pairwise flag. So this probably has no real
effect today.
Reviewers: RKSimon
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69083
|
| |
|
|
|
|
|
|
|
|
|
| |
PTEST and especially the MOVMSK instructions are slow on Knights Landing
or later. As a bonus, this patch increases instruction parallelism by
emitting:
KORTEST(PCMPNEQ(a, b), PCMPNEQ(c, d)) == 0
Instead of:
KORTEST(AND(PCMPEQ(a, b), PCMPEQ(c, d))) == ~0
https://reviews.llvm.org/D69157
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is a minor flaw in the implementation of function lowerPhis.
This function replaces values of regclass Vreg_1 (boolean values)
involved in PHIs into an SGPR. Currently it iterates over the MBBs
and performs an inplace lowering of PHIs and fails to lower any
incoming value that itself is another PHI of Vreg_1 regclass.
The failure occurs only when the MBB where the incoming PHI value
belongs is not visited/lowered yet.
To fix this problem, collect all Vreg_1 PHIs upfront and then
perform the lowering.
Differential Revision: https://reviews.llvm.org/D69182
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
That used to fail in the last testcase function because after
%0:sreg_64.sub0 was folded into %3:sreg_32_xm0_xexec COPY, it
was further folded into S_STORE_DWORD_IMM. Its legal effective
subreg class is SReg_32 while instruction expects more restricted
SReg_32_XM0_EXEC. However, SIInstrInfo::isLegalRegOperand()
passed the legality check and it was caught in the verifier.
Borrowed code from the verifier to check for RC legality.
Differential Revision: https://reviews.llvm.org/D69445
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Ilya Leoshkevich (<iii@linux.ibm.com>) reported an issue that
with -mattr=+alu32 CO-RE has a segfault in BPF MISimplifyPatchable
pass.
The pattern will be transformed by MISimplifyPatchable
pass looks like below:
r5 = ld_imm64 @"b:0:0$0:0"
r2 = ldw r5, 0
... r2 ... // use r2
The pass will remove the intermediate 'ldw' instruction
and replacing all r2 with r5 likes below:
r5 = ld_imm64 @"b:0:0$0:0"
... r5 ... // use r5
Later, the ld_imm64 insn will be replaced with
r5 = <patched immediate>
for field relocation purpose.
With -mattr=+alu32, the input code may become
r5 = ld_imm64 @"b:0:0$0:0"
w2 = ldw32 r5, 0
... w2 ... // use w2
Replacing "w2" with "r5" is incorrect and will
trigger compiler internal errors.
To fix the problem, if the register class of ldw* dest
register is sub_32, we just replace the original ldw*
register with:
w2 = w5
Directly replacing all uses of w2 with in-place
constructed w5 for the use operand seems not working in all cases.
The latest kernel will have -mattr=+alu32 on by default,
so added this flag to all CORE tests.
Tested with latest kernel bpf-next branch as well with this patch.
Differential Revision: https://reviews.llvm.org/D69438
|
| |
|
|
| |
This reverts commit 03de2f84fc4acf06c719cd007b5459c9d4d0a20c.
|
| |
|
|
|
|
|
| |
Both tryFoldOMod() and tryFoldClamp() remove original instruction,
so the check MI.modifiesRegister() may use a deleted MI.
Differential Revision: https://reviews.llvm.org/D69448
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Support "Sun Style" syntax for section switching ("#alloc,#write" etc).
https://bugs.llvm.org/show_bug.cgi?id=43759
Reviewers: peter.smith, eli.friedman, kristof.beyls, t.p.northover
Reviewed By: peter.smith
Subscribers: MaskRay, llozano, manojgupta, nickdesaulniers, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69296
|
| |
|
|
|
|
|
|
| |
Custom lower this to a target instruction with the merge operands. I
think it might be better to directly select this and emit a
REG_SEQUENCE, but this would be more work since it would require
splitting the tablegen patterns for these cases from the other
atomics.
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
resource descriptor
Summary:
In loadSRsrcFromVGPR, if MBB is the same as Succ, Remiander is not the immediate dominator of Succ.
Reviewer:
arsenm
Differential Revision:
https://reviews.llvm.org/D69358
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: nemanjai, hiraditya, kbarton, MaskRay, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69307
|
| |
|
|
| |
Differential Revision: https://reviews.llvm.org/D69413
|
| |
|
|
|
|
| |
(when Src2 is required)
Differential revision: https://reviews.llvm.org/D69430
|
| |
|
|
| |
Without this, we can create a PSADBW node that isn't legal.
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, rovka, dstuttard, tpr, t-tye, hiraditya, volkan, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69347
|
| |
|
|
|
|
|
|
|
| |
Complete fp16 support by ensuring that load extension / truncate store
operations are properly expanded.
Reviewers: asb, lenary
Reviewed By: lenary
Differential Revision: https://reviews.llvm.org/D69246
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
selectImpl is able to select G_FSQRT when we set bank for vector
operands to fprb. Add detailed tests.
Note: G_FSQRT is generated from llvm-ir intrinsics llvm.sqrt.*,
and at the moment MIPS is not able to generate this intrinsic for
vector type (some targets generate vector llvm.sqrt.* from calls
to a builtin function).
__builtin_msa_fsqrt_<format> will be transformed into G_FSQRT
in legalizeIntrinsic and selected in the same way.
Differential Revision: https://reviews.llvm.org/D69376
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
renamable $x6 = ADDI8 $x1, -80 ;;; 0 is replaced with -80
renamable $x6 = ADD8 killed renamable $x6, renamable $x5
STW killed renamable $r3, 4, killed renamable $x6 :: (store 4 into %ir.14, !tbaa !2)
After PEI there is a peephole opt opportunity to combine above -80 in ADDI8 with 4 in the STW to eliminate unnecessary ADD8.
Expected result:
renamable $x6 = ADDI8 $x1, -76
STWX killed renamable $r3, renamable $x5, killed renamable $x6 :: (store 4 into %ir.6, !tbaa !2)
Reviewed by: stefanp
Differential Revision: https://reviews.llvm.org/D66329
|
| | |
|
| |
|
|
|
|
|
| |
An SUnit can be neither intruction not SDNode. It is all
null if represents a nop. Fixed a crash on using SU->getInstr().
Differential Revision: https://reviews.llvm.org/D69395
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: rampitec
Reviewed By: rampitec
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69375
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The VST2 and VST4 instructions take two or four vector registers as
input, and store part of each register to memory in an interleaved
pattern. They come in variants indicating which part of each register
they store (VST20 and VST21; VST40 to VST43 inclusive); the intention
is that issuing each of those variants in turn has the combined effect
of loading or storing the whole set of registers to a memory block of
equal size. The corresponding VLD2 and VLD4 instructions load from
memory in the same interleaved format: each one overwrites only part
of its output register set, and again, the idea is that if you use
VLD4{0,1,2,3} or VLD2{0,1} together, you end up having written to the
whole of each register.
I've implemented the stores and loads quite differently. The loads
were easiest to implement as a single intrinsic that expands to all
four VLD4x instructions or both VLD2x, delivering four complete output
registers. (Implementing each individual load as a separate
instruction taking four input registers to partially overwrite is
possible in theory, but pointless, and when I tried it, I found it
would need extra work to get the register allocation not to be
horrible.) Since that intrinsic delivers multiple outputs, it has to
be instruction-selected in custom C++.
But the store instructions are easier to model individually, because
they don't overwrite any register at all and you can write a DAG Isel
pattern in Tablegen for each one.
Hence, my new intrinsic `int_arm_mve_vld4q` expands to four load
instructions, delivers four full output vectors, and is handled by C++
code, whereas `int_arm_mve_vst4q` expands to just one store
instruction, takes four input vectors and a constant indicating which
lanes to store, and is handled entirely in Tablegen. (And similarly
for vld2q/vst2q.) This is asymmetric, but it was the easiest way to do
each one.
Reviewers: dmgreen, miyuki, ostannard
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68700
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds some initial example IR intrinsics for MVE instructions that
deliver multiple output values, and hence, have to be instruction-
selected by custom C++ code instead of Tablegen patterns.
I've added the writeback gather load instructions (taking a vector of
base addresses and a single common offset, returning a vector of
loaded values and an updated vector of base addresses); one example
from the long shift family (taking and returning a 64-bit value in two
GPRs); and the VADC instruction (which propagates a carry bit from
each vector-lane addition to the next, taking an input carry flag in
FPSCR and outputting the final one in FPSCR as well).
To support the VPT-predicated forms of these instructions, I've
written some helper functions to add the cluster of MVE predicate
operands to the end of a MachineInstr. `AddMVEPredicateToOps` is used
when the instruction actually is predicated (so it takes a predicate
mask argument), and `AddEmptyMVEPredicateToOps` is for when the
instruction is unpredicated (so it fills in $noreg for the mask). Each
one comes in a form suitable for `vpred_n`, and one for `vpred_r`
which takes the extra 'inactive' parameter.
For VADC, the representation of the carry flag in the IR intrinsic is
a word intended to be moved directly to and from `FPSCR_nzcvqc`, i.e.
with the carry flag in bit 29 of the word. (The user-facing ACLE
intrinsic will want it to be in bit 0, but I'll do that on the clang
side.)
Reviewers: dmgreen, miyuki, ostannard
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68699
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit, together with the next few, will add a representative
sample of the kind of IR intrinsics that we'll need in order to
implement the user-facing ACLE intrinsics for MVE. Supporting all of
them will take more work; the intention of this initial series of
commits is to implement an intrinsic or two from lots of different
categories, as examples and proofs of concept.
This initial commit introduces a small number of IR intrinsics for
instructions simple enough that they can use Tablegen ISel patterns:
the predicated versions of the VADD and VSUB instructions (both
integer and FP), VMIN and VMAX, and the float->half VCVT instruction
(predicated and unpredicated).
When using VPT-predicated instructions in automatic code generation,
it will be convenient to specify the predicate value as a vector of
the appropriate number of i1. To make it easy to specify all sizes of
an instruction in one go and give each one the matching predicate
vector type, I've added a system of Tablegen informational records
describing MVE's vector types: each one gives the underlying LLVM IR
ValueType (which may not be the same if the MVE vector is of
explicitly signed or unsigned integers) and an appropriate vNi1 to use
as the predicate vector.
(Also, those info records include the usual encoding for the types, so
that as we add associations between each instruction encoding and one
of the new `MVEVectorVTInfo` records, we can remove some of the
existing template parameters and replace them with references to the
vector type info's fields.)
The user-facing ACLE intrinsics will receive a predicate mask as a
16-bit integer, so I've also provided a pair of intrinsics i2v and
v2i, to convert between an integer and a vector of i1 by just changing
the register class.
Reviewers: dmgreen, miyuki, ostannard
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67158
|
| |
|
|
|
|
|
|
|
|
| |
Reviewers: rampitec, arsenm
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69355
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
selectImpl is able to select G_FABS when we set bank for vector
operands to fprb. Add detailed tests.
Note: G_FABS is generated from llvm-ir intrinsics llvm.fabs.*,
and at the moment MIPS is not able to generate this intrinsic for
vector type (some targets generate vector llvm.fabs.* from calls
to a builtin function).
We can handle fabs using __builtin_msa_fmax_a_<format> and passing
same vector as both arguments. __builtin_msa_fmax_a_<format> will
be directly selected into FMAX_A_<format> in legalizeIntrinsic.
Differential Revision: https://reviews.llvm.org/D69346
|
| |
|
|
|
|
|
|
|
|
|
| |
Select vector G_FADD, G_FSUB, G_FMUL and G_FDIV for MIPS32 with MSA. We
have to set bank for vector operands to fprb and selectImpl will do the
rest. __builtin_msa_fadd_<format>, __builtin_msa_fsub_<format>,
__builtin_msa_fmul_<format> and __builtin_msa_fdiv_<format> will be
transformed into G_FADD, G_FSUB, G_FMUL and G_FDIV in legalizeIntrinsic
respectively and selected in the same way.
Differential Revision: https://reviews.llvm.org/D69340
|
| |
|
|
|
|
|
|
|
|
|
| |
Select vector G_SDIV, G_SREM, G_UDIV and G_UREM for MIPS32 with MSA. We
have to set bank for vector operands to fprb and selectImpl will do the
rest. __builtin_msa_div_s_<format>, __builtin_msa_mod_s_<format>,
__builtin_msa_div_u_<format> and __builtin_msa_mod_u_<format> will be
transformed into G_SDIV, G_SREM, G_UDIV and G_UREM in legalizeIntrinsic
respectively and selected in the same way.
Differential Revision: https://reviews.llvm.org/D69333
|
| |
|
|
|
|
|
|
| |
Potentially sgpr to sgpr copy should also be possible.
That is however trickier because we may end up with a
wrong register class at use because of xm0/xexec permutations.
Differential Revision: https://reviews.llvm.org/D69280
|
| |
|
|
| |
Testing git push access.
|
| |
|
|
|
| |
- Reduce code duplication
- Get partial support of JAL expansion for XGOT.
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
|
|
| |
MipsMCAsmInfo was using '$' prefix for Mips32 and '.L' for Mips64
regardless of -target-abi option. By passing MCTargetOptions to MCAsmInfo
we can find out Mips ABI and pick appropriate prefix.
Tags: #llvm, #clang, #lldb
Differential Revision: https://reviews.llvm.org/D66795
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The default implementation of the describeLoadedValue() hook uses the
MoveImm property to determine if an instruction moves an immediate. If
an instruction has that property the function returns the second
operand, assuming that that is the immediate value the instruction
moves. As far as I can tell, the MoveImm property does not imply that
the second operand is the immediate value, nor that any other operand
necessarily holds the immediate value; it just means that the
instruction moves some immediate value.
One example where the second operand is not the immediate is SystemZ's
LZER instruction, which moves a zero immediate implicitly: $f0S = LZER.
That case triggered an out-of-bound assertion when getting the operand.
I have added a test case for that instruction.
Another example is ARM's MVN instruction, which holds the logical
bitwise NOT'd value of the immediate that is moved. For the following
reproducer:
extern void foo(int);
int main() { foo(-11); }
an incorrect call site value would be emitted:
$ clang --target=arm foo.c -O1 -g -Xclang -femit-debug-entry-values \
-c -o - | ./build/bin/llvm-dwarfdump - | \
grep -A2 call_site_parameter
0x00000058: DW_TAG_GNU_call_site_parameter
DW_AT_location (DW_OP_reg0 R0)
DW_AT_GNU_call_site_value (DW_OP_lit10)
Another example is the A2_combineii instruction on Hexagon which moves
two immediates to a super-register: $d0 = A2_combineii 20, 10.
Perhaps these are rare exceptions, and most MoveImm instructions hold
the immediate in the second operand, but in my opinion the default
implementation of the hook should only describe values that it can, by
some contract, guarantee are safe to describe, rather than leaving it up
to the targets to override the exceptions, as that can silently result
in incorrect call site values.
This patch adds X86's relevant move immediate instructions to the
target's hook implementation, so this commit should be a NFC for that
target. We need to do the same for ARM and AArch64.
Reviewers: djtodoro, NikolaPrica, aprantl, vsk
Reviewed By: vsk
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D69109
|
| |
|
|
|
|
|
|
|
|
| |
Select vector G_MUL for MIPS32 with MSA. We have to set bank
for vector operands to fprb and selectImpl will do the rest.
Manual selection of G_MUL is now done for gprb only.
__builtin_msa_mulv_<format> will be transformed into G_MUL
in legalizeIntrinsic and selected in the same way.
Differential Revision: https://reviews.llvm.org/D69310
|
| |
|
|
|
|
|
|
|
|
|
| |
Select vector G_SUB for MIPS32 with MSA. We have to set bank
for vector operands to fprb and selectImpl will do the rest.
__builtin_msa_subv_<format> will be transformed into G_SUB
in legalizeIntrinsic and selected in the same way.
__builtin_msa_subvi_<format> will be directly selected into
SUBVI_<format> in legalizeIntrinsic.
Differential Revision: https://reviews.llvm.org/D69306
|
| |
|
|
|
|
|
|
|
|
|
| |
This adds support for reserving GPRs such that the compiler will not
choose a register for register allocation. The implementation follows
the same design as for AArch64; each reserved register becomes a target
feature and used for getting the reserved registers for a given
MachineFunction. The backend checks that it does not need to write to
any reserved register; if it does a relevant error is generated.
Differential Revision: https://reviews.llvm.org/D67185
|
| | |
|
| |
|
|
|
|
| |
Turns out it makes sense, contrarily to what comment said.
Differential Revision: https://reviews.llvm.org/D69287
|