| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
| |
We don't use the xexec register classes for arbitrary values
anymore. Avoids a test variance beween GlobalISel and SelectionDAG>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This solves selection failures with generated selection patterns,
which would fail due to inferring the SGPR reg bank for virtual
registers with a set register class instead of VCC bank. Use
instruction selection would constrain the virtual register to a
specific class, so when the def was selected later the bank no longer
was set to VCC.
Remove the SCC reg bank. SCC isn't directly addressable, so it
requires copying from SCC to an allocatable 32-bit register during
selection, so these might as well be treated as 32-bit SGPR values.
Now any scalar boolean value that will produce an outupt in SCC should
be widened during RegBankSelect to s32. Any s1 value should be a
vector boolean during selection. This makes the vcc register bank
unambiguous with a normal SGPR during selection.
Summary of how this should now work:
- G_TRUNC is always a no-op, and never should use a vcc bank result.
- SALU boolean operations should be promoted to s32 in RegBankSelect
apply mapping
- An s1 value means vcc bank at selection. The exception is for
legalization artifacts that use s1, which are never VCC. All other
contexts should infer the VCC register classes for s1 typed
registers. The LLT for the register is now needed to infer the
correct register class. Extensions with vcc sources should be
legalized to a select of constants during RegBankSelect.
- Copy from non-vcc to vcc ensures high bits of the input value are
cleared during selection.
- SALU boolean inputs should ensure the inputs are 0/1. This includes
select, conditional branches, and carry-ins.
There are a few somewhat dirty details. One is that G_TRUNC/G_*EXT
selection ignores the usual register-bank from register class
functions, and can't handle truncates with VCC result banks. I think
this is OK, since the artifacts are specially treated anyway. This
does require some care to avoid producing cases with vcc. There will
also be no 100% reliable way to verify this rule is followed in
selection in case of register classes, and violations manifests
themselves as invalid copy instructions much later.
Standard phi handling also only considers the bank of the result
register, and doesn't insert copies to make the source banks
match. This doesn't work for vcc, so we have to manually correct phi
inputs in this case. We should add a verifier check to make sure there
are no phis with mixed vcc and non-vcc register bank inputs.
There's also some duplication with the LegalizerHelper, and some code
which should live in the helper. I don't see a good way to share
special knowledge about what types to use for intermediate operations
depending on the bank for example. Using the helper to replace
extensions with selects also seems somewhat awkward to me.
Another issue is there are some contexts calling
getRegBankFromRegClass that apparently don't have the LLT type for the
register, but I haven't yet run into a real issue from this.
This also introduces new unnecessary instructions in most cases, since
we don't yet try to optimize out the zext when the source is known to
come from a compare.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Pre gfx9 we need to scavenge a 64-bit SGPR to use as the carry out for an Add.
If only one SGPR was available this crashed when trying to scavenge another
32bit SGPR to materialize the offset.
Instead, reuse a 32-bit SGPR from the carry out as the offset register.
Also prefer to use vcc for the unused carry out when it is available.
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70614
|
|
|
|
|
|
|
| |
Static analyzer complains about always false condition.
See https://bugs.llvm.org/show_bug.cgi?id=43886
Differential Revision: https://reviews.llvm.org/D69860
|
|
|
|
| |
llvm-svn: 375373
|
|
|
|
|
|
| |
It's already available in the class.
llvm-svn: 375363
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: The implementation was never completed and never used except in tests.
Reviewers: arsenm, mareko
Subscribers: qcolombet, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69163
llvm-svn: 375293
|
|
|
|
|
|
|
|
|
|
|
| |
Mostly use SReg_32 instead of SReg_32_XM0 for arbitrary values. This
will allow the register coalescer to do a better job eliminating
copies to m0.
For GlobalISel, as a terrible hack, use SGPR_32 for things that should
use SCC until booleans are solved.
llvm-svn: 375267
|
|
|
|
|
|
|
|
|
| |
SGPR_128 only includes the real allocatable SGPRs, and SReg_128 adds
the additional non-allocatable TTMP registers. There's no point in
allocating SReg_128 vregs. This shrinks the size of the classes
regalloc needs to consider, which is usually good.
llvm-svn: 374284
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Extend cachepolicy operand in the new VMEM buffer intrinsics
to supply information whether the buffer data is swizzled.
Also, propagate this information to MIR.
Intrinsics updated:
int_amdgcn_raw_buffer_load
int_amdgcn_raw_buffer_load_format
int_amdgcn_raw_buffer_store
int_amdgcn_raw_buffer_store_format
int_amdgcn_raw_tbuffer_load
int_amdgcn_raw_tbuffer_store
int_amdgcn_struct_buffer_load
int_amdgcn_struct_buffer_load_format
int_amdgcn_struct_buffer_store
int_amdgcn_struct_buffer_store_format
int_amdgcn_struct_tbuffer_load
int_amdgcn_struct_tbuffer_store
Furthermore, disable merging of VMEM buffer instructions
in SI Load/Store optimizer, if the "swizzled" bit on the instruction
is on.
The default value of the bit is 0, meaning that data in buffer
is linear and buffer instructions can be merged.
There is no difference in the generated code with this commit.
However, in the future it will be expected that front-ends
use buffer intrinsics with correct "swizzled" bit set.
Reviewers: arsenm, nhaehnle, tpr
Reviewed By: nhaehnle
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, arphaman, jfb, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68200
llvm-svn: 373491
|
|
|
|
|
|
|
|
|
|
| |
Reviewers:
arsenm
Differential Revision:
https://reviews.llvm.org/D67574
llvm-svn: 373404
|
|
|
|
|
|
|
|
| |
There are 1024 bit register classes defined for AGPRs. Additionally
OpenCL defines vectors up to 16 x i64, and this helps those tests
legalize.
llvm-svn: 373350
|
|
|
|
|
|
|
|
|
| |
This was relying on the SGPR usable for the carry out clobber to also
be used for the input. There was no carry out on gfx9. With no carry
out clobber to worry about, so the literal can just be directly used
with a VOP2 add.
llvm-svn: 371791
|
|
|
|
|
|
|
| |
This was getting chosen as the preferred 32-bit register class based
on how TableGen selects subregister classes.
llvm-svn: 371438
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since an add instruction must produce an unused carry out, this
requires additional SGPRs. This can be avoided by keeping the entire
offset computation in SGPRs. If one SGPR is still available, this only
costs one extra mov. If none are available, the entire computation can
be done in place and reversed.
This does assume the use is a VGPR operand. This was already assumed,
and we currently only select frame indexes to VALU instructions. This
should probably be fixed at some point to handle more possible MIR.
llvm-svn: 370929
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SGPR spills aren't really handled after SILowerSGPRSpills. In order to
directly control what happens if the scavenger needs to spill, the
scavenger needs to be used directly. There is an alternative to
spilling in these contexts anyway since the frame register can be
increment and restored.
This does present another possible issue if spilling is needed for the
unused carry out if an add is needed. I think this can be avoided by
using a scalar add (although that clobbers SCC, which happens anyway).
llvm-svn: 370281
|
|
|
|
|
|
|
|
| |
gfx908 ignores an mfma if SrcC is a literal.
Differential Revision: https://reviews.llvm.org/D66670
llvm-svn: 369816
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
As part of this, define DenseMapInfo for MCRegister (and Register while I'm at it)
Depends on D65599
Reviewers: arsenm
Subscribers: MatzeB, qcolombet, jvesely, wdng, nhaehnle, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65605
llvm-svn: 367719
|
|
|
|
|
|
| |
llvm::Register as started by r367614. NFC
llvm-svn: 367633
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D65471
llvm-svn: 367347
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change reverts most of the previous register name generation.
The real problem is that RegisterTuple does not generate asm names.
Added optional operand to RegisterTuple. This way we can simplify
register name access and dramatically reduce the size of static
tables for the backend.
Differential Revision: https://reviews.llvm.org/D64967
llvm-svn: 366598
|
|
|
|
|
|
|
|
| |
This allows to reduce generated AMDGPUGenAsmWriter.inc by ~100Kb.
Differential Revision: https://reviews.llvm.org/D64952
llvm-svn: 366505
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D64885
llvm-svn: 366376
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D64839
llvm-svn: 366283
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D64594
llvm-svn: 365833
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D64584
llvm-svn: 365824
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D64446
llvm-svn: 365563
|
|
|
|
| |
llvm-svn: 365482
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was checking the size of the register with the value of the size,
which happens to be exec. Also fix assuming VCC is 64-bit to fix
wave32.
Also remove some untested handling for physical registers which is
skipped. This doesn't insert the V_CNDMASK_B32 if SCC is the physical
copy source. I'm not sure if this should be trying to handle this
special case instead of dealing with this in copyPhysReg.
llvm-svn: 364761
|
|
|
|
| |
llvm-svn: 364473
|
|
|
|
| |
llvm-svn: 364215
|
|
|
|
|
|
| |
Try to fail for scc, since I don't think that should ever be produced.
llvm-svn: 364199
|
|
|
|
|
|
|
|
|
| |
Avoids using a plain unsigned for registers throughoug codegen.
Doesn't attempt to change every register use, just something a little
more than the set needed to build after changing the return type of
MachineOperand::getReg().
llvm-svn: 364191
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: arsenm
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, rovka, kristof.beyls, dstuttard, tpr, t-tye, hiraditya, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60640
llvm-svn: 363576
|
|
|
|
|
|
|
|
|
| |
This is cpp source part of wave32 support, excluding overriden
getRegClass().
Differential Revision: https://reviews.llvm.org/D63351
llvm-svn: 363513
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since the beginning, the offset of a frame index has been consistently
interpreted backwards. It was treating it as an offset from the
scratch wave offset register as a frame register. The correct
interpretation is the offset from the SP on entry to the function,
before the prolog. Frame index elimination then should select either
SP or another register as an FP.
Treat the scratch wave offset on kernel entry as the pre-incremented
SP. Rely more heavily on the standard hasFP and frame pointer
elimination logic, and clean up the private reservation code. This
saves a copy in most callee functions.
The kernel prolog emission code is still kind of a mess relying on
checking the uses of physical registers, which I would prefer to
eliminate.
Currently selection directly emits MUBUF instructions, which require
using a reference to some register. Use the register chosen for SP,
and then ignore this later. This should probably be cleaned up to use
pseudos that don't refer to any specific base register until frame
index elimination.
Add a workaround for shaders using large numbers of SGPRs. I'm not
sure these cases were ever working correctly, since as far as I can
tell the logic for figuring out which SGPR is the scratch wave offset
doesn't match up with the shader input initialization in the shader
programming guide.
llvm-svn: 362661
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is something of a workaround, and the state of stack realignment
controls is kind of a mess. Ideally, we would be able to specify the
stack is infinitely aligned on entry to a kernel.
TargetFrameLowering provides multiple controls which apply at
different points. The StackRealignable field is used during
SelectionDAG, and for some reason distinct from this
hook. StackAlignment is a single field not dependent on the
function. It would probably be better to make that dependent on the
calling convention, and the maximum value for kernels.
Currently this doesn't really change anything, since the frame
lowering mostly does its own thing. This helps avoid regressions in a
future change which will rely more heavily on hasFP.
llvm-svn: 362447
|
|
|
|
|
|
|
|
|
|
| |
See bug 39292: https://bugs.llvm.org/show_bug.cgi?id=39292
Reviewers: rampitec, arsenm
Differential Revision: https://reviews.llvm.org/D62660
llvm-svn: 362400
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D61330
llvm-svn: 359621
|
|
|
|
|
|
| |
Differential Revision: https://reviews.llvm.org/D61045
llvm-svn: 359117
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change incorporates an effort by Connor Abbot to change how we deal
with WWM operations potentially trashing valid values in inactive lanes.
Previously, the SIFixWWMLiveness pass would work out which registers
were being trashed within WWM regions, and ensure that the register
allocator did not have any values it was depending on resident in those
registers if the WWM section would trash them. This worked perfectly
well, but would cause sometimes severe register pressure when the WWM
section resided before divergent control flow (or at least that is where
I mostly observed it).
This fix instead runs through the WWM sections and pre allocates some
registers for WWM. It then reserves these registers so that the register
allocator cannot use them. This results in a significant register
saving on some WWM shaders I'm working with (130 -> 104 VGPRs, with just
this change!).
Differential Revision: https://reviews.llvm.org/D59295
llvm-svn: 357400
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reapplies r356149, using the correct overload of findUnusedReg
which passes the current iterator.
This worked most of the time, because the scavenger iterator was moved
at the end of the frame index loop in PEI. This would fail if the
spill was the first instruction. This was further hidden by the fact
that the scavenger wasn't passed in for normal frame index
elimination.
llvm-svn: 357098
|
|
|
|
|
|
|
| |
Another test is needed for the case where the scavenge fail, but
there's another issue with that which needs an additional fix.
llvm-svn: 357093
|
|
|
|
|
|
|
|
| |
This reverts r356149.
This is crashing on rocBLAS.
llvm-svn: 356958
|
|
|
|
|
|
|
|
|
|
| |
They are not used by anything yet, but a subsequent commit will start
using them for image ops that return 5 dwords.
Differential Revision: https://reviews.llvm.org/D58903
Change-Id: I63e1904081e39a6d66e4eb96d51df25ad399d271
llvm-svn: 356735
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Added support for dwordx3 for most load/store types, but not DS, and not
intrinsics yet.
SI (gfx6) does not have dwordx3 instructions, so they are not enabled
there.
Some of this patch is from Matt Arsenault, also of AMD.
Differential Revision: https://reviews.llvm.org/D58902
Change-Id: I913ef54f1433a7149da8d72f4af54dbb13436bd9
llvm-svn: 356659
|
|
|
|
|
|
|
|
|
|
|
|
| |
private_base, private_limit, pops_exiting_wave_id
See bug 39297: https://bugs.llvm.org/show_bug.cgi?id=39297
Reviewers: artem.tamazov, arsenm, rampitec
Differential Revision: https://reviews.llvm.org/D59290
llvm-svn: 356561
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Allow the clamp modifier on vop3 int arithmetic instructions in assembly
and disassembly.
This involved adding a clamp operand to the affected instructions in MIR
and MC, and thus having to fix up several places in codegen and MIR
tests.
Differential Revision: https://reviews.llvm.org/D59267
Change-Id: Ic7775105f02a985b668fa658a0cd7837846a534e
llvm-svn: 356399
|