summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target/X86/X86SchedPredicates.td
Commit message (Collapse)AuthorAgeFilesLines
* [X86][Btver2] Fix latency and throughput of CMPXCHG instructions.Andrea Di Biagio2019-08-201-0/+57
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On Jaguar, CMPXCHG has a latency of 11cy, and a maximum throughput of 0.33 IPC. Throughput is superiorly limited to 0.33 because of the implicit in/out dependency on register EAX. In the case of repeated non-atomic CMPXCHG with the same memory location, store-to-load forwarding occurs and values for sequent loads are quickly forwarded from the store buffer. Interestingly, the functionality in LLVM that computes the reciprocal throughput doesn't seem to know about RMW instructions. That functionality only looks at the "consumed resource cycles" for the throughput computation. It should be fixed/improved by a future patch. In particular, for RMW instructions, that logic should also take into account for the write latency of in/out register operands. An atomic CMPXCHG has a latency of ~17cy. Throughput is also limited to ~17cy/inst due to cache locking, which prevents other memory uOPs to start executing before the "lock releasing" store uOP. CMPXCHG8rr and CMPXCHG8rm are treated specially because they decode to one less macro opcode. Their latency tend to be the same as the other RR/RM variants. RR variants are relatively fast 3cy (but still microcoded - 5 macro opcodes). CMPXCHG8B is 11cy and unfortunately doesn't seem to benefit from store-to-load forwarding. That means, throughput is clearly limited by the in/out dependency on GPR registers. The uOP composition is sadly unknown (due to the lack of PMCs for the Integer pipes). I have reused the same mix of consumed resource from the other CMPXCHG instructions for CMPXCHG8B too. LOCK CMPXCHG8B is instead 18cycles. CMPXCHG16B is 32cycles. Up to 38cycles when the LOCK prefix is specified. Due to the in/out dependencies, throughput is limited to 1 instruction every 32 (or 38) cycles dependeing on whether the LOCK prefix is specified or not. I wouldn't be surprised if the microcode for CMPXCHG16B is similar to 2x microcode from CMPXCHG8B. So, I have speculatively set the JALU01 consumption to 2x the resource cycles used for CMPXCHG8B. The two new hasLockPrefix() functions are used by the btver2 scheduling model check if a MCInst/MachineInst has a LOCK prefix. Calls to hasLockPrefix() have been encoded in predicates of variant scheduling classes that describe lat/thr of CMPXCHG. Differential Revision: https://reviews.llvm.org/D66424 llvm-svn: 369365
* [X86] Merge the different SETcc instructions for each condition code into ↵Craig Topper2019-04-051-0/+12
| | | | | | | | | | | | | | | | | | | | | single instructions that store the condition code as an operand. Summary: This avoids needing an isel pattern for each condition code. And it removes translation switches for converting between SETcc instructions and condition codes. Now the printer, encoder and disassembler take care of converting the immediate. We use InstAliases to handle the assembly matching. But we print using the asm string in the instruction definition. The instruction itself is marked IsCodeGenOnly=1 to hide it from the assembly parser. Reviewers: andreadb, courbet, RKSimon, spatel, lebedev.ri Reviewed By: andreadb Subscribers: hiraditya, lebedev.ri, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D60138 llvm-svn: 357801
* [X86] Merge the different CMOV instructions for each condition code into ↵Craig Topper2019-04-051-0/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | single instructions that store the condition code as an immediate. Summary: Reorder the condition code enum to match their encodings. Move it to MC layer so it can be used by the scheduler models. This avoids needing an isel pattern for each condition code. And it removes translation switches for converting between CMOV instructions and condition codes. Now the printer, encoder and disassembler take care of converting the immediate. We use InstAliases to handle the assembly matching. But we print using the asm string in the instruction definition. The instruction itself is marked IsCodeGenOnly=1 to hide it from the assembly parser. This does complicate the scheduler models a little since we can't assign the A and BE instructions to a separate class now. I plan to make similar changes for SETcc and Jcc. Reviewers: RKSimon, spatel, lebedev.ri, andreadb, courbet Reviewed By: RKSimon Subscribers: gchatelet, hiraditya, kristina, lebedev.ri, jdoerfert, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D60041 llvm-svn: 357800
* Update the file headers across all of the LLVM projects in the monorepoChandler Carruth2019-01-191-4/+3
| | | | | | | | | | | | | | | | | to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
* [X86][BtVer2] Teach how to identify zero-idiom VPERM2F128rr instructions.Andrea Di Biagio2018-10-011-0/+7
| | | | | | | | | | | This patch adds another variant class to identify zero-idiom VPERM2F128rr instructions. On Jaguar, a VPERM wih bit 3 and 7 of the mask set, is a zero-idiom. Differential Revision: https://reviews.llvm.org/D52663 llvm-svn: 343452
* [Tablegen][MCInstPredicate] Removed redundant template argument from class ↵Andrea Di Biagio2018-08-141-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | TIIPredicate, and implemented verification rules for TIIPredicates. This patch removes redundant template argument `TargetName` from TIIPredicate. Tablegen can always infer the target name from the context. So we don't need to force users of TIIPredicate to always specify it. This allows us to better modularize the tablegen class hierarchy for the so-called "function predicates". class FunctionPredicateBase has been added; it is currently used as a building block for TIIPredicates. However, I plan to reuse that class to model other function predicate classes too (i.e. not just TIIPredicates). For example, this can be a first step towards implementing proper support for dependency breaking instructions in tablegen. This patch also adds a verification step on TIIPredicates in tablegen. We cannot have multiple TIIPredicates with the same name. Otherwise, this will cause build errors later on, when tablegen'd .inc files are included by cpp files and then compiled. Differential Revision: https://reviews.llvm.org/D50708 llvm-svn: 339706
* [MC][PredicateExpander] Extend the grammar to support simple switch and ↵Andrea Di Biagio2018-08-091-5/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | return statements. This patch introduces tablegen class MCStatement. Currently, an MCStatement can be either a return statement, or a switch statement. ``` MCStatement: MCReturnStatement MCOpcodeSwitchStatement ``` A MCReturnStatement expands to a return statement, and the boolean expression associated with the return statement is described by a MCInstPredicate. An MCOpcodeSwitchStatement is a switch statement where the condition is a check on the machine opcode. It allows the definition of multiple checks, as well as a default case. More details on the grammar implemented by these two new constructs can be found in the diff for TargetInstrPredicates.td. This patch makes it easier to read the body of auto-generated TargetInstrInfo predicates. In future, I plan to reuse/extend the MCStatement grammar to describe more complex target hooks. For now, this is just a first step (mostly a minor cosmetic change to polish the new predicates framework). Differential Revision: https://reviews.llvm.org/D50457 llvm-svn: 339352
* [X86][BtVer2] correctly model the latency/throughput of LEA instructions.Andrea Di Biagio2018-07-191-0/+49
This patch fixes the latency/throughput of LEA instructions in the BtVer2 scheduling model. On Jaguar, A 3-operands LEA has a latency of 2cy, and a reciprocal throughput of 1. That is because it uses one cycle of SAGU followed by 1cy of ALU1. An LEA with a "Scale" operand is also slow, and it has the same latency profile as the 3-operands LEA. An LEA16r has a latency of 3cy, and a throughput of 0.5 (i.e. RThrouhgput of 2.0). This patch adds a new TIIPredicate named IsThreeOperandsLEAFn to X86Schedule.td. The tablegen backend (for instruction-info) expands that definition into this (file X86GenInstrInfo.inc): ``` static bool isThreeOperandsLEA(const MachineInstr &MI) { return ( ( MI.getOpcode() == X86::LEA32r || MI.getOpcode() == X86::LEA64r || MI.getOpcode() == X86::LEA64_32r || MI.getOpcode() == X86::LEA16r ) && MI.getOperand(1).isReg() && MI.getOperand(1).getReg() != 0 && MI.getOperand(3).isReg() && MI.getOperand(3).getReg() != 0 && ( ( MI.getOperand(4).isImm() && MI.getOperand(4).getImm() != 0 ) || (MI.getOperand(4).isGlobal()) ) ); } ``` A similar method is generated in the X86_MC namespace, and included into X86MCTargetDesc.cpp (the declaration lives in X86MCTargetDesc.h). Back to the BtVer2 scheduling model: A new scheduling predicate named JSlowLEAPredicate now checks if either the instruction is a three-operands LEA, or it is an LEA with a Scale value different than 1. A variant scheduling class uses that new predicate to correctly select the appropriate latency profile. Differential Revision: https://reviews.llvm.org/D49436 llvm-svn: 337469
OpenPOWER on IntegriCloud