| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This mostly affects IR generated by non-clang frontends because clang
generally sets the alignment of globals explicitly.
Fixes https://bugs.llvm.org//show_bug.cgi?id=32394 .
(-arm-promote-constant is currently off by default, and it stays off
with this patch. I'll look into turning it on again when all the known
issues are fixed.)
Differential Revision: https://reviews.llvm.org/D51469
llvm-svn: 343359
|
|
|
|
| |
llvm-svn: 342987
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This involves changing the shouldExpandAtomicCmpXchgInIR interface, but I have
updated the in-tree backends using this hook (ARM, AArch64, Hexagon) so they
will see no functional change. Previously this hook returned bool, but it now
returns AtomicExpansionKind.
This hook allows targets to select how a given cmpxchg is to be expanded.
D48131 uses this to expand part-word cmpxchg to a target-specific intrinsic.
See my associated RFC for more info on the motivation for this change
<http://lists.llvm.org/pipermail/llvm-dev/2018-June/123993.html>.
Differential Revision: https://reviews.llvm.org/D48130
llvm-svn: 342550
|
|
|
|
|
|
|
|
|
|
|
|
| |
The Technical Reference Manuals for these two CPUs state that branching
to an unaligned 32-bit instruction incurs an extra pipeline reload
penalty. That's bad.
This also enables the optimization at -Os since it costs on average one
byte per loop in return for 1 cycle per iteration, which is pretty good
going.
llvm-svn: 342127
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
shouldAssumeDSOLocal. NFC.
On Windows, if shouldAssumeDSOLocal returns false, it's either a
dllimport reference, or a reference that we should treat as non-local
and create a stub for.
Clean up AArch64Subtarget::ClassifyGlobalReference a little while
touching the flag handling relating to dllimport.
Differential Revision: https://reviews.llvm.org/D51590
llvm-svn: 341402
|
|
|
|
|
|
|
|
|
|
|
| |
The runtime pseudo relocations can't handle the ARM format embedded
addresses in movw/movt pairs. By using stubs, the potentially
dllimported addresses can be touched up by the runtime pseudo relocation
framework.
Differential Revision: https://reviews.llvm.org/D51450
llvm-svn: 341176
|
|
|
|
|
|
|
|
|
|
| |
The inline sequence is very long (about 70 bytes on Thumb1), so it's
not really a good idea to inline it, especially when optimizing for
size.
Differential Revision: https://reviews.llvm.org/D47917
llvm-svn: 340458
|
|
|
|
|
|
|
|
|
|
|
| |
This avoids a potential infinite loop setting and unsetting bits in the
mask.
Reduced from a failure on the polly-aosp bot.
Differential Revision: https://reviews.llvm.org/D51066
llvm-svn: 340446
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds the plumbing for the Tiny code model for the AArch64 backend. This,
instead of loading addresses through the normal ADRP;ADD pair used in the Small
model, uses a single ADR. The 21 bit range of an ADR means that the code and
its statically defined symbols need to be within 1MB of each other.
This makes it mostly interesting for embedded applications where we want to fit
as much as we can in as small a space as possible.
Differential Revision: https://reviews.llvm.org/D49673
llvm-svn: 340397
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
`MachineMemOperand` pointers attached to `MachineSDNodes` and instead
have the `SelectionDAG` fully manage the memory for this array.
Prior to this change, the memory management was deeply confusing here --
The way the MI was built relied on the `SelectionDAG` allocating memory
for these arrays of pointers using the `MachineFunction`'s allocator so
that the raw pointer to the array could be blindly copied into an
eventual `MachineInstr`. This creates a hard coupling between how
`MachineInstr`s allocate their array of `MachineMemOperand` pointers and
how the `MachineSDNode` does.
This change is motivated in large part by a change I am making to how
`MachineFunction` allocates these pointers, but it seems like a layering
improvement as well.
This would run the risk of increasing allocations overall, but I've
implemented an optimization that should avoid that by storing a single
`MachineMemOperand` pointer directly instead of allocating anything.
This is expected to be a net win because the vast majority of uses of
these only need a single pointer.
As a side-effect, this makes the API for updating a `MachineSDNode` and
a `MachineInstr` reasonably different which seems nice to avoid
unexpected coupling of these two layers. We can map between them, but we
shouldn't be *surprised* at where that occurs. =]
Differential Revision: https://reviews.llvm.org/D50680
llvm-svn: 339740
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Intentionally excluding nodes from the DAGCombine worklist is likely to
lead to weird optimizations and infinite loops, so it's generally a bad
idea.
To avoid the infinite loops, fix DAGCombine to use the
isDesirableToCommuteWithShift target hook before performing the
transforms in question, and implement the target hook in the ARM backend
disable the transforms in question.
Fixes https://bugs.llvm.org/show_bug.cgi?id=38530 . (I don't have a
reduced testcase for that bug. But we should have sufficient test
coverage for PerformSHLSimplify given that we're not playing weird
tricks with the worklist. I can try to bugpoint it if necessary,
though.)
Differential Revision: https://reviews.llvm.org/D50667
llvm-svn: 339734
|
|
|
|
| |
llvm-svn: 339479
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
LLVM normally prefers to minimize the number of bits set in an AND
immediate, but that doesn't always match the available ARM instructions.
In Thumb1 mode, prefer uxtb or uxth where possible; otherwise, prefer
a two-instruction sequence movs+ands or movs+bics.
Some potential improvements outlined in
ARMTargetLowering::targetShrinkDemandedConstant, but seems to work
pretty well already.
The ARMISelDAGToDAG fix ensures we don't generate an invalid UBFX
instruction due to a larger-than-expected mask. (It's orthogonal, in
some sense, but as far as I can tell it's either impossible or nearly
impossible to reproduce the bug without this change.)
According to my testing, this seems to consistently improve codesize by
a small amount by forming bic more often for ISD::AND with an immediate.
Differential Revision: https://reviews.llvm.org/D50030
llvm-svn: 339472
|
|
|
|
|
|
|
|
| |
This adds codegen support for the different vcvt_f16 variants.
Differential Revision: https://reviews.llvm.org/D50393
llvm-svn: 339227
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D50238
llvm-svn: 339221
|
|
|
|
|
|
| |
sed -Ei 's/[[:space:]]+$//' include/**/*.{def,h,td} lib/**/*.{cpp,h}
llvm-svn: 338293
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Saves materializing the immediate for the "ands".
Corresponding patterns exist for lsrs+lsls, but that seems less common
in practice.
Now implemented as a DAGCombine.
Differential Revision: https://reviews.llvm.org/D49585
llvm-svn: 337945
|
|
|
|
|
|
|
| |
Since the triple's default is hard float, the libcalls will already use VFP
registers.
llvm-svn: 337386
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The original code attempted to do this, but the std::abs() call didn't
actually do anything due to implicit type conversions. Fix the type
conversions, and perform the correct check for negative immediates.
This probably has very little practical impact, but it's worth fixing
just to avoid confusion in the future, I think.
Differential Revision: https://reviews.llvm.org/D48907
llvm-svn: 336742
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Resolves:
Unsupported ARM Neon intrinsics in Target-specific DAG combine
function for VLDDUP
https://bugs.llvm.org/show_bug.cgi?id=38031
Related diff: D48439
Differential Revision: https://reviews.llvm.org/D48920
llvm-svn: 336325
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: efriedma, rogfer01, javed.absar
Reviewed By: efriedma, rogfer01
Subscribers: kristof.beyls, chrib, llvm-commits
Differential Revision: https://reviews.llvm.org/D48846
llvm-svn: 336144
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds support for the q versions of the dup
(load-to-all-lanes) NEON intrinsics, such as vld2q_dup_f16() for
example.
Currently, non-q versions of the dup intrinsics are implemented
in clang by generating IR that first loads the elements of the
structure into the first lane with the lane (to-single-lane)
intrinsics, and then propagating it other lanes. There are at
least two problems with this approach. First, there are no
double-spaced to-single-lane byte-element instructions. For
example, there is no such instruction as 'vld2.8 { d0[0], d2[0]
}, [r0]'. That means we cannot rely on the to-single-lane
intrinsics and instructions to implement the q versions of the
dup intrinsics. Note that to-all-lanes instructions do support
all sizes of data items, including bytes.
The second problem with the current approach is that we need a
separate vdup instruction to propagate the structure to each
lane. So for vld4q_dup_f16() we would need four vdup instructions
in addition to the initial vld instruction.
This patch introduces dup LLVM intrinsics and reworks handling of
the currently supported (non-q) NEON dup intrinsics to expand
them into those LLVM intrinsics, thus eliminating the need for
using to-single-lane intrinsics and instructions.
Additionally, this patch adds support for u64 and s64 dup NEON
intrinsics. These are marked as Arch64-only in the ARM NEON
Reference, but it seems there are no reasons to not support them
in AArch32 mode. Please correct, if that is wrong.
That's what we generate with this patch applied:
vld2q_dup_f16:
vld2.16 {d0[], d2[]}, [r0]
vld2.16 {d1[], d3[]}, [r0]
vld3q_dup_f16:
vld3.16 {d0[], d2[], d4[]}, [r0]
vld3.16 {d1[], d3[], d5[]}, [r0]
vld4q_dup_f16:
vld4.16 {d0[], d2[], d4[], d6[]}, [r0]
vld4.16 {d1[], d3[], d5[], d7[]}, [r0]
Differential Revision: https://reviews.llvm.org/D48439
llvm-svn: 335733
|
|
|
|
|
|
|
|
|
| |
We currently support them only in AArch64. The NEON Reference,
however, says they are 'ARMv7, ARMv8' intrinsics.
Differential Revision: https://reviews.llvm.org/D47447
llvm-svn: 334361
|
|
|
|
|
|
|
|
|
| |
We currently support them only in AArch64. The NEON Reference,
however, says they are 'ARMv7, ARMv8' intrinsics.
Differential Revision: https://reviews.llvm.org/D47120
llvm-svn: 333825
|
|
|
|
|
|
|
|
| |
The LLVM part was committed instead of the Clang part.
Differential Revision: https://reviews.llvm.org/D47121
llvm-svn: 333824
|
|
|
|
|
|
|
|
|
| |
We currently support them only in AArch64. The NEON Reference,
however, says they are 'ARMv7, ARMv8' intrinsics.
Differential Revision: https://reviews.llvm.org/D47121
llvm-svn: 333819
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: This code is now dead as the ARM backend uses ADDCARRY/SUBCARRY/SETCCCARRY .
Reviewers: rogfer01, efriedma, rengolin, javed.absar
Subscribers: kristof.beyls, chrib, llvm-commits
Differential Revision: https://reviews.llvm.org/D47413
llvm-svn: 333544
|
|
|
|
|
|
|
|
|
| |
We've had Thumb1 support for ARMISD::SUBE for a while now, so this just
works. Reduces codesize a bit for 64-bit integer comparisons.
Differential Revision: https://reviews.llvm.org/D47387
llvm-svn: 333445
|
|
|
|
|
|
|
| |
Chances are we'll be asked again after type legalization, but before that point
it's better to claim misaligned accesses aren't allowed than to assert.
llvm-svn: 332840
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: As per title. SETCCE is deprecated and will eventually be removed.
Reviewers: rogfer01, efriedma, rengolin, javed.absar
Subscribers: kristof.beyls, chrib, llvm-commits
Differential Revision: https://reviews.llvm.org/D46512
llvm-svn: 331929
|
|
|
|
|
|
|
|
| |
automatically. NFC
The old behavior return the value 0, which is error prone.
llvm-svn: 331614
|
|
|
|
|
|
|
|
|
|
|
|
| |
By default LLVM thinks very large vectors get aligned to their size when
passed across functions. Unfortunately no-one told the ARM backend so it
doesn't trigger stack realignment and so accesses can cause the usual
misalignment issues (e.g. a data abort).
This changes the ABI alignment to the stack alignment, which in practice
(and as a bonus) also coincides with the alignment "natural" vectors get.
llvm-svn: 331451
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
|
|
|
|
|
|
|
|
|
| |
This adds code generation support for the FP16 vmaxnm/vminnm scalar
instructions.
Differential Revision: https://reviews.llvm.org/D44675
llvm-svn: 330034
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a follow up of rL327695 to instruction select more variants of VSELGT
and VSELGE, for which it is necessary to custom lower SELECT.
More work is required in this area, which will be addressed soon:
- more variants need to be regression tested, but this depends on the next point.
- first LowerConstantFP need to be adjusted for fp16 values.
Differential Revision: https://reviews.llvm.org/D45205
llvm-svn: 329788
|
|
|
|
|
|
|
|
|
|
|
|
| |
CodeGen layer.
Currently EVT is in the IR layer only because of Function.cpp needing a very small piece of the functionality of EVT::getEVTString(). The rest of EVT is used in codegen making CodeGen a better place for it.
The previous code converted a Type* to EVT and then called getEVTString. This was only expected to handle the primitive types from Type*. Since there only a few primitive types, we can just print them as strings directly.
Differential Revision: https://reviews.llvm.org/D45017
llvm-svn: 328806
|
|
|
|
|
|
|
|
|
|
| |
Follow up patch of r328313 to support the UseVMOVSR constraint. Removed
some unneeded instructions from the test and removed some stray
comments.
Differential Revision: https://reviews.llvm.org/D44941
llvm-svn: 328691
|
|
|
|
|
|
| |
ValueTypes.h is implemented in IR already.
llvm-svn: 328397
|
|
|
|
|
|
|
|
|
| |
This is used by llvm tblgen as well as by LLVM Targets, so the only
common place is Support for now. (maybe we need another target for these
sorts of things - but for now I'm at least making them correct & we can
make them better if/when people have strong feelings)
llvm-svn: 328395
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When targeting execute-only and fp-armv8, float constants in a compare
resulted in instruction selection failures. This is now fixed by using
vmov.f32 where possible, otherwise the floating point constant is
lowered into a integer constant that is moved into a floating point
register.
This patch also restores using fpcmp with immediate 0 under fp-armv8.
Change-Id: Ie87229706f4ed879a0c0cf66631b6047ed6c6443
llvm-svn: 328313
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This extends the use of this attribute on ARM and AArch64 from
SVN r325900 (where it was only checked for fixed stack
allocations on ARM/AArch64, but for all stack allocations on X86).
This also adds a testcase for the existing use of disabling the
fixed stack probe with the attribute on ARM and AArch64.
Differential Revision: https://reviews.llvm.org/D44291
llvm-svn: 327897
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the groundwork for adding the Armv8.2-A FP16 vector intrinsics, which
uses v4f16 and v8f16 vector operands and return values. All the moving parts
are tested with two intrinsics, a 1-operand v8f16 and a 2-operand v4f16
intrinsic. In a follow-up patch the rest of the intrinsics and tests will be
added.
Differential Revision: https://reviews.llvm.org/D44538
llvm-svn: 327839
|
|
|
|
|
|
|
|
|
| |
This implements lowering of SELECT_CC for f16s, which enables
codegen of VSEL with f16 types.
Differential Revision: https://reviews.llvm.org/D44518
llvm-svn: 327695
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Don't PerformSHLSimplify if the given node is used by a node that also uses a
constant because we may get stuck in an infinite combine loop.
bugzilla: https://bugs.llvm.org/show_bug.cgi?id=36577
Patch by Sam Parker.
Differential Revision: https://reviews.llvm.org/D44097
llvm-svn: 326882
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Emulated TLS is enabled by llc flag -emulated-tls,
which is passed by clang driver.
When llc is called explicitly or from other drivers like LTO,
missing -emulated-tls flag would generate wrong TLS code for targets
that supports only this mode.
Now use useEmulatedTLS() instead of Options.EmulatedTLS to decide whether
emulated TLS code should be generated.
Unit tests are modified to run with and without the -emulated-tls flag.
Differential Revision: https://reviews.llvm.org/D42999
llvm-svn: 326341
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Expressions of the form x < 0 ? 0 : x; and x < -1 ? -1 : x can be lowered using bit-operations instead of branching or conditional moves
In thumb-mode this results in a two-instruction sequence, a shift followed by a bic or or while in ARM/thumb2 mode that has flexible second operand the shift can be folded into a single bic/or instructions. In most cases this results in smaller code and possibly less branches, and in no case larger than before.
Patch by Martin Svanfeldt
Reviewers: fhahn, pbarrio, rogfer01
Reviewed By: pbarrio, rogfer01
Subscribers: chrib, yroux, eugenis, efriedma, rogfer01, aemerson, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42574
llvm-svn: 326333
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Add a target option AllowRegisterRenaming that is used to opt in to
post-register-allocation renaming of registers. This is set to 0 by
default, which causes the hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq
fields of all opcodes to be set to 1, causing
MachineOperand::isRenamable to always return false.
Set the AllowRegisterRenaming flag to 1 for all in-tree targets that
have lit tests that were effected by enabling COPY forwarding in
MachineCopyPropagation (AArch64, AMDGPU, ARM, Hexagon, Mips, PowerPC,
RISCV, Sparc, SystemZ and X86).
Add some more comments describing the semantics of the
MachineOperand::isRenamable function and how it is set and maintained.
Change isRenamable to check the operand's opcode
hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq bit directly instead of
relying on it being consistently reflected in the IsRenamable bit
setting.
Clear the IsRenamable bit when changing an operand's register value.
Remove target code that was clearing the IsRenamable bit when changing
registers/opcodes now that this is done conservatively by default.
Change setting of hasExtraSrcRegAllocReq in AMDGPU target to be done in
one place covering all opcodes that have constant pipe read limit
restrictions.
Reviewers: qcolombet, MatzeB
Subscribers: aemerson, arsenm, jyknight, mcrosier, sdardis, nhaehnle, javed.absar, tpr, arichardson, kristof.beyls, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, niosHD, escha, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D43042
llvm-svn: 325931
|
|
|
|
|
|
|
|
| |
This case wasn't handled yet.
Differential Revision: https://reviews.llvm.org/D43508
llvm-svn: 325616
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch combines some cases of ARMISD::CMOV for integers that arise in comparisons of the form
a != b ? x : 0
a == b ? 0 : x
and that currently (e.g. in Thumb1) are emitted as branches.
Differential Revision: https://reviews.llvm.org/D34515
llvm-svn: 325323
|