diff options
Diffstat (limited to 'llvm/lib/Target')
| -rw-r--r-- | llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.h | 5 | ||||
| -rw-r--r-- | llvm/lib/Target/SystemZ/SystemZAsmPrinter.cpp | 15 | ||||
| -rw-r--r-- | llvm/lib/Target/SystemZ/SystemZCallingConv.td | 6 | ||||
| -rw-r--r-- | llvm/lib/Target/SystemZ/SystemZISelLowering.cpp | 146 | ||||
| -rw-r--r-- | llvm/lib/Target/SystemZ/SystemZISelLowering.h | 8 | ||||
| -rw-r--r-- | llvm/lib/Target/SystemZ/SystemZInstrFormats.td | 3 | ||||
| -rw-r--r-- | llvm/lib/Target/SystemZ/SystemZInstrVector.td | 49 | ||||
| -rw-r--r-- | llvm/lib/Target/SystemZ/SystemZOperators.td | 19 |
8 files changed, 231 insertions, 20 deletions
diff --git a/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.h b/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.h index 4c0661608be..36ea750ec8d 100644 --- a/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.h +++ b/llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.h @@ -71,6 +71,11 @@ inline unsigned getRegAsGR32(unsigned Reg) { inline unsigned getRegAsGRH32(unsigned Reg) { return GRH32Regs[getFirstReg(Reg)]; } + +// Return the given register as a VR128. +inline unsigned getRegAsVR128(unsigned Reg) { + return VR128Regs[getFirstReg(Reg)]; +} } // end namespace SystemZMC MCCodeEmitter *createSystemZMCCodeEmitter(const MCInstrInfo &MCII, diff --git a/llvm/lib/Target/SystemZ/SystemZAsmPrinter.cpp b/llvm/lib/Target/SystemZ/SystemZAsmPrinter.cpp index 5f46e6a6313..026a75f2140 100644 --- a/llvm/lib/Target/SystemZ/SystemZAsmPrinter.cpp +++ b/llvm/lib/Target/SystemZ/SystemZAsmPrinter.cpp @@ -158,6 +158,21 @@ void SystemZAsmPrinter::EmitInstruction(const MachineInstr *MI) { .addReg(SystemZMC::getRegAsGR64(MI->getOperand(2).getReg())); break; + case SystemZ::LFER: + LoweredMI = MCInstBuilder(SystemZ::VLGVF) + .addReg(SystemZMC::getRegAsGR64(MI->getOperand(0).getReg())) + .addReg(SystemZMC::getRegAsVR128(MI->getOperand(1).getReg())) + .addReg(0).addImm(0); + break; + + case SystemZ::LEFR: + LoweredMI = MCInstBuilder(SystemZ::VLVGF) + .addReg(SystemZMC::getRegAsVR128(MI->getOperand(0).getReg())) + .addReg(SystemZMC::getRegAsVR128(MI->getOperand(0).getReg())) + .addReg(MI->getOperand(1).getReg()) + .addReg(0).addImm(0); + break; + #define LOWER_LOW(NAME) \ case SystemZ::NAME##64: LoweredMI = lowerRILow(MI, SystemZ::NAME); break diff --git a/llvm/lib/Target/SystemZ/SystemZCallingConv.td b/llvm/lib/Target/SystemZ/SystemZCallingConv.td index 360d348af3a..a2f996e60df 100644 --- a/llvm/lib/Target/SystemZ/SystemZCallingConv.td +++ b/llvm/lib/Target/SystemZ/SystemZCallingConv.td @@ -44,7 +44,7 @@ def RetCC_SystemZ : CallingConv<[ // Similarly for vectors, with V24 being the ABI-compliant choice. CCIfSubtarget<"hasVector()", - CCIfType<[v16i8, v8i16, v4i32, v2i64, v2f64], + CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToReg<[V24, V26, V28, V30, V25, V27, V29, V31]>>> // ABI-compliant code returns long double by reference, but that conversion @@ -76,13 +76,13 @@ def CC_SystemZ : CallingConv<[ // The first 8 named vector arguments are passed in V24-V31. CCIfSubtarget<"hasVector()", - CCIfType<[v16i8, v8i16, v4i32, v2i64, v2f64], + CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCIfFixed<CCAssignToReg<[V24, V26, V28, V30, V25, V27, V29, V31]>>>>, // Other vector arguments are passed in 8-byte-aligned 16-byte stack slots. CCIfSubtarget<"hasVector()", - CCIfType<[v16i8, v8i16, v4i32, v2i64, v2f64], + CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 8>>>, // Other arguments are passed in 8-byte-aligned 8-byte stack slots. diff --git a/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp b/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp index 5f547439c9a..391cb8c6fc9 100644 --- a/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp +++ b/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp @@ -101,6 +101,7 @@ SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &tm, addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); + addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); } @@ -275,7 +276,8 @@ SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &tm, if (isTypeLegal(VT)) { // These operations are legal for anything that can be stored in a // vector register, even if there is no native support for the format - // as such. + // as such. In particular, we can do these for v4f32 even though there + // are no specific instructions for that format. setOperationAction(ISD::LOAD, VT, Legal); setOperationAction(ISD::STORE, VT, Legal); setOperationAction(ISD::VSELECT, VT, Legal); @@ -365,11 +367,14 @@ SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &tm, // Handle floating-point vector types. if (Subtarget.hasVector()) { // Scalar-to-vector conversion is just a subreg. + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); // Some insertions and extractions can be done directly but others // need to go via integers. + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); // These operations have direct equivalents. @@ -407,8 +412,10 @@ SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &tm, // We have 64-bit FPR<->GPR moves, but need special handling for // 32-bit forms. - setOperationAction(ISD::BITCAST, MVT::i32, Custom); - setOperationAction(ISD::BITCAST, MVT::f32, Custom); + if (!Subtarget.hasVector()) { + setOperationAction(ISD::BITCAST, MVT::i32, Custom); + setOperationAction(ISD::BITCAST, MVT::f32, Custom); + } // VASTART and VACOPY need to deal with the SystemZ-specific varargs // structure, but VAEND is a no-op. @@ -420,6 +427,7 @@ SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &tm, setTargetDAGCombine(ISD::SIGN_EXTEND); setTargetDAGCombine(ISD::STORE); setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); + setTargetDAGCombine(ISD::FP_ROUND); // Handle intrinsics. setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); @@ -855,6 +863,7 @@ LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: + case MVT::v4f32: case MVT::v2f64: RC = &SystemZ::VR128BitRegClass; break; @@ -1977,6 +1986,33 @@ static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, return 0; } +// Return a v2f64 that contains the extended form of elements Start and Start+1 +// of v4f32 value Op. +static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, SDLoc DL, + SDValue Op) { + int Mask[] = { Start, -1, Start + 1, -1 }; + Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); + return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); +} + +// Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, +// producing a result of type VT. +static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, SDLoc DL, + EVT VT, SDValue CmpOp0, SDValue CmpOp1) { + // There is no hardware support for v4f32, so extend the vector into + // two v2f64s and compare those. + if (CmpOp0.getValueType() == MVT::v4f32) { + SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); + SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); + SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); + SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); + SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); + SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); + return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); + } + return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); +} + // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing // an integer mask of type VT. static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT, @@ -1991,8 +2027,8 @@ static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT, Invert = true; case ISD::SETO: { assert(IsFP && "Unexpected integer comparison"); - SDValue LT = DAG.getNode(SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); - SDValue GE = DAG.getNode(SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); + SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); + SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); break; } @@ -2002,8 +2038,8 @@ static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT, Invert = true; case ISD::SETONE: { assert(IsFP && "Unexpected integer comparison"); - SDValue LT = DAG.getNode(SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); - SDValue GT = DAG.getNode(SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); + SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); + SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); break; } @@ -2013,11 +2049,11 @@ static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT, // there are no cases where both work. default: if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) - Cmp = DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); + Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); else { CC = ISD::getSetCCSwappedOperands(CC); if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) - Cmp = DAG.getNode(Opcode, DL, VT, CmpOp1, CmpOp0); + Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); else llvm_unreachable("Unhandled comparison"); } @@ -3621,6 +3657,31 @@ static SDValue buildVector(SelectionDAG &DAG, SDLoc DL, EVT VT, if (VT == MVT::v2f64) return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); + // Build v4f32 values directly from the FPRs: + // + // <Axxx> <Bxxx> <Cxxxx> <Dxxx> + // V V VMRHF + // <ABxx> <CDxx> + // V VMRHG + // <ABCD> + if (VT == MVT::v4f32) { + SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); + SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); + // Avoid unnecessary undefs by reusing the other operand. + if (Op01.getOpcode() == ISD::UNDEF) + Op01 = Op23; + else if (Op23.getOpcode() == ISD::UNDEF) + Op23 = Op01; + // Merging identical replications is a no-op. + if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) + return Op01; + Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); + Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); + SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, + DL, MVT::v2i64, Op01, Op23); + return DAG.getNode(ISD::BITCAST, DL, VT, Op); + } + // Collect the constant terms. SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); @@ -3796,10 +3857,11 @@ SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, SDValue Op2 = Op.getOperand(2); EVT VT = Op.getValueType(); - // Insertions into constant indices can be done using VPDI. However, - // if the inserted value is a bitcast or a constant then it's better - // to use GPRs, as below. - if (Op1.getOpcode() != ISD::BITCAST && + // Insertions into constant indices of a v2f64 can be done using VPDI. + // However, if the inserted value is a bitcast or a constant then it's + // better to use GPRs, as below. + if (VT == MVT::v2f64 && + Op1.getOpcode() != ISD::BITCAST && Op1.getOpcode() != ISD::ConstantFP && Op2.getOpcode() == ISD::Constant) { uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); @@ -4065,6 +4127,8 @@ const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { OPCODE(VFCMPE); OPCODE(VFCMPH); OPCODE(VFCMPHE); + OPCODE(VEXTEND); + OPCODE(VROUND); OPCODE(ATOMIC_SWAPW); OPCODE(ATOMIC_LOADW_ADD); OPCODE(ATOMIC_LOADW_SUB); @@ -4265,6 +4329,19 @@ SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, } } } + // (z_merge_high 0, 0) -> 0. This is mostly useful for using VLLEZF + // for v4f32. + if (Opcode == SystemZISD::MERGE_HIGH) { + SDValue Op0 = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + if (Op0 == Op1) { + if (Op0.getOpcode() == ISD::BITCAST) + Op0 = Op0.getOperand(0); + if (Op0.getOpcode() == SystemZISD::BYTE_MASK && + cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) + return Op1; + } + } // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better // for the extraction to be done on a vMiN value, so that we can use VSTE. // If X has wider elements then convert it to: @@ -4299,6 +4376,49 @@ SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, N->getOperand(0) == N->getOperand(1)) return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), N->getOperand(0)); + // (fround (extract_vector_elt X 0)) + // (fround (extract_vector_elt X 1)) -> + // (extract_vector_elt (VROUND X) 0) + // (extract_vector_elt (VROUND X) 1) + // + // This is a special case since the target doesn't really support v2f32s. + if (Opcode == ISD::FP_ROUND) { + SDValue Op0 = N->getOperand(0); + if (N->getValueType(0) == MVT::f32 && + Op0.hasOneUse() && + Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && + Op0.getOperand(0).getValueType() == MVT::v2f64 && + Op0.getOperand(1).getOpcode() == ISD::Constant && + cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { + SDValue Vec = Op0.getOperand(0); + for (auto *U : Vec->uses()) { + if (U != Op0.getNode() && + U->hasOneUse() && + U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && + U->getOperand(0) == Vec && + U->getOperand(1).getOpcode() == ISD::Constant && + cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { + SDValue OtherRound = SDValue(*U->use_begin(), 0); + if (OtherRound.getOpcode() == ISD::FP_ROUND && + OtherRound.getOperand(0) == SDValue(U, 0) && + OtherRound.getValueType() == MVT::f32) { + SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), + MVT::v4f32, Vec); + DCI.AddToWorklist(VRound.getNode()); + SDValue Extract1 = + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, + VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); + DCI.AddToWorklist(Extract1.getNode()); + DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); + SDValue Extract0 = + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, + VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); + return Extract0; + } + } + } + } + } return SDValue(); } diff --git a/llvm/lib/Target/SystemZ/SystemZISelLowering.h b/llvm/lib/Target/SystemZ/SystemZISelLowering.h index 8319c01fc5e..24a3f4bb5d4 100644 --- a/llvm/lib/Target/SystemZ/SystemZISelLowering.h +++ b/llvm/lib/Target/SystemZ/SystemZISelLowering.h @@ -226,6 +226,14 @@ enum { VFCMPH, VFCMPHE, + // Extend the even f32 elements of vector operand 0 to produce a vector + // of f64 elements. + VEXTEND, + + // Round the f64 elements of vector operand 0 to f32s and store them in the + // even elements of the result. + VROUND, + // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or // ATOMIC_LOAD_<op>. // diff --git a/llvm/lib/Target/SystemZ/SystemZInstrFormats.td b/llvm/lib/Target/SystemZ/SystemZInstrFormats.td index d7bfc12b938..dc9dfa801fd 100644 --- a/llvm/lib/Target/SystemZ/SystemZInstrFormats.td +++ b/llvm/lib/Target/SystemZ/SystemZInstrFormats.td @@ -2398,6 +2398,9 @@ class Alias<int size, dag outs, dag ins, list<dag> pattern> let isCodeGenOnly = 1; } +class UnaryAliasVRS<RegisterOperand cls1, RegisterOperand cls2> + : Alias<6, (outs cls1:$src1), (ins cls2:$src2), []>; + // An alias of a BinaryRI, but with different register sizes. class BinaryAliasRI<SDPatternOperator operator, RegisterOperand cls, Immediate imm> diff --git a/llvm/lib/Target/SystemZ/SystemZInstrVector.td b/llvm/lib/Target/SystemZ/SystemZInstrVector.td index 546974aa5d8..b6c8042b3c8 100644 --- a/llvm/lib/Target/SystemZ/SystemZInstrVector.td +++ b/llvm/lib/Target/SystemZ/SystemZInstrVector.td @@ -118,6 +118,8 @@ let Predicates = [FeatureVector] in { def VLREPH : UnaryVRX<"vlreph", 0xE705, z_replicate_loadi16, v128h, 2, 1>; def VLREPF : UnaryVRX<"vlrepf", 0xE705, z_replicate_loadi32, v128f, 4, 2>; def VLREPG : UnaryVRX<"vlrepg", 0xE705, z_replicate_loadi64, v128g, 8, 3>; + def : Pat<(v4f32 (z_replicate_loadf32 bdxaddr12only:$addr)), + (VLREPF bdxaddr12only:$addr)>; def : Pat<(v2f64 (z_replicate_loadf64 bdxaddr12only:$addr)), (VLREPG bdxaddr12only:$addr)>; @@ -126,6 +128,8 @@ let Predicates = [FeatureVector] in { def VLLEZH : UnaryVRX<"vllezh", 0xE704, z_vllezi16, v128h, 2, 1>; def VLLEZF : UnaryVRX<"vllezf", 0xE704, z_vllezi32, v128f, 4, 2>; def VLLEZG : UnaryVRX<"vllezg", 0xE704, z_vllezi64, v128g, 8, 3>; + def : Pat<(v4f32 (z_vllezf32 bdxaddr12only:$addr)), + (VLLEZF bdxaddr12only:$addr)>; def : Pat<(v2f64 (z_vllezf64 bdxaddr12only:$addr)), (VLLEZG bdxaddr12only:$addr)>; @@ -134,6 +138,8 @@ let Predicates = [FeatureVector] in { def VLEH : TernaryVRX<"vleh", 0xE701, z_vlei16, v128h, v128h, 2, imm32zx3>; def VLEF : TernaryVRX<"vlef", 0xE703, z_vlei32, v128f, v128f, 4, imm32zx2>; def VLEG : TernaryVRX<"vleg", 0xE702, z_vlei64, v128g, v128g, 8, imm32zx1>; + def : Pat<(z_vlef32 (v4f32 VR128:$val), bdxaddr12only:$addr, imm32zx2:$index), + (VLEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>; def : Pat<(z_vlef64 (v2f64 VR128:$val), bdxaddr12only:$addr, imm32zx1:$index), (VLEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>; @@ -158,6 +164,7 @@ defm : ReplicatePeephole<VLREPB, v16i8, anyextloadi8, i32>; defm : ReplicatePeephole<VLREPH, v8i16, anyextloadi16, i32>; defm : ReplicatePeephole<VLREPF, v4i32, load, i32>; defm : ReplicatePeephole<VLREPG, v2i64, load, i64>; +defm : ReplicatePeephole<VLREPF, v4f32, load, f32>; defm : ReplicatePeephole<VLREPG, v2f64, load, f64>; //===----------------------------------------------------------------------===// @@ -179,6 +186,9 @@ let Predicates = [FeatureVector] in { def VSTEH : StoreBinaryVRX<"vsteh", 0xE709, z_vstei16, v128h, 2, imm32zx3>; def VSTEF : StoreBinaryVRX<"vstef", 0xE70B, z_vstei32, v128f, 4, imm32zx2>; def VSTEG : StoreBinaryVRX<"vsteg", 0xE70A, z_vstei64, v128g, 8, imm32zx1>; + def : Pat<(z_vstef32 (v4f32 VR128:$val), bdxaddr12only:$addr, + imm32zx2:$index), + (VSTEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>; def : Pat<(z_vstef64 (v2f64 VR128:$val), bdxaddr12only:$addr, imm32zx1:$index), (VSTEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>; @@ -198,6 +208,7 @@ let Predicates = [FeatureVector] in { def VMRHH : BinaryVRRc<"vmrhh", 0xE761, z_merge_high, v128h, v128h, 1>; def VMRHF : BinaryVRRc<"vmrhf", 0xE761, z_merge_high, v128f, v128f, 2>; def VMRHG : BinaryVRRc<"vmrhg", 0xE761, z_merge_high, v128g, v128g, 3>; + def : BinaryRRWithType<VMRHF, VR128, z_merge_high, v4f32>; def : BinaryRRWithType<VMRHG, VR128, z_merge_high, v2f64>; // Merge low. @@ -205,6 +216,7 @@ let Predicates = [FeatureVector] in { def VMRLH : BinaryVRRc<"vmrlh", 0xE760, z_merge_low, v128h, v128h, 1>; def VMRLF : BinaryVRRc<"vmrlf", 0xE760, z_merge_low, v128f, v128f, 2>; def VMRLG : BinaryVRRc<"vmrlg", 0xE760, z_merge_low, v128g, v128g, 3>; + def : BinaryRRWithType<VMRLF, VR128, z_merge_low, v4f32>; def : BinaryRRWithType<VMRLG, VR128, z_merge_low, v2f64>; // Permute. @@ -218,6 +230,8 @@ let Predicates = [FeatureVector] in { def VREPH : BinaryVRIc<"vreph", 0xE74D, z_splat, v128h, v128h, 1>; def VREPF : BinaryVRIc<"vrepf", 0xE74D, z_splat, v128f, v128f, 2>; def VREPG : BinaryVRIc<"vrepg", 0xE74D, z_splat, v128g, v128g, 3>; + def : Pat<(v4f32 (z_splat VR128:$vec, imm32zx16:$index)), + (VREPF VR128:$vec, imm32zx16:$index)>; def : Pat<(v2f64 (z_splat VR128:$vec, imm32zx16:$index)), (VREPG VR128:$vec, imm32zx16:$index)>; @@ -301,6 +315,7 @@ defm : GenericVectorOps<v16i8, v16i8>; defm : GenericVectorOps<v8i16, v8i16>; defm : GenericVectorOps<v4i32, v4i32>; defm : GenericVectorOps<v2i64, v2i64>; +defm : GenericVectorOps<v4f32, v4i32>; defm : GenericVectorOps<v2f64, v2i64>; //===----------------------------------------------------------------------===// @@ -797,12 +812,13 @@ let Predicates = [FeatureVector] in { defm : VectorRounding<VFIDB, v128db>; // Load lengthened. - def VLDEB : UnaryVRRa<"vldeb", 0xE7C4, null_frag, v128db, v128eb, 2, 0>; + def VLDEB : UnaryVRRa<"vldeb", 0xE7C4, z_vextend, v128db, v128eb, 2, 0>; def WLDEB : UnaryVRRa<"wldeb", 0xE7C4, null_frag, v64db, v32eb, 2, 8>; // Load rounded, def VLEDB : TernaryVRRa<"vledb", 0xE7C5, null_frag, v128eb, v128db, 3, 0>; def WLEDB : TernaryVRRa<"wledb", 0xE7C5, null_frag, v32eb, v64db, 3, 8>; + def : Pat<(v4f32 (z_vround (v2f64 VR128:$src))), (VLEDB VR128:$src, 0, 0)>; // Multiply. def VFMDB : BinaryVRRc<"vfmdb", 0xE7E7, fmul, v128db, v128db, 3, 0>; @@ -882,27 +898,38 @@ let Predicates = [FeatureVector] in { def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>; +def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>; +def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>; +def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>; +def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>; def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>; +def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>; +def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>; +def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>; +def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>; +def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>; + def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>; def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>; +def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>; //===----------------------------------------------------------------------===// // Replicating scalars @@ -926,6 +953,14 @@ def : Pat<(v2i64 (z_replicate GR64:$scalar)), // Floating-point insertion and extraction //===----------------------------------------------------------------------===// +// Moving 32-bit values between GPRs and FPRs can be done using VLVGF +// and VLGVF. +def LEFR : UnaryAliasVRS<VR32, GR32>; +def LFER : UnaryAliasVRS<GR64, VR32>; +def : Pat<(f32 (bitconvert (i32 GR32:$src))), (LEFR GR32:$src)>; +def : Pat<(i32 (bitconvert (f32 VR32:$src))), + (EXTRACT_SUBREG (LFER VR32:$src), subreg_l32)>; + // Floating-point values are stored in element 0 of the corresponding // vector register. Scalar to vector conversion is just a subreg and // scalar replication can just replicate element 0 of the vector register. @@ -937,6 +972,7 @@ multiclass ScalarToVectorFP<Instruction vrep, ValueType vt, RegisterOperand cls, (vrep (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar, subreg), 0)>; } +defm : ScalarToVectorFP<VREPF, v4f32, FP32, subreg_r32>; defm : ScalarToVectorFP<VREPG, v2f64, FP64, subreg_r64>; // Match v2f64 insertions. The AddedComplexity counters the 3 added by @@ -951,11 +987,16 @@ let AddedComplexity = 4 in { subreg_r64), 0)>; } -// We extract f64 element X by replicating (for elements other than 0) -// and then taking a high subreg. The AddedComplexity counters the 3 -// added by TableGen for the base register operand in VLGV-based integer +// We extract floating-point element X by replicating (for elements other +// than 0) and then taking a high subreg. The AddedComplexity counters the +// 3 added by TableGen for the base register operand in VLGV-based integer // extractions and ensures that this version is strictly better. let AddedComplexity = 4 in { + def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), 0)), + (EXTRACT_SUBREG VR128:$vec, subreg_r32)>; + def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), imm32zx2:$index)), + (EXTRACT_SUBREG (VREPF VR128:$vec, imm32zx2:$index), subreg_r32)>; + def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), 0)), (EXTRACT_SUBREG VR128:$vec, subreg_r64)>; def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), imm32zx1:$index)), diff --git a/llvm/lib/Target/SystemZ/SystemZOperators.td b/llvm/lib/Target/SystemZ/SystemZOperators.td index 7cf7d862ffe..63c217413ac 100644 --- a/llvm/lib/Target/SystemZ/SystemZOperators.td +++ b/llvm/lib/Target/SystemZ/SystemZOperators.td @@ -91,6 +91,9 @@ def SDT_ZExtractVectorElt : SDTypeProfile<1, 2, SDTCisVT<2, i32>]>; def SDT_ZReplicate : SDTypeProfile<1, 1, [SDTCisVec<0>]>; +def SDT_ZVecUnaryConv : SDTypeProfile<1, 1, + [SDTCisVec<0>, + SDTCisVec<1>]>; def SDT_ZVecBinary : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0, 1>, @@ -203,6 +206,8 @@ def z_vicmphl : SDNode<"SystemZISD::VICMPHL", SDT_ZVecBinary>; def z_vfcmpe : SDNode<"SystemZISD::VFCMPE", SDT_ZVecBinaryConv>; def z_vfcmph : SDNode<"SystemZISD::VFCMPH", SDT_ZVecBinaryConv>; def z_vfcmphe : SDNode<"SystemZISD::VFCMPHE", SDT_ZVecBinaryConv>; +def z_vextend : SDNode<"SystemZISD::VEXTEND", SDT_ZVecUnaryConv>; +def z_vround : SDNode<"SystemZISD::VROUND", SDT_ZVecUnaryConv>; class AtomicWOp<string name, SDTypeProfile profile = SDT_ZAtomicLoadBinaryW> : SDNode<"SystemZISD::"##name, profile, @@ -508,6 +513,7 @@ def z_replicate_loadi8 : z_replicate_load<i32, anyextloadi8>; def z_replicate_loadi16 : z_replicate_load<i32, anyextloadi16>; def z_replicate_loadi32 : z_replicate_load<i32, load>; def z_replicate_loadi64 : z_replicate_load<i64, load>; +def z_replicate_loadf32 : z_replicate_load<f32, load>; def z_replicate_loadf64 : z_replicate_load<f64, load>; // Load a scalar and insert it into a single element of a vector. @@ -519,6 +525,7 @@ def z_vlei8 : z_vle<i32, anyextloadi8>; def z_vlei16 : z_vle<i32, anyextloadi16>; def z_vlei32 : z_vle<i32, load>; def z_vlei64 : z_vle<i64, load>; +def z_vlef32 : z_vle<f32, load>; def z_vlef64 : z_vle<f64, load>; // Load a scalar and insert it into the low element of the high i64 of a @@ -532,6 +539,17 @@ def z_vllezi16 : z_vllez<i32, anyextloadi16, 3>; def z_vllezi32 : z_vllez<i32, load, 1>; def z_vllezi64 : PatFrag<(ops node:$addr), (z_join_dwords (i64 (load node:$addr)), (i64 0))>; +// We use high merges to form a v4f32 from four f32s. Propagating zero +// into all elements but index 1 gives this expression. +def z_vllezf32 : PatFrag<(ops node:$addr), + (bitconvert + (z_merge_high + (v2i64 (bitconvert + (z_merge_high + (v4f32 (z_vzero)), + (v4f32 (scalar_to_vector + (f32 (load node:$addr))))))), + (v2i64 (z_vzero))))>; def z_vllezf64 : PatFrag<(ops node:$addr), (z_merge_high (scalar_to_vector (f64 (load node:$addr))), @@ -546,6 +564,7 @@ def z_vstei8 : z_vste<i32, truncstorei8>; def z_vstei16 : z_vste<i32, truncstorei16>; def z_vstei32 : z_vste<i32, store>; def z_vstei64 : z_vste<i64, store>; +def z_vstef32 : z_vste<f32, store>; def z_vstef64 : z_vste<f64, store>; // Arithmetic negation on vectors. |

