diff options
Diffstat (limited to 'llvm/lib/CodeGen/SelectionDAG')
-rw-r--r-- | llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp | 161 | ||||
-rw-r--r-- | llvm/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp | 23 | ||||
-rw-r--r-- | llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.h | 4 | ||||
-rw-r--r-- | llvm/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp | 6368 | ||||
-rw-r--r-- | llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp | 54 | ||||
-rw-r--r-- | llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp | 70 | ||||
-rw-r--r-- | llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h | 2 | ||||
-rw-r--r-- | llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp | 2 |
8 files changed, 3557 insertions, 3127 deletions
diff --git a/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp b/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp index 201429fe754..2cf5e753966 100644 --- a/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp +++ b/llvm/lib/CodeGen/SelectionDAG/DAGCombiner.cpp @@ -303,6 +303,8 @@ namespace { SDValue visitEXTRACT_SUBVECTOR(SDNode *N); SDValue visitVECTOR_SHUFFLE(SDNode *N); SDValue visitINSERT_SUBVECTOR(SDNode *N); + SDValue visitMLOAD(SDNode *N); + SDValue visitMSTORE(SDNode *N); SDValue XformToShuffleWithZero(SDNode *N); SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS); @@ -412,6 +414,7 @@ namespace { EVT getSetCCResultType(EVT VT) const { return TLI.getSetCCResultType(*DAG.getContext(), VT); } + int& MLD(); }; } @@ -1351,6 +1354,8 @@ SDValue DAGCombiner::visit(SDNode *N) { case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); + case ISD::MLOAD: return visitMLOAD(N); + case ISD::MSTORE: return visitMSTORE(N); } return SDValue(); } @@ -4771,6 +4776,162 @@ static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); } +SDValue DAGCombiner::visitMSTORE(SDNode *N) { + + if (Level >= AfterLegalizeTypes) + return SDValue(); + + MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N); + SDValue Mask = MST->getMask(); + SDValue Data = MST->getData(); + SDLoc DL(N); + + // If the MSTORE data type requires splitting and the mask is provided by a + // SETCC, then split both nodes and its operands before legalization. This + // prevents the type legalizer from unrolling SETCC into scalar comparisons + // and enables future optimizations (e.g. min/max pattern matching on X86). + if (Mask.getOpcode() == ISD::SETCC) { + + // Check if any splitting is required. + if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) != + TargetLowering::TypeSplitVector) + return SDValue(); + + SDValue MaskLo, MaskHi, Lo, Hi; + std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); + + EVT LoVT, HiVT; + std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MST->getValueType(0)); + + SDValue Chain = MST->getChain(); + SDValue Ptr = MST->getBasePtr(); + + EVT MemoryVT = MST->getMemoryVT(); + unsigned Alignment = MST->getOriginalAlignment(); + + // if Alignment is equal to the vector size, + // take the half of it for the second part + unsigned SecondHalfAlignment = + (Alignment == Data->getValueType(0).getSizeInBits()/8) ? + Alignment/2 : Alignment; + + EVT LoMemVT, HiMemVT; + std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); + + SDValue DataLo, DataHi; + std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL); + + MachineMemOperand *MMO = DAG.getMachineFunction(). + getMachineMemOperand(MST->getPointerInfo(), + MachineMemOperand::MOStore, LoMemVT.getStoreSize(), + Alignment, MST->getAAInfo(), MST->getRanges()); + + Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, MMO); + + unsigned IncrementSize = LoMemVT.getSizeInBits()/8; + Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, + DAG.getConstant(IncrementSize, Ptr.getValueType())); + + MMO = DAG.getMachineFunction(). + getMachineMemOperand(MST->getPointerInfo(), + MachineMemOperand::MOStore, HiMemVT.getStoreSize(), + SecondHalfAlignment, MST->getAAInfo(), + MST->getRanges()); + + Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, MMO); + + AddToWorklist(Lo.getNode()); + AddToWorklist(Hi.getNode()); + + return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); + } + return SDValue(); +} + +SDValue DAGCombiner::visitMLOAD(SDNode *N) { + + if (Level >= AfterLegalizeTypes) + return SDValue(); + + MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N); + SDValue Mask = MLD->getMask(); + SDLoc DL(N); + + // If the MLOAD result requires splitting and the mask is provided by a + // SETCC, then split both nodes and its operands before legalization. This + // prevents the type legalizer from unrolling SETCC into scalar comparisons + // and enables future optimizations (e.g. min/max pattern matching on X86). + + if (Mask.getOpcode() == ISD::SETCC) { + EVT VT = N->getValueType(0); + + // Check if any splitting is required. + if (TLI.getTypeAction(*DAG.getContext(), VT) != + TargetLowering::TypeSplitVector) + return SDValue(); + + SDValue MaskLo, MaskHi, Lo, Hi; + std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG); + + SDValue Src0 = MLD->getSrc0(); + SDValue Src0Lo, Src0Hi; + std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL); + + EVT LoVT, HiVT; + std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0)); + + SDValue Chain = MLD->getChain(); + SDValue Ptr = MLD->getBasePtr(); + EVT MemoryVT = MLD->getMemoryVT(); + unsigned Alignment = MLD->getOriginalAlignment(); + + // if Alignment is equal to the vector size, + // take the half of it for the second part + unsigned SecondHalfAlignment = + (Alignment == MLD->getValueType(0).getSizeInBits()/8) ? + Alignment/2 : Alignment; + + EVT LoMemVT, HiMemVT; + std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); + + MachineMemOperand *MMO = DAG.getMachineFunction(). + getMachineMemOperand(MLD->getPointerInfo(), + MachineMemOperand::MOLoad, LoMemVT.getStoreSize(), + Alignment, MLD->getAAInfo(), MLD->getRanges()); + + Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, MMO); + + unsigned IncrementSize = LoMemVT.getSizeInBits()/8; + Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, + DAG.getConstant(IncrementSize, Ptr.getValueType())); + + MMO = DAG.getMachineFunction(). + getMachineMemOperand(MLD->getPointerInfo(), + MachineMemOperand::MOLoad, HiMemVT.getStoreSize(), + SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges()); + + Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, MMO); + + AddToWorklist(Lo.getNode()); + AddToWorklist(Hi.getNode()); + + // Build a factor node to remember that this load is independent of the + // other one. + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1), + Hi.getValue(1)); + + // Legalized the chain result - switch anything that used the old chain to + // use the new one. + DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain); + + SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); + + SDValue RetOps[] = { LoadRes, Chain }; + return DAG.getMergeValues(RetOps, DL); + } + return SDValue(); +} + SDValue DAGCombiner::visitVSELECT(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); diff --git a/llvm/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp b/llvm/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp index b73bb0a897b..52c2d1be430 100644 --- a/llvm/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp +++ b/llvm/lib/CodeGen/SelectionDAG/LegalizeIntegerTypes.cpp @@ -825,6 +825,10 @@ bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) { case ISD::SINT_TO_FP: Res = PromoteIntOp_SINT_TO_FP(N); break; case ISD::STORE: Res = PromoteIntOp_STORE(cast<StoreSDNode>(N), OpNo); break; + case ISD::MSTORE: Res = PromoteIntOp_MSTORE(cast<MaskedStoreSDNode>(N), + OpNo); break; + case ISD::MLOAD: Res = PromoteIntOp_MLOAD(cast<MaskedLoadSDNode>(N), + OpNo); break; case ISD::TRUNCATE: Res = PromoteIntOp_TRUNCATE(N); break; case ISD::FP16_TO_FP: case ISD::UINT_TO_FP: Res = PromoteIntOp_UINT_TO_FP(N); break; @@ -1091,6 +1095,25 @@ SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){ N->getMemoryVT(), N->getMemOperand()); } +SDValue DAGTypeLegalizer::PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo){ + + assert(OpNo == 2 && "Only know how to promote the mask!"); + EVT DataVT = N->getOperand(3).getValueType(); + SDValue Mask = PromoteTargetBoolean(N->getOperand(OpNo), DataVT); + SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end()); + NewOps[OpNo] = Mask; + return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); +} + +SDValue DAGTypeLegalizer::PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo){ + assert(OpNo == 2 && "Only know how to promote the mask!"); + EVT DataVT = N->getValueType(0); + SDValue Mask = PromoteTargetBoolean(N->getOperand(OpNo), DataVT); + SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end()); + NewOps[OpNo] = Mask; + return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0); +} + SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) { SDValue Op = GetPromotedInteger(N->getOperand(0)); return DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), Op); diff --git a/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.h b/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.h index 30f412ba317..805b0fc0463 100644 --- a/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.h +++ b/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.h @@ -285,6 +285,8 @@ private: SDValue PromoteIntOp_TRUNCATE(SDNode *N); SDValue PromoteIntOp_UINT_TO_FP(SDNode *N); SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N); + SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo); + SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo); void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code); @@ -578,6 +580,7 @@ private: void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi); + void SplitVecRes_MLOAD(MaskedLoadSDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi); @@ -594,6 +597,7 @@ private: SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N); SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N); SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo); + SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo); SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N); SDValue SplitVecOp_TRUNCATE(SDNode *N); SDValue SplitVecOp_VSETCC(SDNode *N); diff --git a/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp b/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp index 27f63d27823..cb0db5c76a2 100644 --- a/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp +++ b/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorTypes.cpp @@ -1,3127 +1,3241 @@ -//===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file performs vector type splitting and scalarization for LegalizeTypes. -// Scalarization is the act of changing a computation in an illegal one-element -// vector type to be a computation in its scalar element type. For example, -// implementing <1 x f32> arithmetic in a scalar f32 register. This is needed -// as a base case when scalarizing vector arithmetic like <4 x f32>, which -// eventually decomposes to scalars if the target doesn't support v4f32 or v2f32 -// types. -// Splitting is the act of changing a computation in an invalid vector type to -// be a computation in two vectors of half the size. For example, implementing -// <128 x f32> operations in terms of two <64 x f32> operations. -// -//===----------------------------------------------------------------------===// - -#include "LegalizeTypes.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/raw_ostream.h" -using namespace llvm; - -#define DEBUG_TYPE "legalize-types" - -//===----------------------------------------------------------------------===// -// Result Vector Scalarization: <1 x ty> -> ty. -//===----------------------------------------------------------------------===// - -void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) { - DEBUG(dbgs() << "Scalarize node result " << ResNo << ": "; - N->dump(&DAG); - dbgs() << "\n"); - SDValue R = SDValue(); - - switch (N->getOpcode()) { - default: -#ifndef NDEBUG - dbgs() << "ScalarizeVectorResult #" << ResNo << ": "; - N->dump(&DAG); - dbgs() << "\n"; -#endif - report_fatal_error("Do not know how to scalarize the result of this " - "operator!\n"); - - case ISD::MERGE_VALUES: R = ScalarizeVecRes_MERGE_VALUES(N, ResNo);break; - case ISD::BITCAST: R = ScalarizeVecRes_BITCAST(N); break; - case ISD::BUILD_VECTOR: R = ScalarizeVecRes_BUILD_VECTOR(N); break; - case ISD::CONVERT_RNDSAT: R = ScalarizeVecRes_CONVERT_RNDSAT(N); break; - case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break; - case ISD::FP_ROUND: R = ScalarizeVecRes_FP_ROUND(N); break; - case ISD::FP_ROUND_INREG: R = ScalarizeVecRes_InregOp(N); break; - case ISD::FPOWI: R = ScalarizeVecRes_FPOWI(N); break; - case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break; - case ISD::LOAD: R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break; - case ISD::SCALAR_TO_VECTOR: R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break; - case ISD::SIGN_EXTEND_INREG: R = ScalarizeVecRes_InregOp(N); break; - case ISD::VSELECT: R = ScalarizeVecRes_VSELECT(N); break; - case ISD::SELECT: R = ScalarizeVecRes_SELECT(N); break; - case ISD::SELECT_CC: R = ScalarizeVecRes_SELECT_CC(N); break; - case ISD::SETCC: R = ScalarizeVecRes_SETCC(N); break; - case ISD::UNDEF: R = ScalarizeVecRes_UNDEF(N); break; - case ISD::VECTOR_SHUFFLE: R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break; - case ISD::ANY_EXTEND: - case ISD::BSWAP: - case ISD::CTLZ: - case ISD::CTLZ_ZERO_UNDEF: - case ISD::CTPOP: - case ISD::CTTZ: - case ISD::CTTZ_ZERO_UNDEF: - case ISD::FABS: - case ISD::FCEIL: - case ISD::FCOS: - case ISD::FEXP: - case ISD::FEXP2: - case ISD::FFLOOR: - case ISD::FLOG: - case ISD::FLOG10: - case ISD::FLOG2: - case ISD::FNEARBYINT: - case ISD::FNEG: - case ISD::FP_EXTEND: - case ISD::FP_TO_SINT: - case ISD::FP_TO_UINT: - case ISD::FRINT: - case ISD::FROUND: - case ISD::FSIN: - case ISD::FSQRT: - case ISD::FTRUNC: - case ISD::SIGN_EXTEND: - case ISD::SINT_TO_FP: - case ISD::TRUNCATE: - case ISD::UINT_TO_FP: - case ISD::ZERO_EXTEND: - R = ScalarizeVecRes_UnaryOp(N); - break; - - case ISD::ADD: - case ISD::AND: - case ISD::FADD: - case ISD::FCOPYSIGN: - case ISD::FDIV: - case ISD::FMUL: - case ISD::FMINNUM: - case ISD::FMAXNUM: - - case ISD::FPOW: - case ISD::FREM: - case ISD::FSUB: - case ISD::MUL: - case ISD::OR: - case ISD::SDIV: - case ISD::SREM: - case ISD::SUB: - case ISD::UDIV: - case ISD::UREM: - case ISD::XOR: - case ISD::SHL: - case ISD::SRA: - case ISD::SRL: - R = ScalarizeVecRes_BinOp(N); - break; - case ISD::FMA: - R = ScalarizeVecRes_TernaryOp(N); - break; - } - - // If R is null, the sub-method took care of registering the result. - if (R.getNode()) - SetScalarizedVector(SDValue(N, ResNo), R); -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) { - SDValue LHS = GetScalarizedVector(N->getOperand(0)); - SDValue RHS = GetScalarizedVector(N->getOperand(1)); - return DAG.getNode(N->getOpcode(), SDLoc(N), - LHS.getValueType(), LHS, RHS); -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_TernaryOp(SDNode *N) { - SDValue Op0 = GetScalarizedVector(N->getOperand(0)); - SDValue Op1 = GetScalarizedVector(N->getOperand(1)); - SDValue Op2 = GetScalarizedVector(N->getOperand(2)); - return DAG.getNode(N->getOpcode(), SDLoc(N), - Op0.getValueType(), Op0, Op1, Op2); -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_MERGE_VALUES(SDNode *N, - unsigned ResNo) { - SDValue Op = DisintegrateMERGE_VALUES(N, ResNo); - return GetScalarizedVector(Op); -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_BITCAST(SDNode *N) { - EVT NewVT = N->getValueType(0).getVectorElementType(); - return DAG.getNode(ISD::BITCAST, SDLoc(N), - NewVT, N->getOperand(0)); -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_BUILD_VECTOR(SDNode *N) { - EVT EltVT = N->getValueType(0).getVectorElementType(); - SDValue InOp = N->getOperand(0); - // The BUILD_VECTOR operands may be of wider element types and - // we may need to truncate them back to the requested return type. - if (EltVT.isInteger()) - return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp); - return InOp; -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) { - EVT NewVT = N->getValueType(0).getVectorElementType(); - SDValue Op0 = GetScalarizedVector(N->getOperand(0)); - return DAG.getConvertRndSat(NewVT, SDLoc(N), - Op0, DAG.getValueType(NewVT), - DAG.getValueType(Op0.getValueType()), - N->getOperand(3), - N->getOperand(4), - cast<CvtRndSatSDNode>(N)->getCvtCode()); -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) { - return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), - N->getValueType(0).getVectorElementType(), - N->getOperand(0), N->getOperand(1)); -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_FP_ROUND(SDNode *N) { - EVT NewVT = N->getValueType(0).getVectorElementType(); - SDValue Op = GetScalarizedVector(N->getOperand(0)); - return DAG.getNode(ISD::FP_ROUND, SDLoc(N), - NewVT, Op, N->getOperand(1)); -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) { - SDValue Op = GetScalarizedVector(N->getOperand(0)); - return DAG.getNode(ISD::FPOWI, SDLoc(N), - Op.getValueType(), Op, N->getOperand(1)); -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) { - // The value to insert may have a wider type than the vector element type, - // so be sure to truncate it to the element type if necessary. - SDValue Op = N->getOperand(1); - EVT EltVT = N->getValueType(0).getVectorElementType(); - if (Op.getValueType() != EltVT) - // FIXME: Can this happen for floating point types? - Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, Op); - return Op; -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) { - assert(N->isUnindexed() && "Indexed vector load?"); - - SDValue Result = DAG.getLoad(ISD::UNINDEXED, - N->getExtensionType(), - N->getValueType(0).getVectorElementType(), - SDLoc(N), - N->getChain(), N->getBasePtr(), - DAG.getUNDEF(N->getBasePtr().getValueType()), - N->getPointerInfo(), - N->getMemoryVT().getVectorElementType(), - N->isVolatile(), N->isNonTemporal(), - N->isInvariant(), N->getOriginalAlignment(), - N->getAAInfo()); - - // Legalized the chain result - switch anything that used the old chain to - // use the new one. - ReplaceValueWith(SDValue(N, 1), Result.getValue(1)); - return Result; -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) { - // Get the dest type - it doesn't always match the input type, e.g. int_to_fp. - EVT DestVT = N->getValueType(0).getVectorElementType(); - SDValue Op = N->getOperand(0); - EVT OpVT = Op.getValueType(); - SDLoc DL(N); - // The result needs scalarizing, but it's not a given that the source does. - // This is a workaround for targets where it's impossible to scalarize the - // result of a conversion, because the source type is legal. - // For instance, this happens on AArch64: v1i1 is illegal but v1i{8,16,32} - // are widened to v8i8, v4i16, and v2i32, which is legal, because v1i64 is - // legal and was not scalarized. - // See the similar logic in ScalarizeVecRes_VSETCC - if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) { - Op = GetScalarizedVector(Op); - } else { - EVT VT = OpVT.getVectorElementType(); - Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op, - DAG.getConstant(0, TLI.getVectorIdxTy())); - } - return DAG.getNode(N->getOpcode(), SDLoc(N), DestVT, Op); -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_InregOp(SDNode *N) { - EVT EltVT = N->getValueType(0).getVectorElementType(); - EVT ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT().getVectorElementType(); - SDValue LHS = GetScalarizedVector(N->getOperand(0)); - return DAG.getNode(N->getOpcode(), SDLoc(N), EltVT, - LHS, DAG.getValueType(ExtVT)); -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) { - // If the operand is wider than the vector element type then it is implicitly - // truncated. Make that explicit here. - EVT EltVT = N->getValueType(0).getVectorElementType(); - SDValue InOp = N->getOperand(0); - if (InOp.getValueType() != EltVT) - return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp); - return InOp; -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_VSELECT(SDNode *N) { - SDValue Cond = GetScalarizedVector(N->getOperand(0)); - SDValue LHS = GetScalarizedVector(N->getOperand(1)); - TargetLowering::BooleanContent ScalarBool = - TLI.getBooleanContents(false, false); - TargetLowering::BooleanContent VecBool = TLI.getBooleanContents(true, false); - - // If integer and float booleans have different contents then we can't - // reliably optimize in all cases. There is a full explanation for this in - // DAGCombiner::visitSELECT() where the same issue affects folding - // (select C, 0, 1) to (xor C, 1). - if (TLI.getBooleanContents(false, false) != - TLI.getBooleanContents(false, true)) { - // At least try the common case where the boolean is generated by a - // comparison. - if (Cond->getOpcode() == ISD::SETCC) { - EVT OpVT = Cond->getOperand(0)->getValueType(0); - ScalarBool = TLI.getBooleanContents(OpVT.getScalarType()); - VecBool = TLI.getBooleanContents(OpVT); - } else - ScalarBool = TargetLowering::UndefinedBooleanContent; - } - - if (ScalarBool != VecBool) { - EVT CondVT = Cond.getValueType(); - switch (ScalarBool) { - case TargetLowering::UndefinedBooleanContent: - break; - case TargetLowering::ZeroOrOneBooleanContent: - assert(VecBool == TargetLowering::UndefinedBooleanContent || - VecBool == TargetLowering::ZeroOrNegativeOneBooleanContent); - // Vector read from all ones, scalar expects a single 1 so mask. - Cond = DAG.getNode(ISD::AND, SDLoc(N), CondVT, - Cond, DAG.getConstant(1, CondVT)); - break; - case TargetLowering::ZeroOrNegativeOneBooleanContent: - assert(VecBool == TargetLowering::UndefinedBooleanContent || - VecBool == TargetLowering::ZeroOrOneBooleanContent); - // Vector reads from a one, scalar from all ones so sign extend. - Cond = DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), CondVT, - Cond, DAG.getValueType(MVT::i1)); - break; - } - } - - return DAG.getSelect(SDLoc(N), - LHS.getValueType(), Cond, LHS, - GetScalarizedVector(N->getOperand(2))); -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) { - SDValue LHS = GetScalarizedVector(N->getOperand(1)); - return DAG.getSelect(SDLoc(N), - LHS.getValueType(), N->getOperand(0), LHS, - GetScalarizedVector(N->getOperand(2))); -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) { - SDValue LHS = GetScalarizedVector(N->getOperand(2)); - return DAG.getNode(ISD::SELECT_CC, SDLoc(N), LHS.getValueType(), - N->getOperand(0), N->getOperand(1), - LHS, GetScalarizedVector(N->getOperand(3)), - N->getOperand(4)); -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_SETCC(SDNode *N) { - assert(N->getValueType(0).isVector() == - N->getOperand(0).getValueType().isVector() && - "Scalar/Vector type mismatch"); - - if (N->getValueType(0).isVector()) return ScalarizeVecRes_VSETCC(N); - - SDValue LHS = GetScalarizedVector(N->getOperand(0)); - SDValue RHS = GetScalarizedVector(N->getOperand(1)); - SDLoc DL(N); - - // Turn it into a scalar SETCC. - return DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, N->getOperand(2)); -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) { - return DAG.getUNDEF(N->getValueType(0).getVectorElementType()); -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) { - // Figure out if the scalar is the LHS or RHS and return it. - SDValue Arg = N->getOperand(2).getOperand(0); - if (Arg.getOpcode() == ISD::UNDEF) - return DAG.getUNDEF(N->getValueType(0).getVectorElementType()); - unsigned Op = !cast<ConstantSDNode>(Arg)->isNullValue(); - return GetScalarizedVector(N->getOperand(Op)); -} - -SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) { - assert(N->getValueType(0).isVector() && - N->getOperand(0).getValueType().isVector() && - "Operand types must be vectors"); - SDValue LHS = N->getOperand(0); - SDValue RHS = N->getOperand(1); - EVT OpVT = LHS.getValueType(); - EVT NVT = N->getValueType(0).getVectorElementType(); - SDLoc DL(N); - - // The result needs scalarizing, but it's not a given that the source does. - if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) { - LHS = GetScalarizedVector(LHS); - RHS = GetScalarizedVector(RHS); - } else { - EVT VT = OpVT.getVectorElementType(); - LHS = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, LHS, - DAG.getConstant(0, TLI.getVectorIdxTy())); - RHS = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, RHS, - DAG.getConstant(0, TLI.getVectorIdxTy())); - } - - // Turn it into a scalar SETCC. - SDValue Res = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, - N->getOperand(2)); - // Vectors may have a different boolean contents to scalars. Promote the - // value appropriately. - ISD::NodeType ExtendCode = - TargetLowering::getExtendForContent(TLI.getBooleanContents(OpVT)); - return DAG.getNode(ExtendCode, DL, NVT, Res); -} - - -//===----------------------------------------------------------------------===// -// Operand Vector Scalarization <1 x ty> -> ty. -//===----------------------------------------------------------------------===// - -bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) { - DEBUG(dbgs() << "Scalarize node operand " << OpNo << ": "; - N->dump(&DAG); - dbgs() << "\n"); - SDValue Res = SDValue(); - - if (!Res.getNode()) { - switch (N->getOpcode()) { - default: -#ifndef NDEBUG - dbgs() << "ScalarizeVectorOperand Op #" << OpNo << ": "; - N->dump(&DAG); - dbgs() << "\n"; -#endif - llvm_unreachable("Do not know how to scalarize this operator's operand!"); - case ISD::BITCAST: - Res = ScalarizeVecOp_BITCAST(N); - break; - case ISD::ANY_EXTEND: - case ISD::ZERO_EXTEND: - case ISD::SIGN_EXTEND: - case ISD::TRUNCATE: - case ISD::FP_TO_SINT: - case ISD::FP_TO_UINT: - case ISD::SINT_TO_FP: - case ISD::UINT_TO_FP: - Res = ScalarizeVecOp_UnaryOp(N); - break; - case ISD::CONCAT_VECTORS: - Res = ScalarizeVecOp_CONCAT_VECTORS(N); - break; - case ISD::EXTRACT_VECTOR_ELT: - Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N); - break; - case ISD::VSELECT: - Res = ScalarizeVecOp_VSELECT(N); - break; - case ISD::STORE: - Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo); - break; - case ISD::FP_ROUND: - Res = ScalarizeVecOp_FP_ROUND(N, OpNo); - break; - } - } - - // If the result is null, the sub-method took care of registering results etc. - if (!Res.getNode()) return false; - - // If the result is N, the sub-method updated N in place. Tell the legalizer - // core about this. - if (Res.getNode() == N) - return true; - - assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && - "Invalid operand expansion"); - - ReplaceValueWith(SDValue(N, 0), Res); - return false; -} - -/// ScalarizeVecOp_BITCAST - If the value to convert is a vector that needs -/// to be scalarized, it must be <1 x ty>. Convert the element instead. -SDValue DAGTypeLegalizer::ScalarizeVecOp_BITCAST(SDNode *N) { - SDValue Elt = GetScalarizedVector(N->getOperand(0)); - return DAG.getNode(ISD::BITCAST, SDLoc(N), - N->getValueType(0), Elt); -} - -/// ScalarizeVecOp_UnaryOp - If the input is a vector that needs to be -/// scalarized, it must be <1 x ty>. Do the operation on the element instead. -SDValue DAGTypeLegalizer::ScalarizeVecOp_UnaryOp(SDNode *N) { - assert(N->getValueType(0).getVectorNumElements() == 1 && - "Unexpected vector type!"); - SDValue Elt = GetScalarizedVector(N->getOperand(0)); - SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N), - N->getValueType(0).getScalarType(), Elt); - // Revectorize the result so the types line up with what the uses of this - // expression expect. - return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N->getValueType(0), Op); -} - -/// ScalarizeVecOp_CONCAT_VECTORS - The vectors to concatenate have length one - -/// use a BUILD_VECTOR instead. -SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) { - SmallVector<SDValue, 8> Ops(N->getNumOperands()); - for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i) - Ops[i] = GetScalarizedVector(N->getOperand(i)); - return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N->getValueType(0), Ops); -} - -/// ScalarizeVecOp_EXTRACT_VECTOR_ELT - If the input is a vector that needs to -/// be scalarized, it must be <1 x ty>, so just return the element, ignoring the -/// index. -SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) { - SDValue Res = GetScalarizedVector(N->getOperand(0)); - if (Res.getValueType() != N->getValueType(0)) - Res = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0), - Res); - return Res; -} - - -/// ScalarizeVecOp_VSELECT - If the input condition is a vector that needs to be -/// scalarized, it must be <1 x i1>, so just convert to a normal ISD::SELECT -/// (still with vector output type since that was acceptable if we got here). -SDValue DAGTypeLegalizer::ScalarizeVecOp_VSELECT(SDNode *N) { - SDValue ScalarCond = GetScalarizedVector(N->getOperand(0)); - EVT VT = N->getValueType(0); - - return DAG.getNode(ISD::SELECT, SDLoc(N), VT, ScalarCond, N->getOperand(1), - N->getOperand(2)); -} - -/// ScalarizeVecOp_STORE - If the value to store is a vector that needs to be -/// scalarized, it must be <1 x ty>. Just store the element. -SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){ - assert(N->isUnindexed() && "Indexed store of one-element vector?"); - assert(OpNo == 1 && "Do not know how to scalarize this operand!"); - SDLoc dl(N); - - if (N->isTruncatingStore()) - return DAG.getTruncStore(N->getChain(), dl, - GetScalarizedVector(N->getOperand(1)), - N->getBasePtr(), N->getPointerInfo(), - N->getMemoryVT().getVectorElementType(), - N->isVolatile(), N->isNonTemporal(), - N->getAlignment(), N->getAAInfo()); - - return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)), - N->getBasePtr(), N->getPointerInfo(), - N->isVolatile(), N->isNonTemporal(), - N->getOriginalAlignment(), N->getAAInfo()); -} - -/// ScalarizeVecOp_FP_ROUND - If the value to round is a vector that needs -/// to be scalarized, it must be <1 x ty>. Convert the element instead. -SDValue DAGTypeLegalizer::ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo) { - SDValue Elt = GetScalarizedVector(N->getOperand(0)); - SDValue Res = DAG.getNode(ISD::FP_ROUND, SDLoc(N), - N->getValueType(0).getVectorElementType(), Elt, - N->getOperand(1)); - return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), N->getValueType(0), Res); -} - -//===----------------------------------------------------------------------===// -// Result Vector Splitting -//===----------------------------------------------------------------------===// - -/// SplitVectorResult - This method is called when the specified result of the -/// specified node is found to need vector splitting. At this point, the node -/// may also have invalid operands or may have other results that need -/// legalization, we just know that (at least) one result needs vector -/// splitting. -void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) { - DEBUG(dbgs() << "Split node result: "; - N->dump(&DAG); - dbgs() << "\n"); - SDValue Lo, Hi; - - // See if the target wants to custom expand this node. - if (CustomLowerNode(N, N->getValueType(ResNo), true)) - return; - - switch (N->getOpcode()) { - default: -#ifndef NDEBUG - dbgs() << "SplitVectorResult #" << ResNo << ": "; - N->dump(&DAG); - dbgs() << "\n"; -#endif - report_fatal_error("Do not know how to split the result of this " - "operator!\n"); - - case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break; - case ISD::VSELECT: - case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break; - case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break; - case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break; - case ISD::BITCAST: SplitVecRes_BITCAST(N, Lo, Hi); break; - case ISD::BUILD_VECTOR: SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break; - case ISD::CONCAT_VECTORS: SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break; - case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break; - case ISD::INSERT_SUBVECTOR: SplitVecRes_INSERT_SUBVECTOR(N, Lo, Hi); break; - case ISD::FP_ROUND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break; - case ISD::FPOWI: SplitVecRes_FPOWI(N, Lo, Hi); break; - case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break; - case ISD::SCALAR_TO_VECTOR: SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break; - case ISD::SIGN_EXTEND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break; - case ISD::LOAD: - SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); - break; - case ISD::SETCC: - SplitVecRes_SETCC(N, Lo, Hi); - break; - case ISD::VECTOR_SHUFFLE: - SplitVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N), Lo, Hi); - break; - - case ISD::BSWAP: - case ISD::CONVERT_RNDSAT: - case ISD::CTLZ: - case ISD::CTTZ: - case ISD::CTLZ_ZERO_UNDEF: - case ISD::CTTZ_ZERO_UNDEF: - case ISD::CTPOP: - case ISD::FABS: - case ISD::FCEIL: - case ISD::FCOS: - case ISD::FEXP: - case ISD::FEXP2: - case ISD::FFLOOR: - case ISD::FLOG: - case ISD::FLOG10: - case ISD::FLOG2: - case ISD::FNEARBYINT: - case ISD::FNEG: - case ISD::FP_EXTEND: - case ISD::FP_ROUND: - case ISD::FP_TO_SINT: - case ISD::FP_TO_UINT: - case ISD::FRINT: - case ISD::FROUND: - case ISD::FSIN: - case ISD::FSQRT: - case ISD::FTRUNC: - case ISD::SINT_TO_FP: - case ISD::TRUNCATE: - case ISD::UINT_TO_FP: - SplitVecRes_UnaryOp(N, Lo, Hi); - break; - - case ISD::ANY_EXTEND: - case ISD::SIGN_EXTEND: - case ISD::ZERO_EXTEND: - SplitVecRes_ExtendOp(N, Lo, Hi); - break; - - case ISD::ADD: - case ISD::SUB: - case ISD::MUL: - case ISD::FADD: - case ISD::FCOPYSIGN: - case ISD::FSUB: - case ISD::FMUL: - case ISD::FMINNUM: - case ISD::FMAXNUM: - case ISD::SDIV: - case ISD::UDIV: - case ISD::FDIV: - case ISD::FPOW: - case ISD::AND: - case ISD::OR: - case ISD::XOR: - case ISD::SHL: - case ISD::SRA: - case ISD::SRL: - case ISD::UREM: - case ISD::SREM: - case ISD::FREM: - SplitVecRes_BinOp(N, Lo, Hi); - break; - case ISD::FMA: - SplitVecRes_TernaryOp(N, Lo, Hi); - break; - } - - // If Lo/Hi is null, the sub-method took care of registering results etc. - if (Lo.getNode()) - SetSplitVector(SDValue(N, ResNo), Lo, Hi); -} - -void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo, - SDValue &Hi) { - SDValue LHSLo, LHSHi; - GetSplitVector(N->getOperand(0), LHSLo, LHSHi); - SDValue RHSLo, RHSHi; - GetSplitVector(N->getOperand(1), RHSLo, RHSHi); - SDLoc dl(N); - - Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo, RHSLo); - Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi, RHSHi); -} - -void DAGTypeLegalizer::SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, - SDValue &Hi) { - SDValue Op0Lo, Op0Hi; - GetSplitVector(N->getOperand(0), Op0Lo, Op0Hi); - SDValue Op1Lo, Op1Hi; - GetSplitVector(N->getOperand(1), Op1Lo, Op1Hi); - SDValue Op2Lo, Op2Hi; - GetSplitVector(N->getOperand(2), Op2Lo, Op2Hi); - SDLoc dl(N); - - Lo = DAG.getNode(N->getOpcode(), dl, Op0Lo.getValueType(), - Op0Lo, Op1Lo, Op2Lo); - Hi = DAG.getNode(N->getOpcode(), dl, Op0Hi.getValueType(), - Op0Hi, Op1Hi, Op2Hi); -} - -void DAGTypeLegalizer::SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, - SDValue &Hi) { - // We know the result is a vector. The input may be either a vector or a - // scalar value. - EVT LoVT, HiVT; - std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); - SDLoc dl(N); - - SDValue InOp = N->getOperand(0); - EVT InVT = InOp.getValueType(); - - // Handle some special cases efficiently. - switch (getTypeAction(InVT)) { - case TargetLowering::TypeLegal: - case TargetLowering::TypePromoteInteger: - case TargetLowering::TypeSoftenFloat: - case TargetLowering::TypeScalarizeVector: - case TargetLowering::TypeWidenVector: - break; - case TargetLowering::TypeExpandInteger: - case TargetLowering::TypeExpandFloat: - // A scalar to vector conversion, where the scalar needs expansion. - // If the vector is being split in two then we can just convert the - // expanded pieces. - if (LoVT == HiVT) { - GetExpandedOp(InOp, Lo, Hi); - if (TLI.isBigEndian()) - std::swap(Lo, Hi); - Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo); - Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi); - return; - } - break; - case TargetLowering::TypeSplitVector: - // If the input is a vector that needs to be split, convert each split - // piece of the input now. - GetSplitVector(InOp, Lo, Hi); - Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo); - Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi); - return; - } - - // In the general case, convert the input to an integer and split it by hand. - EVT LoIntVT = EVT::getIntegerVT(*DAG.getContext(), LoVT.getSizeInBits()); - EVT HiIntVT = EVT::getIntegerVT(*DAG.getContext(), HiVT.getSizeInBits()); - if (TLI.isBigEndian()) - std::swap(LoIntVT, HiIntVT); - - SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi); - - if (TLI.isBigEndian()) - std::swap(Lo, Hi); - Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo); - Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi); -} - -void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, - SDValue &Hi) { - EVT LoVT, HiVT; - SDLoc dl(N); - std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); - unsigned LoNumElts = LoVT.getVectorNumElements(); - SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts); - Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, LoVT, LoOps); - - SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end()); - Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, HiVT, HiOps); -} - -void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, - SDValue &Hi) { - assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS"); - SDLoc dl(N); - unsigned NumSubvectors = N->getNumOperands() / 2; - if (NumSubvectors == 1) { - Lo = N->getOperand(0); - Hi = N->getOperand(1); - return; - } - - EVT LoVT, HiVT; - std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); - - SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors); - Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, LoOps); - - SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end()); - Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HiVT, HiOps); -} - -void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, - SDValue &Hi) { - SDValue Vec = N->getOperand(0); - SDValue Idx = N->getOperand(1); - SDLoc dl(N); - - EVT LoVT, HiVT; - std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); - - Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx); - uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); - Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HiVT, Vec, - DAG.getConstant(IdxVal + LoVT.getVectorNumElements(), - TLI.getVectorIdxTy())); -} - -void DAGTypeLegalizer::SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, - SDValue &Hi) { - SDValue Vec = N->getOperand(0); - SDValue SubVec = N->getOperand(1); - SDValue Idx = N->getOperand(2); - SDLoc dl(N); - GetSplitVector(Vec, Lo, Hi); - - // Spill the vector to the stack. - EVT VecVT = Vec.getValueType(); - EVT SubVecVT = VecVT.getVectorElementType(); - SDValue StackPtr = DAG.CreateStackTemporary(VecVT); - SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, - MachinePointerInfo(), false, false, 0); - - // Store the new subvector into the specified index. - SDValue SubVecPtr = GetVectorElementPointer(StackPtr, SubVecVT, Idx); - Type *VecType = VecVT.getTypeForEVT(*DAG.getContext()); - unsigned Alignment = TLI.getDataLayout()->getPrefTypeAlignment(VecType); - Store = DAG.getStore(Store, dl, SubVec, SubVecPtr, MachinePointerInfo(), - false, false, 0); - - // Load the Lo part from the stack slot. - Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo(), - false, false, false, 0); - - // Increment the pointer to the other part. - unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8; - StackPtr = - DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, - DAG.getConstant(IncrementSize, StackPtr.getValueType())); - - // Load the Hi part from the stack slot. - Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(), - false, false, false, MinAlign(Alignment, IncrementSize)); -} - -void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, - SDValue &Hi) { - SDLoc dl(N); - GetSplitVector(N->getOperand(0), Lo, Hi); - Lo = DAG.getNode(ISD::FPOWI, dl, Lo.getValueType(), Lo, N->getOperand(1)); - Hi = DAG.getNode(ISD::FPOWI, dl, Hi.getValueType(), Hi, N->getOperand(1)); -} - -void DAGTypeLegalizer::SplitVecRes_InregOp(SDNode *N, SDValue &Lo, - SDValue &Hi) { - SDValue LHSLo, LHSHi; - GetSplitVector(N->getOperand(0), LHSLo, LHSHi); - SDLoc dl(N); - - EVT LoVT, HiVT; - std::tie(LoVT, HiVT) = - DAG.GetSplitDestVTs(cast<VTSDNode>(N->getOperand(1))->getVT()); - - Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo, - DAG.getValueType(LoVT)); - Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi, - DAG.getValueType(HiVT)); -} - -void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, - SDValue &Hi) { - SDValue Vec = N->getOperand(0); - SDValue Elt = N->getOperand(1); - SDValue Idx = N->getOperand(2); - SDLoc dl(N); - GetSplitVector(Vec, Lo, Hi); - - if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) { - unsigned IdxVal = CIdx->getZExtValue(); - unsigned LoNumElts = Lo.getValueType().getVectorNumElements(); - if (IdxVal < LoNumElts) - Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, - Lo.getValueType(), Lo, Elt, Idx); - else - Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Hi.getValueType(), Hi, Elt, - DAG.getConstant(IdxVal - LoNumElts, - TLI.getVectorIdxTy())); - return; - } - - // See if the target wants to custom expand this node. - if (CustomLowerNode(N, N->getValueType(0), true)) - return; - - // Spill the vector to the stack. - EVT VecVT = Vec.getValueType(); - EVT EltVT = VecVT.getVectorElementType(); - SDValue StackPtr = DAG.CreateStackTemporary(VecVT); - SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, - MachinePointerInfo(), false, false, 0); - - // Store the new element. This may be larger than the vector element type, - // so use a truncating store. - SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx); - Type *VecType = VecVT.getTypeForEVT(*DAG.getContext()); - unsigned Alignment = - TLI.getDataLayout()->getPrefTypeAlignment(VecType); - Store = DAG.getTruncStore(Store, dl, Elt, EltPtr, MachinePointerInfo(), EltVT, - false, false, 0); - - // Load the Lo part from the stack slot. - Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo(), - false, false, false, 0); - - // Increment the pointer to the other part. - unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8; - StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, - DAG.getConstant(IncrementSize, StackPtr.getValueType())); - - // Load the Hi part from the stack slot. - Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(), - false, false, false, MinAlign(Alignment, IncrementSize)); -} - -void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, - SDValue &Hi) { - EVT LoVT, HiVT; - SDLoc dl(N); - std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); - Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0)); - Hi = DAG.getUNDEF(HiVT); -} - -void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, - SDValue &Hi) { - assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!"); - EVT LoVT, HiVT; - SDLoc dl(LD); - std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(LD->getValueType(0)); - - ISD::LoadExtType ExtType = LD->getExtensionType(); - SDValue Ch = LD->getChain(); - SDValue Ptr = LD->getBasePtr(); - SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); - EVT MemoryVT = LD->getMemoryVT(); - unsigned Alignment = LD->getOriginalAlignment(); - bool isVolatile = LD->isVolatile(); - bool isNonTemporal = LD->isNonTemporal(); - bool isInvariant = LD->isInvariant(); - AAMDNodes AAInfo = LD->getAAInfo(); - - EVT LoMemVT, HiMemVT; - std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); - - Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, LoVT, dl, Ch, Ptr, Offset, - LD->getPointerInfo(), LoMemVT, isVolatile, isNonTemporal, - isInvariant, Alignment, AAInfo); - - unsigned IncrementSize = LoMemVT.getSizeInBits()/8; - Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, - DAG.getConstant(IncrementSize, Ptr.getValueType())); - Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, HiVT, dl, Ch, Ptr, Offset, - LD->getPointerInfo().getWithOffset(IncrementSize), - HiMemVT, isVolatile, isNonTemporal, isInvariant, Alignment, - AAInfo); - - // Build a factor node to remember that this load is independent of the - // other one. - Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), - Hi.getValue(1)); - - // Legalized the chain result - switch anything that used the old chain to - // use the new one. - ReplaceValueWith(SDValue(LD, 1), Ch); -} - -void DAGTypeLegalizer::SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi) { - assert(N->getValueType(0).isVector() && - N->getOperand(0).getValueType().isVector() && - "Operand types must be vectors"); - - EVT LoVT, HiVT; - SDLoc DL(N); - std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); - - // Split the input. - SDValue LL, LH, RL, RH; - std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0); - std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1); - - Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2)); - Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2)); -} - -void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, - SDValue &Hi) { - // Get the dest types - they may not match the input types, e.g. int_to_fp. - EVT LoVT, HiVT; - SDLoc dl(N); - std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); - - // If the input also splits, handle it directly for a compile time speedup. - // Otherwise split it by hand. - EVT InVT = N->getOperand(0).getValueType(); - if (getTypeAction(InVT) == TargetLowering::TypeSplitVector) - GetSplitVector(N->getOperand(0), Lo, Hi); - else - std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0); - - if (N->getOpcode() == ISD::FP_ROUND) { - Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo, N->getOperand(1)); - Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi, N->getOperand(1)); - } else if (N->getOpcode() == ISD::CONVERT_RNDSAT) { - SDValue DTyOpLo = DAG.getValueType(LoVT); - SDValue DTyOpHi = DAG.getValueType(HiVT); - SDValue STyOpLo = DAG.getValueType(Lo.getValueType()); - SDValue STyOpHi = DAG.getValueType(Hi.getValueType()); - SDValue RndOp = N->getOperand(3); - SDValue SatOp = N->getOperand(4); - ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode(); - Lo = DAG.getConvertRndSat(LoVT, dl, Lo, DTyOpLo, STyOpLo, RndOp, SatOp, - CvtCode); - Hi = DAG.getConvertRndSat(HiVT, dl, Hi, DTyOpHi, STyOpHi, RndOp, SatOp, - CvtCode); - } else { - Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo); - Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi); - } -} - -void DAGTypeLegalizer::SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, - SDValue &Hi) { - SDLoc dl(N); - EVT SrcVT = N->getOperand(0).getValueType(); - EVT DestVT = N->getValueType(0); - EVT LoVT, HiVT; - std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(DestVT); - - // We can do better than a generic split operation if the extend is doing - // more than just doubling the width of the elements and the following are - // true: - // - The number of vector elements is even, - // - the source type is legal, - // - the type of a split source is illegal, - // - the type of an extended (by doubling element size) source is legal, and - // - the type of that extended source when split is legal. - // - // This won't necessarily completely legalize the operation, but it will - // more effectively move in the right direction and prevent falling down - // to scalarization in many cases due to the input vector being split too - // far. - unsigned NumElements = SrcVT.getVectorNumElements(); - if ((NumElements & 1) == 0 && - SrcVT.getSizeInBits() * 2 < DestVT.getSizeInBits()) { - LLVMContext &Ctx = *DAG.getContext(); - EVT NewSrcVT = EVT::getVectorVT( - Ctx, EVT::getIntegerVT( - Ctx, SrcVT.getVectorElementType().getSizeInBits() * 2), - NumElements); - EVT SplitSrcVT = - EVT::getVectorVT(Ctx, SrcVT.getVectorElementType(), NumElements / 2); - EVT SplitLoVT, SplitHiVT; - std::tie(SplitLoVT, SplitHiVT) = DAG.GetSplitDestVTs(NewSrcVT); - if (TLI.isTypeLegal(SrcVT) && !TLI.isTypeLegal(SplitSrcVT) && - TLI.isTypeLegal(NewSrcVT) && TLI.isTypeLegal(SplitLoVT)) { - DEBUG(dbgs() << "Split vector extend via incremental extend:"; - N->dump(&DAG); dbgs() << "\n"); - // Extend the source vector by one step. - SDValue NewSrc = - DAG.getNode(N->getOpcode(), dl, NewSrcVT, N->getOperand(0)); - // Get the low and high halves of the new, extended one step, vector. - std::tie(Lo, Hi) = DAG.SplitVector(NewSrc, dl); - // Extend those vector halves the rest of the way. - Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo); - Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi); - return; - } - } - // Fall back to the generic unary operator splitting otherwise. - SplitVecRes_UnaryOp(N, Lo, Hi); -} - -void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, - SDValue &Lo, SDValue &Hi) { - // The low and high parts of the original input give four input vectors. - SDValue Inputs[4]; - SDLoc dl(N); - GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]); - GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]); - EVT NewVT = Inputs[0].getValueType(); - unsigned NewElts = NewVT.getVectorNumElements(); - - // If Lo or Hi uses elements from at most two of the four input vectors, then - // express it as a vector shuffle of those two inputs. Otherwise extract the - // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. - SmallVector<int, 16> Ops; - for (unsigned High = 0; High < 2; ++High) { - SDValue &Output = High ? Hi : Lo; - - // Build a shuffle mask for the output, discovering on the fly which - // input vectors to use as shuffle operands (recorded in InputUsed). - // If building a suitable shuffle vector proves too hard, then bail - // out with useBuildVector set. - unsigned InputUsed[2] = { -1U, -1U }; // Not yet discovered. - unsigned FirstMaskIdx = High * NewElts; - bool useBuildVector = false; - for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { - // The mask element. This indexes into the input. - int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset); - - // The input vector this mask element indexes into. - unsigned Input = (unsigned)Idx / NewElts; - - if (Input >= array_lengthof(Inputs)) { - // The mask element does not index into any input vector. - Ops.push_back(-1); - continue; - } - - // Turn the index into an offset from the start of the input vector. - Idx -= Input * NewElts; - - // Find or create a shuffle vector operand to hold this input. - unsigned OpNo; - for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { - if (InputUsed[OpNo] == Input) { - // This input vector is already an operand. - break; - } else if (InputUsed[OpNo] == -1U) { - // Create a new operand for this input vector. - InputUsed[OpNo] = Input; - break; - } - } - - if (OpNo >= array_lengthof(InputUsed)) { - // More than two input vectors used! Give up on trying to create a - // shuffle vector. Insert all elements into a BUILD_VECTOR instead. - useBuildVector = true; - break; - } - - // Add the mask index for the new shuffle vector. - Ops.push_back(Idx + OpNo * NewElts); - } - - if (useBuildVector) { - EVT EltVT = NewVT.getVectorElementType(); - SmallVector<SDValue, 16> SVOps; - - // Extract the input elements by hand. - for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { - // The mask element. This indexes into the input. - int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset); - - // The input vector this mask element indexes into. - unsigned Input = (unsigned)Idx / NewElts; - - if (Input >= array_lengthof(Inputs)) { - // The mask element is "undef" or indexes off the end of the input. - SVOps.push_back(DAG.getUNDEF(EltVT)); - continue; - } - - // Turn the index into an offset from the start of the input vector. - Idx -= Input * NewElts; - - // Extract the vector element by hand. - SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, - Inputs[Input], DAG.getConstant(Idx, - TLI.getVectorIdxTy()))); - } - - // Construct the Lo/Hi output using a BUILD_VECTOR. - Output = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, SVOps); - } else if (InputUsed[0] == -1U) { - // No input vectors were used! The result is undefined. - Output = DAG.getUNDEF(NewVT); - } else { - SDValue Op0 = Inputs[InputUsed[0]]; - // If only one input was used, use an undefined vector for the other. - SDValue Op1 = InputUsed[1] == -1U ? - DAG.getUNDEF(NewVT) : Inputs[InputUsed[1]]; - // At least one input vector was used. Create a new shuffle vector. - Output = DAG.getVectorShuffle(NewVT, dl, Op0, Op1, &Ops[0]); - } - - Ops.clear(); - } -} - - -//===----------------------------------------------------------------------===// -// Operand Vector Splitting -//===----------------------------------------------------------------------===// - -/// SplitVectorOperand - This method is called when the specified operand of the -/// specified node is found to need vector splitting. At this point, all of the -/// result types of the node are known to be legal, but other operands of the -/// node may need legalization as well as the specified one. -bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) { - DEBUG(dbgs() << "Split node operand: "; - N->dump(&DAG); - dbgs() << "\n"); - SDValue Res = SDValue(); - - // See if the target wants to custom split this node. - if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false)) - return false; - - if (!Res.getNode()) { - switch (N->getOpcode()) { - default: -#ifndef NDEBUG - dbgs() << "SplitVectorOperand Op #" << OpNo << ": "; - N->dump(&DAG); - dbgs() << "\n"; -#endif - report_fatal_error("Do not know how to split this operator's " - "operand!\n"); - - case ISD::SETCC: Res = SplitVecOp_VSETCC(N); break; - case ISD::BITCAST: Res = SplitVecOp_BITCAST(N); break; - case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break; - case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break; - case ISD::CONCAT_VECTORS: Res = SplitVecOp_CONCAT_VECTORS(N); break; - case ISD::TRUNCATE: Res = SplitVecOp_TRUNCATE(N); break; - case ISD::FP_ROUND: Res = SplitVecOp_FP_ROUND(N); break; - case ISD::STORE: - Res = SplitVecOp_STORE(cast<StoreSDNode>(N), OpNo); - break; - case ISD::VSELECT: - Res = SplitVecOp_VSELECT(N, OpNo); - break; - case ISD::CTTZ: - case ISD::CTLZ: - case ISD::CTPOP: - case ISD::FP_EXTEND: - case ISD::FP_TO_SINT: - case ISD::FP_TO_UINT: - case ISD::SINT_TO_FP: - case ISD::UINT_TO_FP: - case ISD::FTRUNC: - case ISD::SIGN_EXTEND: - case ISD::ZERO_EXTEND: - case ISD::ANY_EXTEND: - Res = SplitVecOp_UnaryOp(N); - break; - } - } - - // If the result is null, the sub-method took care of registering results etc. - if (!Res.getNode()) return false; - - // If the result is N, the sub-method updated N in place. Tell the legalizer - // core about this. - if (Res.getNode() == N) - return true; - - assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && - "Invalid operand expansion"); - - ReplaceValueWith(SDValue(N, 0), Res); - return false; -} - -SDValue DAGTypeLegalizer::SplitVecOp_VSELECT(SDNode *N, unsigned OpNo) { - // The only possibility for an illegal operand is the mask, since result type - // legalization would have handled this node already otherwise. - assert(OpNo == 0 && "Illegal operand must be mask"); - - SDValue Mask = N->getOperand(0); - SDValue Src0 = N->getOperand(1); - SDValue Src1 = N->getOperand(2); - EVT Src0VT = Src0.getValueType(); - SDLoc DL(N); - assert(Mask.getValueType().isVector() && "VSELECT without a vector mask?"); - - SDValue Lo, Hi; - GetSplitVector(N->getOperand(0), Lo, Hi); - assert(Lo.getValueType() == Hi.getValueType() && - "Lo and Hi have differing types"); - - EVT LoOpVT, HiOpVT; - std::tie(LoOpVT, HiOpVT) = DAG.GetSplitDestVTs(Src0VT); - assert(LoOpVT == HiOpVT && "Asymmetric vector split?"); - - SDValue LoOp0, HiOp0, LoOp1, HiOp1, LoMask, HiMask; - std::tie(LoOp0, HiOp0) = DAG.SplitVector(Src0, DL); - std::tie(LoOp1, HiOp1) = DAG.SplitVector(Src1, DL); - std::tie(LoMask, HiMask) = DAG.SplitVector(Mask, DL); - - SDValue LoSelect = - DAG.getNode(ISD::VSELECT, DL, LoOpVT, LoMask, LoOp0, LoOp1); - SDValue HiSelect = - DAG.getNode(ISD::VSELECT, DL, HiOpVT, HiMask, HiOp0, HiOp1); - - return DAG.getNode(ISD::CONCAT_VECTORS, DL, Src0VT, LoSelect, HiSelect); -} - -SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) { - // The result has a legal vector type, but the input needs splitting. - EVT ResVT = N->getValueType(0); - SDValue Lo, Hi; - SDLoc dl(N); - GetSplitVector(N->getOperand(0), Lo, Hi); - EVT InVT = Lo.getValueType(); - - EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(), - InVT.getVectorNumElements()); - - Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo); - Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi); - - return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi); -} - -SDValue DAGTypeLegalizer::SplitVecOp_BITCAST(SDNode *N) { - // For example, i64 = BITCAST v4i16 on alpha. Typically the vector will - // end up being split all the way down to individual components. Convert the - // split pieces into integers and reassemble. - SDValue Lo, Hi; - GetSplitVector(N->getOperand(0), Lo, Hi); - Lo = BitConvertToInteger(Lo); - Hi = BitConvertToInteger(Hi); - - if (TLI.isBigEndian()) - std::swap(Lo, Hi); - - return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), - JoinIntegers(Lo, Hi)); -} - -SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) { - // We know that the extracted result type is legal. - EVT SubVT = N->getValueType(0); - SDValue Idx = N->getOperand(1); - SDLoc dl(N); - SDValue Lo, Hi; - GetSplitVector(N->getOperand(0), Lo, Hi); - - uint64_t LoElts = Lo.getValueType().getVectorNumElements(); - uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); - - if (IdxVal < LoElts) { - assert(IdxVal + SubVT.getVectorNumElements() <= LoElts && - "Extracted subvector crosses vector split!"); - return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Lo, Idx); - } else { - return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Hi, - DAG.getConstant(IdxVal - LoElts, Idx.getValueType())); - } -} - -SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) { - SDValue Vec = N->getOperand(0); - SDValue Idx = N->getOperand(1); - EVT VecVT = Vec.getValueType(); - - if (isa<ConstantSDNode>(Idx)) { - uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); - assert(IdxVal < VecVT.getVectorNumElements() && "Invalid vector index!"); - - SDValue Lo, Hi; - GetSplitVector(Vec, Lo, Hi); - - uint64_t LoElts = Lo.getValueType().getVectorNumElements(); - - if (IdxVal < LoElts) - return SDValue(DAG.UpdateNodeOperands(N, Lo, Idx), 0); - return SDValue(DAG.UpdateNodeOperands(N, Hi, - DAG.getConstant(IdxVal - LoElts, - Idx.getValueType())), 0); - } - - // See if the target wants to custom expand this node. - if (CustomLowerNode(N, N->getValueType(0), true)) - return SDValue(); - - // Store the vector to the stack. - EVT EltVT = VecVT.getVectorElementType(); - SDLoc dl(N); - SDValue StackPtr = DAG.CreateStackTemporary(VecVT); - SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, - MachinePointerInfo(), false, false, 0); - - // Load back the required element. - StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx); - return DAG.getExtLoad(ISD::EXTLOAD, dl, N->getValueType(0), Store, StackPtr, - MachinePointerInfo(), EltVT, false, false, false, 0); -} - -SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) { - assert(N->isUnindexed() && "Indexed store of vector?"); - assert(OpNo == 1 && "Can only split the stored value"); - SDLoc DL(N); - - bool isTruncating = N->isTruncatingStore(); - SDValue Ch = N->getChain(); - SDValue Ptr = N->getBasePtr(); - EVT MemoryVT = N->getMemoryVT(); - unsigned Alignment = N->getOriginalAlignment(); - bool isVol = N->isVolatile(); - bool isNT = N->isNonTemporal(); - AAMDNodes AAInfo = N->getAAInfo(); - SDValue Lo, Hi; - GetSplitVector(N->getOperand(1), Lo, Hi); - - EVT LoMemVT, HiMemVT; - std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT); - - unsigned IncrementSize = LoMemVT.getSizeInBits()/8; - - if (isTruncating) - Lo = DAG.getTruncStore(Ch, DL, Lo, Ptr, N->getPointerInfo(), - LoMemVT, isVol, isNT, Alignment, AAInfo); - else - Lo = DAG.getStore(Ch, DL, Lo, Ptr, N->getPointerInfo(), - isVol, isNT, Alignment, AAInfo); - - // Increment the pointer to the other half. - Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, - DAG.getConstant(IncrementSize, Ptr.getValueType())); - - if (isTruncating) - Hi = DAG.getTruncStore(Ch, DL, Hi, Ptr, - N->getPointerInfo().getWithOffset(IncrementSize), - HiMemVT, isVol, isNT, Alignment, AAInfo); - else - Hi = DAG.getStore(Ch, DL, Hi, Ptr, - N->getPointerInfo().getWithOffset(IncrementSize), - isVol, isNT, Alignment, AAInfo); - - return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi); -} - -SDValue DAGTypeLegalizer::SplitVecOp_CONCAT_VECTORS(SDNode *N) { - SDLoc DL(N); - - // The input operands all must have the same type, and we know the result - // type is valid. Convert this to a buildvector which extracts all the - // input elements. - // TODO: If the input elements are power-two vectors, we could convert this to - // a new CONCAT_VECTORS node with elements that are half-wide. - SmallVector<SDValue, 32> Elts; - EVT EltVT = N->getValueType(0).getVectorElementType(); - for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) { - SDValue Op = N->getOperand(op); - for (unsigned i = 0, e = Op.getValueType().getVectorNumElements(); - i != e; ++i) { - Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, - Op, DAG.getConstant(i, TLI.getVectorIdxTy()))); - - } - } - - return DAG.getNode(ISD::BUILD_VECTOR, DL, N->getValueType(0), Elts); -} - -SDValue DAGTypeLegalizer::SplitVecOp_TRUNCATE(SDNode *N) { - // The result type is legal, but the input type is illegal. If splitting - // ends up with the result type of each half still being legal, just - // do that. If, however, that would result in an illegal result type, - // we can try to get more clever with power-two vectors. Specifically, - // split the input type, but also widen the result element size, then - // concatenate the halves and truncate again. For example, consider a target - // where v8i8 is legal and v8i32 is not (ARM, which doesn't have 256-bit - // vectors). To perform a "%res = v8i8 trunc v8i32 %in" we do: - // %inlo = v4i32 extract_subvector %in, 0 - // %inhi = v4i32 extract_subvector %in, 4 - // %lo16 = v4i16 trunc v4i32 %inlo - // %hi16 = v4i16 trunc v4i32 %inhi - // %in16 = v8i16 concat_vectors v4i16 %lo16, v4i16 %hi16 - // %res = v8i8 trunc v8i16 %in16 - // - // Without this transform, the original truncate would end up being - // scalarized, which is pretty much always a last resort. - SDValue InVec = N->getOperand(0); - EVT InVT = InVec->getValueType(0); - EVT OutVT = N->getValueType(0); - unsigned NumElements = OutVT.getVectorNumElements(); - // Widening should have already made sure this is a power-two vector - // if we're trying to split it at all. assert() that's true, just in case. - assert(!(NumElements & 1) && "Splitting vector, but not in half!"); - - unsigned InElementSize = InVT.getVectorElementType().getSizeInBits(); - unsigned OutElementSize = OutVT.getVectorElementType().getSizeInBits(); - - // If the input elements are only 1/2 the width of the result elements, - // just use the normal splitting. Our trick only work if there's room - // to split more than once. - if (InElementSize <= OutElementSize * 2) - return SplitVecOp_UnaryOp(N); - SDLoc DL(N); - - // Extract the halves of the input via extract_subvector. - SDValue InLoVec, InHiVec; - std::tie(InLoVec, InHiVec) = DAG.SplitVector(InVec, DL); - // Truncate them to 1/2 the element size. - EVT HalfElementVT = EVT::getIntegerVT(*DAG.getContext(), InElementSize/2); - EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT, - NumElements/2); - SDValue HalfLo = DAG.getNode(ISD::TRUNCATE, DL, HalfVT, InLoVec); - SDValue HalfHi = DAG.getNode(ISD::TRUNCATE, DL, HalfVT, InHiVec); - // Concatenate them to get the full intermediate truncation result. - EVT InterVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT, NumElements); - SDValue InterVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InterVT, HalfLo, - HalfHi); - // Now finish up by truncating all the way down to the original result - // type. This should normally be something that ends up being legal directly, - // but in theory if a target has very wide vectors and an annoyingly - // restricted set of legal types, this split can chain to build things up. - return DAG.getNode(ISD::TRUNCATE, DL, OutVT, InterVec); -} - -SDValue DAGTypeLegalizer::SplitVecOp_VSETCC(SDNode *N) { - assert(N->getValueType(0).isVector() && - N->getOperand(0).getValueType().isVector() && - "Operand types must be vectors"); - // The result has a legal vector type, but the input needs splitting. - SDValue Lo0, Hi0, Lo1, Hi1, LoRes, HiRes; - SDLoc DL(N); - GetSplitVector(N->getOperand(0), Lo0, Hi0); - GetSplitVector(N->getOperand(1), Lo1, Hi1); - unsigned PartElements = Lo0.getValueType().getVectorNumElements(); - EVT PartResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, PartElements); - EVT WideResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 2*PartElements); - - LoRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Lo0, Lo1, N->getOperand(2)); - HiRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Hi0, Hi1, N->getOperand(2)); - SDValue Con = DAG.getNode(ISD::CONCAT_VECTORS, DL, WideResVT, LoRes, HiRes); - return PromoteTargetBoolean(Con, N->getValueType(0)); -} - - -SDValue DAGTypeLegalizer::SplitVecOp_FP_ROUND(SDNode *N) { - // The result has a legal vector type, but the input needs splitting. - EVT ResVT = N->getValueType(0); - SDValue Lo, Hi; - SDLoc DL(N); - GetSplitVector(N->getOperand(0), Lo, Hi); - EVT InVT = Lo.getValueType(); - - EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(), - InVT.getVectorNumElements()); - - Lo = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Lo, N->getOperand(1)); - Hi = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Hi, N->getOperand(1)); - - return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi); -} - - - -//===----------------------------------------------------------------------===// -// Result Vector Widening -//===----------------------------------------------------------------------===// - -void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) { - DEBUG(dbgs() << "Widen node result " << ResNo << ": "; - N->dump(&DAG); - dbgs() << "\n"); - - // See if the target wants to custom widen this node. - if (CustomWidenLowerNode(N, N->getValueType(ResNo))) - return; - - SDValue Res = SDValue(); - switch (N->getOpcode()) { - default: -#ifndef NDEBUG - dbgs() << "WidenVectorResult #" << ResNo << ": "; - N->dump(&DAG); - dbgs() << "\n"; -#endif - llvm_unreachable("Do not know how to widen the result of this operator!"); - - case ISD::MERGE_VALUES: Res = WidenVecRes_MERGE_VALUES(N, ResNo); break; - case ISD::BITCAST: Res = WidenVecRes_BITCAST(N); break; - case ISD::BUILD_VECTOR: Res = WidenVecRes_BUILD_VECTOR(N); break; - case ISD::CONCAT_VECTORS: Res = WidenVecRes_CONCAT_VECTORS(N); break; - case ISD::CONVERT_RNDSAT: Res = WidenVecRes_CONVERT_RNDSAT(N); break; - case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break; - case ISD::FP_ROUND_INREG: Res = WidenVecRes_InregOp(N); break; - case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break; - case ISD::LOAD: Res = WidenVecRes_LOAD(N); break; - case ISD::SCALAR_TO_VECTOR: Res = WidenVecRes_SCALAR_TO_VECTOR(N); break; - case ISD::SIGN_EXTEND_INREG: Res = WidenVecRes_InregOp(N); break; - case ISD::VSELECT: - case ISD::SELECT: Res = WidenVecRes_SELECT(N); break; - case ISD::SELECT_CC: Res = WidenVecRes_SELECT_CC(N); break; - case ISD::SETCC: Res = WidenVecRes_SETCC(N); break; - case ISD::UNDEF: Res = WidenVecRes_UNDEF(N); break; - case ISD::VECTOR_SHUFFLE: - Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N)); - break; - - case ISD::ADD: - case ISD::AND: - case ISD::MUL: - case ISD::MULHS: - case ISD::MULHU: - case ISD::OR: - case ISD::SUB: - case ISD::XOR: - case ISD::FMINNUM: - case ISD::FMAXNUM: - Res = WidenVecRes_Binary(N); - break; - - case ISD::FADD: - case ISD::FCOPYSIGN: - case ISD::FMUL: - case ISD::FPOW: - case ISD::FSUB: - case ISD::FDIV: - case ISD::FREM: - case ISD::SDIV: - case ISD::UDIV: - case ISD::SREM: - case ISD::UREM: - Res = WidenVecRes_BinaryCanTrap(N); - break; - - case ISD::FPOWI: - Res = WidenVecRes_POWI(N); - break; - - case ISD::SHL: - case ISD::SRA: - case ISD::SRL: - Res = WidenVecRes_Shift(N); - break; - - case ISD::ANY_EXTEND: - case ISD::FP_EXTEND: - case ISD::FP_ROUND: - case ISD::FP_TO_SINT: - case ISD::FP_TO_UINT: - case ISD::SIGN_EXTEND: - case ISD::SINT_TO_FP: - case ISD::TRUNCATE: - case ISD::UINT_TO_FP: - case ISD::ZERO_EXTEND: - Res = WidenVecRes_Convert(N); - break; - - case ISD::BSWAP: - case ISD::CTLZ: - case ISD::CTPOP: - case ISD::CTTZ: - case ISD::FABS: - case ISD::FCEIL: - case ISD::FCOS: - case ISD::FEXP: - case ISD::FEXP2: - case ISD::FFLOOR: - case ISD::FLOG: - case ISD::FLOG10: - case ISD::FLOG2: - case ISD::FNEARBYINT: - case ISD::FNEG: - case ISD::FRINT: - case ISD::FROUND: - case ISD::FSIN: - case ISD::FSQRT: - case ISD::FTRUNC: - Res = WidenVecRes_Unary(N); - break; - case ISD::FMA: - Res = WidenVecRes_Ternary(N); - break; - } - - // If Res is null, the sub-method took care of registering the result. - if (Res.getNode()) - SetWidenedVector(SDValue(N, ResNo), Res); -} - -SDValue DAGTypeLegalizer::WidenVecRes_Ternary(SDNode *N) { - // Ternary op widening. - SDLoc dl(N); - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); - SDValue InOp1 = GetWidenedVector(N->getOperand(0)); - SDValue InOp2 = GetWidenedVector(N->getOperand(1)); - SDValue InOp3 = GetWidenedVector(N->getOperand(2)); - return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, InOp3); -} - -SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) { - // Binary op widening. - SDLoc dl(N); - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); - SDValue InOp1 = GetWidenedVector(N->getOperand(0)); - SDValue InOp2 = GetWidenedVector(N->getOperand(1)); - return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2); -} - -SDValue DAGTypeLegalizer::WidenVecRes_BinaryCanTrap(SDNode *N) { - // Binary op widening for operations that can trap. - unsigned Opcode = N->getOpcode(); - SDLoc dl(N); - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); - EVT WidenEltVT = WidenVT.getVectorElementType(); - EVT VT = WidenVT; - unsigned NumElts = VT.getVectorNumElements(); - while (!TLI.isTypeLegal(VT) && NumElts != 1) { - NumElts = NumElts / 2; - VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts); - } - - if (NumElts != 1 && !TLI.canOpTrap(N->getOpcode(), VT)) { - // Operation doesn't trap so just widen as normal. - SDValue InOp1 = GetWidenedVector(N->getOperand(0)); - SDValue InOp2 = GetWidenedVector(N->getOperand(1)); - return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2); - } - - // No legal vector version so unroll the vector operation and then widen. - if (NumElts == 1) - return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements()); - - // Since the operation can trap, apply operation on the original vector. - EVT MaxVT = VT; - SDValue InOp1 = GetWidenedVector(N->getOperand(0)); - SDValue InOp2 = GetWidenedVector(N->getOperand(1)); - unsigned CurNumElts = N->getValueType(0).getVectorNumElements(); - - SmallVector<SDValue, 16> ConcatOps(CurNumElts); - unsigned ConcatEnd = 0; // Current ConcatOps index. - int Idx = 0; // Current Idx into input vectors. - - // NumElts := greatest legal vector size (at most WidenVT) - // while (orig. vector has unhandled elements) { - // take munches of size NumElts from the beginning and add to ConcatOps - // NumElts := next smaller supported vector size or 1 - // } - while (CurNumElts != 0) { - while (CurNumElts >= NumElts) { - SDValue EOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp1, - DAG.getConstant(Idx, TLI.getVectorIdxTy())); - SDValue EOp2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp2, - DAG.getConstant(Idx, TLI.getVectorIdxTy())); - ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, VT, EOp1, EOp2); - Idx += NumElts; - CurNumElts -= NumElts; - } - do { - NumElts = NumElts / 2; - VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts); - } while (!TLI.isTypeLegal(VT) && NumElts != 1); - - if (NumElts == 1) { - for (unsigned i = 0; i != CurNumElts; ++i, ++Idx) { - SDValue EOp1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT, - InOp1, DAG.getConstant(Idx, - TLI.getVectorIdxTy())); - SDValue EOp2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT, - InOp2, DAG.getConstant(Idx, - TLI.getVectorIdxTy())); - ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, WidenEltVT, - EOp1, EOp2); - } - CurNumElts = 0; - } - } - - // Check to see if we have a single operation with the widen type. - if (ConcatEnd == 1) { - VT = ConcatOps[0].getValueType(); - if (VT == WidenVT) - return ConcatOps[0]; - } - - // while (Some element of ConcatOps is not of type MaxVT) { - // From the end of ConcatOps, collect elements of the same type and put - // them into an op of the next larger supported type - // } - while (ConcatOps[ConcatEnd-1].getValueType() != MaxVT) { - Idx = ConcatEnd - 1; - VT = ConcatOps[Idx--].getValueType(); - while (Idx >= 0 && ConcatOps[Idx].getValueType() == VT) - Idx--; - - int NextSize = VT.isVector() ? VT.getVectorNumElements() : 1; - EVT NextVT; - do { - NextSize *= 2; - NextVT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NextSize); - } while (!TLI.isTypeLegal(NextVT)); - - if (!VT.isVector()) { - // Scalar type, create an INSERT_VECTOR_ELEMENT of type NextVT - SDValue VecOp = DAG.getUNDEF(NextVT); - unsigned NumToInsert = ConcatEnd - Idx - 1; - for (unsigned i = 0, OpIdx = Idx+1; i < NumToInsert; i++, OpIdx++) { - VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NextVT, VecOp, - ConcatOps[OpIdx], DAG.getConstant(i, - TLI.getVectorIdxTy())); - } - ConcatOps[Idx+1] = VecOp; - ConcatEnd = Idx + 2; - } else { - // Vector type, create a CONCAT_VECTORS of type NextVT - SDValue undefVec = DAG.getUNDEF(VT); - unsigned OpsToConcat = NextSize/VT.getVectorNumElements(); - SmallVector<SDValue, 16> SubConcatOps(OpsToConcat); - unsigned RealVals = ConcatEnd - Idx - 1; - unsigned SubConcatEnd = 0; - unsigned SubConcatIdx = Idx + 1; - while (SubConcatEnd < RealVals) - SubConcatOps[SubConcatEnd++] = ConcatOps[++Idx]; - while (SubConcatEnd < OpsToConcat) - SubConcatOps[SubConcatEnd++] = undefVec; - ConcatOps[SubConcatIdx] = DAG.getNode(ISD::CONCAT_VECTORS, dl, - NextVT, SubConcatOps); - ConcatEnd = SubConcatIdx + 1; - } - } - - // Check to see if we have a single operation with the widen type. - if (ConcatEnd == 1) { - VT = ConcatOps[0].getValueType(); - if (VT == WidenVT) - return ConcatOps[0]; - } - - // add undefs of size MaxVT until ConcatOps grows to length of WidenVT - unsigned NumOps = WidenVT.getVectorNumElements()/MaxVT.getVectorNumElements(); - if (NumOps != ConcatEnd ) { - SDValue UndefVal = DAG.getUNDEF(MaxVT); - for (unsigned j = ConcatEnd; j < NumOps; ++j) - ConcatOps[j] = UndefVal; - } - return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, - makeArrayRef(ConcatOps.data(), NumOps)); -} - -SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) { - SDValue InOp = N->getOperand(0); - SDLoc DL(N); - - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); - unsigned WidenNumElts = WidenVT.getVectorNumElements(); - - EVT InVT = InOp.getValueType(); - EVT InEltVT = InVT.getVectorElementType(); - EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts); - - unsigned Opcode = N->getOpcode(); - unsigned InVTNumElts = InVT.getVectorNumElements(); - - if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) { - InOp = GetWidenedVector(N->getOperand(0)); - InVT = InOp.getValueType(); - InVTNumElts = InVT.getVectorNumElements(); - if (InVTNumElts == WidenNumElts) { - if (N->getNumOperands() == 1) - return DAG.getNode(Opcode, DL, WidenVT, InOp); - return DAG.getNode(Opcode, DL, WidenVT, InOp, N->getOperand(1)); - } - } - - if (TLI.isTypeLegal(InWidenVT)) { - // Because the result and the input are different vector types, widening - // the result could create a legal type but widening the input might make - // it an illegal type that might lead to repeatedly splitting the input - // and then widening it. To avoid this, we widen the input only if - // it results in a legal type. - if (WidenNumElts % InVTNumElts == 0) { - // Widen the input and call convert on the widened input vector. - unsigned NumConcat = WidenNumElts/InVTNumElts; - SmallVector<SDValue, 16> Ops(NumConcat); - Ops[0] = InOp; - SDValue UndefVal = DAG.getUNDEF(InVT); - for (unsigned i = 1; i != NumConcat; ++i) - Ops[i] = UndefVal; - SDValue InVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InWidenVT, Ops); - if (N->getNumOperands() == 1) - return DAG.getNode(Opcode, DL, WidenVT, InVec); - return DAG.getNode(Opcode, DL, WidenVT, InVec, N->getOperand(1)); - } - - if (InVTNumElts % WidenNumElts == 0) { - SDValue InVal = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InWidenVT, - InOp, DAG.getConstant(0, - TLI.getVectorIdxTy())); - // Extract the input and convert the shorten input vector. - if (N->getNumOperands() == 1) - return DAG.getNode(Opcode, DL, WidenVT, InVal); - return DAG.getNode(Opcode, DL, WidenVT, InVal, N->getOperand(1)); - } - } - - // Otherwise unroll into some nasty scalar code and rebuild the vector. - SmallVector<SDValue, 16> Ops(WidenNumElts); - EVT EltVT = WidenVT.getVectorElementType(); - unsigned MinElts = std::min(InVTNumElts, WidenNumElts); - unsigned i; - for (i=0; i < MinElts; ++i) { - SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, InEltVT, InOp, - DAG.getConstant(i, TLI.getVectorIdxTy())); - if (N->getNumOperands() == 1) - Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val); - else - Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val, N->getOperand(1)); - } - - SDValue UndefVal = DAG.getUNDEF(EltVT); - for (; i < WidenNumElts; ++i) - Ops[i] = UndefVal; - - return DAG.getNode(ISD::BUILD_VECTOR, DL, WidenVT, Ops); -} - -SDValue DAGTypeLegalizer::WidenVecRes_POWI(SDNode *N) { - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); - SDValue InOp = GetWidenedVector(N->getOperand(0)); - SDValue ShOp = N->getOperand(1); - return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp); -} - -SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) { - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); - SDValue InOp = GetWidenedVector(N->getOperand(0)); - SDValue ShOp = N->getOperand(1); - - EVT ShVT = ShOp.getValueType(); - if (getTypeAction(ShVT) == TargetLowering::TypeWidenVector) { - ShOp = GetWidenedVector(ShOp); - ShVT = ShOp.getValueType(); - } - EVT ShWidenVT = EVT::getVectorVT(*DAG.getContext(), - ShVT.getVectorElementType(), - WidenVT.getVectorNumElements()); - if (ShVT != ShWidenVT) - ShOp = ModifyToType(ShOp, ShWidenVT); - - return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp); -} - -SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) { - // Unary op widening. - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); - SDValue InOp = GetWidenedVector(N->getOperand(0)); - return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp); -} - -SDValue DAGTypeLegalizer::WidenVecRes_InregOp(SDNode *N) { - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); - EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), - cast<VTSDNode>(N->getOperand(1))->getVT() - .getVectorElementType(), - WidenVT.getVectorNumElements()); - SDValue WidenLHS = GetWidenedVector(N->getOperand(0)); - return DAG.getNode(N->getOpcode(), SDLoc(N), - WidenVT, WidenLHS, DAG.getValueType(ExtVT)); -} - -SDValue DAGTypeLegalizer::WidenVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo) { - SDValue WidenVec = DisintegrateMERGE_VALUES(N, ResNo); - return GetWidenedVector(WidenVec); -} - -SDValue DAGTypeLegalizer::WidenVecRes_BITCAST(SDNode *N) { - SDValue InOp = N->getOperand(0); - EVT InVT = InOp.getValueType(); - EVT VT = N->getValueType(0); - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); - SDLoc dl(N); - - switch (getTypeAction(InVT)) { - case TargetLowering::TypeLegal: - break; - case TargetLowering::TypePromoteInteger: - // If the incoming type is a vector that is being promoted, then - // we know that the elements are arranged differently and that we - // must perform the conversion using a stack slot. - if (InVT.isVector()) - break; - - // If the InOp is promoted to the same size, convert it. Otherwise, - // fall out of the switch and widen the promoted input. - InOp = GetPromotedInteger(InOp); - InVT = InOp.getValueType(); - if (WidenVT.bitsEq(InVT)) - return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp); - break; - case TargetLowering::TypeSoftenFloat: - case TargetLowering::TypeExpandInteger: - case TargetLowering::TypeExpandFloat: - case TargetLowering::TypeScalarizeVector: - case TargetLowering::TypeSplitVector: - break; - case TargetLowering::TypeWidenVector: - // If the InOp is widened to the same size, convert it. Otherwise, fall - // out of the switch and widen the widened input. - InOp = GetWidenedVector(InOp); - InVT = InOp.getValueType(); - if (WidenVT.bitsEq(InVT)) - // The input widens to the same size. Convert to the widen value. - return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp); - break; - } - - unsigned WidenSize = WidenVT.getSizeInBits(); - unsigned InSize = InVT.getSizeInBits(); - // x86mmx is not an acceptable vector element type, so don't try. - if (WidenSize % InSize == 0 && InVT != MVT::x86mmx) { - // Determine new input vector type. The new input vector type will use - // the same element type (if its a vector) or use the input type as a - // vector. It is the same size as the type to widen to. - EVT NewInVT; - unsigned NewNumElts = WidenSize / InSize; - if (InVT.isVector()) { - EVT InEltVT = InVT.getVectorElementType(); - NewInVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, - WidenSize / InEltVT.getSizeInBits()); - } else { - NewInVT = EVT::getVectorVT(*DAG.getContext(), InVT, NewNumElts); - } - - if (TLI.isTypeLegal(NewInVT)) { - // Because the result and the input are different vector types, widening - // the result could create a legal type but widening the input might make - // it an illegal type that might lead to repeatedly splitting the input - // and then widening it. To avoid this, we widen the input only if - // it results in a legal type. - SmallVector<SDValue, 16> Ops(NewNumElts); - SDValue UndefVal = DAG.getUNDEF(InVT); - Ops[0] = InOp; - for (unsigned i = 1; i < NewNumElts; ++i) - Ops[i] = UndefVal; - - SDValue NewVec; - if (InVT.isVector()) - NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewInVT, Ops); - else - NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl, NewInVT, Ops); - return DAG.getNode(ISD::BITCAST, dl, WidenVT, NewVec); - } - } - - return CreateStackStoreLoad(InOp, WidenVT); -} - -SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) { - SDLoc dl(N); - // Build a vector with undefined for the new nodes. - EVT VT = N->getValueType(0); - - // Integer BUILD_VECTOR operands may be larger than the node's vector element - // type. The UNDEFs need to have the same type as the existing operands. - EVT EltVT = N->getOperand(0).getValueType(); - unsigned NumElts = VT.getVectorNumElements(); - - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); - unsigned WidenNumElts = WidenVT.getVectorNumElements(); - - SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end()); - assert(WidenNumElts >= NumElts && "Shrinking vector instead of widening!"); - NewOps.append(WidenNumElts - NumElts, DAG.getUNDEF(EltVT)); - - return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, NewOps); -} - -SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) { - EVT InVT = N->getOperand(0).getValueType(); - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); - SDLoc dl(N); - unsigned WidenNumElts = WidenVT.getVectorNumElements(); - unsigned NumInElts = InVT.getVectorNumElements(); - unsigned NumOperands = N->getNumOperands(); - - bool InputWidened = false; // Indicates we need to widen the input. - if (getTypeAction(InVT) != TargetLowering::TypeWidenVector) { - if (WidenVT.getVectorNumElements() % InVT.getVectorNumElements() == 0) { - // Add undef vectors to widen to correct length. - unsigned NumConcat = WidenVT.getVectorNumElements() / - InVT.getVectorNumElements(); - SDValue UndefVal = DAG.getUNDEF(InVT); - SmallVector<SDValue, 16> Ops(NumConcat); - for (unsigned i=0; i < NumOperands; ++i) - Ops[i] = N->getOperand(i); - for (unsigned i = NumOperands; i != NumConcat; ++i) - Ops[i] = UndefVal; - return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, Ops); - } - } else { - InputWidened = true; - if (WidenVT == TLI.getTypeToTransformTo(*DAG.getContext(), InVT)) { - // The inputs and the result are widen to the same value. - unsigned i; - for (i=1; i < NumOperands; ++i) - if (N->getOperand(i).getOpcode() != ISD::UNDEF) - break; - - if (i == NumOperands) - // Everything but the first operand is an UNDEF so just return the - // widened first operand. - return GetWidenedVector(N->getOperand(0)); - - if (NumOperands == 2) { - // Replace concat of two operands with a shuffle. - SmallVector<int, 16> MaskOps(WidenNumElts, -1); - for (unsigned i = 0; i < NumInElts; ++i) { - MaskOps[i] = i; - MaskOps[i + NumInElts] = i + WidenNumElts; - } - return DAG.getVectorShuffle(WidenVT, dl, - GetWidenedVector(N->getOperand(0)), - GetWidenedVector(N->getOperand(1)), - &MaskOps[0]); - } - } - } - - // Fall back to use extracts and build vector. - EVT EltVT = WidenVT.getVectorElementType(); - SmallVector<SDValue, 16> Ops(WidenNumElts); - unsigned Idx = 0; - for (unsigned i=0; i < NumOperands; ++i) { - SDValue InOp = N->getOperand(i); - if (InputWidened) - InOp = GetWidenedVector(InOp); - for (unsigned j=0; j < NumInElts; ++j) - Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp, - DAG.getConstant(j, TLI.getVectorIdxTy())); - } - SDValue UndefVal = DAG.getUNDEF(EltVT); - for (; Idx < WidenNumElts; ++Idx) - Ops[Idx] = UndefVal; - return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops); -} - -SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) { - SDLoc dl(N); - SDValue InOp = N->getOperand(0); - SDValue RndOp = N->getOperand(3); - SDValue SatOp = N->getOperand(4); - - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); - unsigned WidenNumElts = WidenVT.getVectorNumElements(); - - EVT InVT = InOp.getValueType(); - EVT InEltVT = InVT.getVectorElementType(); - EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts); - - SDValue DTyOp = DAG.getValueType(WidenVT); - SDValue STyOp = DAG.getValueType(InWidenVT); - ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode(); - - unsigned InVTNumElts = InVT.getVectorNumElements(); - if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) { - InOp = GetWidenedVector(InOp); - InVT = InOp.getValueType(); - InVTNumElts = InVT.getVectorNumElements(); - if (InVTNumElts == WidenNumElts) - return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp, - SatOp, CvtCode); - } - - if (TLI.isTypeLegal(InWidenVT)) { - // Because the result and the input are different vector types, widening - // the result could create a legal type but widening the input might make - // it an illegal type that might lead to repeatedly splitting the input - // and then widening it. To avoid this, we widen the input only if - // it results in a legal type. - if (WidenNumElts % InVTNumElts == 0) { - // Widen the input and call convert on the widened input vector. - unsigned NumConcat = WidenNumElts/InVTNumElts; - SmallVector<SDValue, 16> Ops(NumConcat); - Ops[0] = InOp; - SDValue UndefVal = DAG.getUNDEF(InVT); - for (unsigned i = 1; i != NumConcat; ++i) - Ops[i] = UndefVal; - - InOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT, Ops); - return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp, - SatOp, CvtCode); - } - - if (InVTNumElts % WidenNumElts == 0) { - // Extract the input and convert the shorten input vector. - InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InWidenVT, InOp, - DAG.getConstant(0, TLI.getVectorIdxTy())); - return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp, - SatOp, CvtCode); - } - } - - // Otherwise unroll into some nasty scalar code and rebuild the vector. - SmallVector<SDValue, 16> Ops(WidenNumElts); - EVT EltVT = WidenVT.getVectorElementType(); - DTyOp = DAG.getValueType(EltVT); - STyOp = DAG.getValueType(InEltVT); - - unsigned MinElts = std::min(InVTNumElts, WidenNumElts); - unsigned i; - for (i=0; i < MinElts; ++i) { - SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp, - DAG.getConstant(i, TLI.getVectorIdxTy())); - Ops[i] = DAG.getConvertRndSat(WidenVT, dl, ExtVal, DTyOp, STyOp, RndOp, - SatOp, CvtCode); - } - - SDValue UndefVal = DAG.getUNDEF(EltVT); - for (; i < WidenNumElts; ++i) - Ops[i] = UndefVal; - - return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops); -} - -SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) { - EVT VT = N->getValueType(0); - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); - unsigned WidenNumElts = WidenVT.getVectorNumElements(); - SDValue InOp = N->getOperand(0); - SDValue Idx = N->getOperand(1); - SDLoc dl(N); - - if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector) - InOp = GetWidenedVector(InOp); - - EVT InVT = InOp.getValueType(); - - // Check if we can just return the input vector after widening. - uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); - if (IdxVal == 0 && InVT == WidenVT) - return InOp; - - // Check if we can extract from the vector. - unsigned InNumElts = InVT.getVectorNumElements(); - if (IdxVal % WidenNumElts == 0 && IdxVal + WidenNumElts < InNumElts) - return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, InOp, Idx); - - // We could try widening the input to the right length but for now, extract - // the original elements, fill the rest with undefs and build a vector. - SmallVector<SDValue, 16> Ops(WidenNumElts); - EVT EltVT = VT.getVectorElementType(); - unsigned NumElts = VT.getVectorNumElements(); - unsigned i; - for (i=0; i < NumElts; ++i) - Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp, - DAG.getConstant(IdxVal+i, TLI.getVectorIdxTy())); - - SDValue UndefVal = DAG.getUNDEF(EltVT); - for (; i < WidenNumElts; ++i) - Ops[i] = UndefVal; - return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops); -} - -SDValue DAGTypeLegalizer::WidenVecRes_INSERT_VECTOR_ELT(SDNode *N) { - SDValue InOp = GetWidenedVector(N->getOperand(0)); - return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), - InOp.getValueType(), InOp, - N->getOperand(1), N->getOperand(2)); -} - -SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) { - LoadSDNode *LD = cast<LoadSDNode>(N); - ISD::LoadExtType ExtType = LD->getExtensionType(); - - SDValue Result; - SmallVector<SDValue, 16> LdChain; // Chain for the series of load - if (ExtType != ISD::NON_EXTLOAD) - Result = GenWidenVectorExtLoads(LdChain, LD, ExtType); - else - Result = GenWidenVectorLoads(LdChain, LD); - - // If we generate a single load, we can use that for the chain. Otherwise, - // build a factor node to remember the multiple loads are independent and - // chain to that. - SDValue NewChain; - if (LdChain.size() == 1) - NewChain = LdChain[0]; - else - NewChain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, LdChain); - - // Modified the chain - switch anything that used the old chain to use - // the new one. - ReplaceValueWith(SDValue(N, 1), NewChain); - - return Result; -} - -SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) { - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); - return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), - WidenVT, N->getOperand(0)); -} - -SDValue DAGTypeLegalizer::WidenVecRes_SELECT(SDNode *N) { - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); - unsigned WidenNumElts = WidenVT.getVectorNumElements(); - - SDValue Cond1 = N->getOperand(0); - EVT CondVT = Cond1.getValueType(); - if (CondVT.isVector()) { - EVT CondEltVT = CondVT.getVectorElementType(); - EVT CondWidenVT = EVT::getVectorVT(*DAG.getContext(), - CondEltVT, WidenNumElts); - if (getTypeAction(CondVT) == TargetLowering::TypeWidenVector) - Cond1 = GetWidenedVector(Cond1); - - // If we have to split the condition there is no point in widening the - // select. This would result in an cycle of widening the select -> - // widening the condition operand -> splitting the condition operand -> - // splitting the select -> widening the select. Instead split this select - // further and widen the resulting type. - if (getTypeAction(CondVT) == TargetLowering::TypeSplitVector) { - SDValue SplitSelect = SplitVecOp_VSELECT(N, 0); - SDValue Res = ModifyToType(SplitSelect, WidenVT); - return Res; - } - - if (Cond1.getValueType() != CondWidenVT) - Cond1 = ModifyToType(Cond1, CondWidenVT); - } - - SDValue InOp1 = GetWidenedVector(N->getOperand(1)); - SDValue InOp2 = GetWidenedVector(N->getOperand(2)); - assert(InOp1.getValueType() == WidenVT && InOp2.getValueType() == WidenVT); - return DAG.getNode(N->getOpcode(), SDLoc(N), - WidenVT, Cond1, InOp1, InOp2); -} - -SDValue DAGTypeLegalizer::WidenVecRes_SELECT_CC(SDNode *N) { - SDValue InOp1 = GetWidenedVector(N->getOperand(2)); - SDValue InOp2 = GetWidenedVector(N->getOperand(3)); - return DAG.getNode(ISD::SELECT_CC, SDLoc(N), - InOp1.getValueType(), N->getOperand(0), - N->getOperand(1), InOp1, InOp2, N->getOperand(4)); -} - -SDValue DAGTypeLegalizer::WidenVecRes_SETCC(SDNode *N) { - assert(N->getValueType(0).isVector() == - N->getOperand(0).getValueType().isVector() && - "Scalar/Vector type mismatch"); - if (N->getValueType(0).isVector()) return WidenVecRes_VSETCC(N); - - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); - SDValue InOp1 = GetWidenedVector(N->getOperand(0)); - SDValue InOp2 = GetWidenedVector(N->getOperand(1)); - return DAG.getNode(ISD::SETCC, SDLoc(N), WidenVT, - InOp1, InOp2, N->getOperand(2)); -} - -SDValue DAGTypeLegalizer::WidenVecRes_UNDEF(SDNode *N) { - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); - return DAG.getUNDEF(WidenVT); -} - -SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N) { - EVT VT = N->getValueType(0); - SDLoc dl(N); - - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); - unsigned NumElts = VT.getVectorNumElements(); - unsigned WidenNumElts = WidenVT.getVectorNumElements(); - - SDValue InOp1 = GetWidenedVector(N->getOperand(0)); - SDValue InOp2 = GetWidenedVector(N->getOperand(1)); - - // Adjust mask based on new input vector length. - SmallVector<int, 16> NewMask; - for (unsigned i = 0; i != NumElts; ++i) { - int Idx = N->getMaskElt(i); - if (Idx < (int)NumElts) - NewMask.push_back(Idx); - else - NewMask.push_back(Idx - NumElts + WidenNumElts); - } - for (unsigned i = NumElts; i != WidenNumElts; ++i) - NewMask.push_back(-1); - return DAG.getVectorShuffle(WidenVT, dl, InOp1, InOp2, &NewMask[0]); -} - -SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) { - assert(N->getValueType(0).isVector() && - N->getOperand(0).getValueType().isVector() && - "Operands must be vectors"); - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)); - unsigned WidenNumElts = WidenVT.getVectorNumElements(); - - SDValue InOp1 = N->getOperand(0); - EVT InVT = InOp1.getValueType(); - assert(InVT.isVector() && "can not widen non-vector type"); - EVT WidenInVT = EVT::getVectorVT(*DAG.getContext(), - InVT.getVectorElementType(), WidenNumElts); - InOp1 = GetWidenedVector(InOp1); - SDValue InOp2 = GetWidenedVector(N->getOperand(1)); - - // Assume that the input and output will be widen appropriately. If not, - // we will have to unroll it at some point. - assert(InOp1.getValueType() == WidenInVT && - InOp2.getValueType() == WidenInVT && - "Input not widened to expected type!"); - (void)WidenInVT; - return DAG.getNode(ISD::SETCC, SDLoc(N), - WidenVT, InOp1, InOp2, N->getOperand(2)); -} - - -//===----------------------------------------------------------------------===// -// Widen Vector Operand -//===----------------------------------------------------------------------===// -bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned OpNo) { - DEBUG(dbgs() << "Widen node operand " << OpNo << ": "; - N->dump(&DAG); - dbgs() << "\n"); - SDValue Res = SDValue(); - - // See if the target wants to custom widen this node. - if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false)) - return false; - - switch (N->getOpcode()) { - default: -#ifndef NDEBUG - dbgs() << "WidenVectorOperand op #" << OpNo << ": "; - N->dump(&DAG); - dbgs() << "\n"; -#endif - llvm_unreachable("Do not know how to widen this operator's operand!"); - - case ISD::BITCAST: Res = WidenVecOp_BITCAST(N); break; - case ISD::CONCAT_VECTORS: Res = WidenVecOp_CONCAT_VECTORS(N); break; - case ISD::EXTRACT_SUBVECTOR: Res = WidenVecOp_EXTRACT_SUBVECTOR(N); break; - case ISD::EXTRACT_VECTOR_ELT: Res = WidenVecOp_EXTRACT_VECTOR_ELT(N); break; - case ISD::STORE: Res = WidenVecOp_STORE(N); break; - case ISD::SETCC: Res = WidenVecOp_SETCC(N); break; - - case ISD::ANY_EXTEND: - case ISD::SIGN_EXTEND: - case ISD::ZERO_EXTEND: - Res = WidenVecOp_EXTEND(N); - break; - - case ISD::FP_EXTEND: - case ISD::FP_TO_SINT: - case ISD::FP_TO_UINT: - case ISD::SINT_TO_FP: - case ISD::UINT_TO_FP: - case ISD::TRUNCATE: - Res = WidenVecOp_Convert(N); - break; - } - - // If Res is null, the sub-method took care of registering the result. - if (!Res.getNode()) return false; - - // If the result is N, the sub-method updated N in place. Tell the legalizer - // core about this. - if (Res.getNode() == N) - return true; - - - assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && - "Invalid operand expansion"); - - ReplaceValueWith(SDValue(N, 0), Res); - return false; -} - -SDValue DAGTypeLegalizer::WidenVecOp_EXTEND(SDNode *N) { - SDLoc DL(N); - EVT VT = N->getValueType(0); - - SDValue InOp = N->getOperand(0); - // If some legalization strategy other than widening is used on the operand, - // we can't safely assume that just extending the low lanes is the correct - // transformation. - if (getTypeAction(InOp.getValueType()) != TargetLowering::TypeWidenVector) - return WidenVecOp_Convert(N); - InOp = GetWidenedVector(InOp); - assert(VT.getVectorNumElements() < - InOp.getValueType().getVectorNumElements() && - "Input wasn't widened!"); - - // We may need to further widen the operand until it has the same total - // vector size as the result. - EVT InVT = InOp.getValueType(); - if (InVT.getSizeInBits() != VT.getSizeInBits()) { - EVT InEltVT = InVT.getVectorElementType(); - for (int i = MVT::FIRST_VECTOR_VALUETYPE, e = MVT::LAST_VECTOR_VALUETYPE; i < e; ++i) { - EVT FixedVT = (MVT::SimpleValueType)i; - EVT FixedEltVT = FixedVT.getVectorElementType(); - if (TLI.isTypeLegal(FixedVT) && - FixedVT.getSizeInBits() == VT.getSizeInBits() && - FixedEltVT == InEltVT) { - assert(FixedVT.getVectorNumElements() >= VT.getVectorNumElements() && - "Not enough elements in the fixed type for the operand!"); - assert(FixedVT.getVectorNumElements() != InVT.getVectorNumElements() && - "We can't have the same type as we started with!"); - if (FixedVT.getVectorNumElements() > InVT.getVectorNumElements()) - InOp = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, FixedVT, - DAG.getUNDEF(FixedVT), InOp, - DAG.getConstant(0, TLI.getVectorIdxTy())); - else - InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, FixedVT, InOp, - DAG.getConstant(0, TLI.getVectorIdxTy())); - break; - } - } - InVT = InOp.getValueType(); - if (InVT.getSizeInBits() != VT.getSizeInBits()) - // We couldn't find a legal vector type that was a widening of the input - // and could be extended in-register to the result type, so we have to - // scalarize. - return WidenVecOp_Convert(N); - } - - // Use special DAG nodes to represent the operation of extending the - // low lanes. - switch (N->getOpcode()) { - default: - llvm_unreachable("Extend legalization on on extend operation!"); - case ISD::ANY_EXTEND: - return DAG.getAnyExtendVectorInReg(InOp, DL, VT); - case ISD::SIGN_EXTEND: - return DAG.getSignExtendVectorInReg(InOp, DL, VT); - case ISD::ZERO_EXTEND: - return DAG.getZeroExtendVectorInReg(InOp, DL, VT); - } -} - -SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) { - // Since the result is legal and the input is illegal, it is unlikely - // that we can fix the input to a legal type so unroll the convert - // into some scalar code and create a nasty build vector. - EVT VT = N->getValueType(0); - EVT EltVT = VT.getVectorElementType(); - SDLoc dl(N); - unsigned NumElts = VT.getVectorNumElements(); - SDValue InOp = N->getOperand(0); - if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector) - InOp = GetWidenedVector(InOp); - EVT InVT = InOp.getValueType(); - EVT InEltVT = InVT.getVectorElementType(); - - unsigned Opcode = N->getOpcode(); - SmallVector<SDValue, 16> Ops(NumElts); - for (unsigned i=0; i < NumElts; ++i) - Ops[i] = DAG.getNode(Opcode, dl, EltVT, - DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp, - DAG.getConstant(i, TLI.getVectorIdxTy()))); - - return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); -} - -SDValue DAGTypeLegalizer::WidenVecOp_BITCAST(SDNode *N) { - EVT VT = N->getValueType(0); - SDValue InOp = GetWidenedVector(N->getOperand(0)); - EVT InWidenVT = InOp.getValueType(); - SDLoc dl(N); - - // Check if we can convert between two legal vector types and extract. - unsigned InWidenSize = InWidenVT.getSizeInBits(); - unsigned Size = VT.getSizeInBits(); - // x86mmx is not an acceptable vector element type, so don't try. - if (InWidenSize % Size == 0 && !VT.isVector() && VT != MVT::x86mmx) { - unsigned NewNumElts = InWidenSize / Size; - EVT NewVT = EVT::getVectorVT(*DAG.getContext(), VT, NewNumElts); - if (TLI.isTypeLegal(NewVT)) { - SDValue BitOp = DAG.getNode(ISD::BITCAST, dl, NewVT, InOp); - return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp, - DAG.getConstant(0, TLI.getVectorIdxTy())); - } - } - - return CreateStackStoreLoad(InOp, VT); -} - -SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) { - // If the input vector is not legal, it is likely that we will not find a - // legal vector of the same size. Replace the concatenate vector with a - // nasty build vector. - EVT VT = N->getValueType(0); - EVT EltVT = VT.getVectorElementType(); - SDLoc dl(N); - unsigned NumElts = VT.getVectorNumElements(); - SmallVector<SDValue, 16> Ops(NumElts); - - EVT InVT = N->getOperand(0).getValueType(); - unsigned NumInElts = InVT.getVectorNumElements(); - - unsigned Idx = 0; - unsigned NumOperands = N->getNumOperands(); - for (unsigned i=0; i < NumOperands; ++i) { - SDValue InOp = N->getOperand(i); - if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector) - InOp = GetWidenedVector(InOp); - for (unsigned j=0; j < NumInElts; ++j) - Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp, - DAG.getConstant(j, TLI.getVectorIdxTy())); - } - return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); -} - -SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N) { - SDValue InOp = GetWidenedVector(N->getOperand(0)); - return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), - N->getValueType(0), InOp, N->getOperand(1)); -} - -SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N) { - SDValue InOp = GetWidenedVector(N->getOperand(0)); - return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), - N->getValueType(0), InOp, N->getOperand(1)); -} - -SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) { - // We have to widen the value but we want only to store the original - // vector type. - StoreSDNode *ST = cast<StoreSDNode>(N); - - SmallVector<SDValue, 16> StChain; - if (ST->isTruncatingStore()) - GenWidenVectorTruncStores(StChain, ST); - else - GenWidenVectorStores(StChain, ST); - - if (StChain.size() == 1) - return StChain[0]; - else - return DAG.getNode(ISD::TokenFactor, SDLoc(ST), MVT::Other, StChain); -} - -SDValue DAGTypeLegalizer::WidenVecOp_SETCC(SDNode *N) { - SDValue InOp0 = GetWidenedVector(N->getOperand(0)); - SDValue InOp1 = GetWidenedVector(N->getOperand(1)); - SDLoc dl(N); - - // WARNING: In this code we widen the compare instruction with garbage. - // This garbage may contain denormal floats which may be slow. Is this a real - // concern ? Should we zero the unused lanes if this is a float compare ? - - // Get a new SETCC node to compare the newly widened operands. - // Only some of the compared elements are legal. - EVT SVT = TLI.getSetCCResultType(*DAG.getContext(), InOp0.getValueType()); - SDValue WideSETCC = DAG.getNode(ISD::SETCC, SDLoc(N), - SVT, InOp0, InOp1, N->getOperand(2)); - - // Extract the needed results from the result vector. - EVT ResVT = EVT::getVectorVT(*DAG.getContext(), - SVT.getVectorElementType(), - N->getValueType(0).getVectorNumElements()); - SDValue CC = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, - ResVT, WideSETCC, DAG.getConstant(0, - TLI.getVectorIdxTy())); - - return PromoteTargetBoolean(CC, N->getValueType(0)); -} - - -//===----------------------------------------------------------------------===// -// Vector Widening Utilities -//===----------------------------------------------------------------------===// - -// Utility function to find the type to chop up a widen vector for load/store -// TLI: Target lowering used to determine legal types. -// Width: Width left need to load/store. -// WidenVT: The widen vector type to load to/store from -// Align: If 0, don't allow use of a wider type -// WidenEx: If Align is not 0, the amount additional we can load/store from. - -static EVT FindMemType(SelectionDAG& DAG, const TargetLowering &TLI, - unsigned Width, EVT WidenVT, - unsigned Align = 0, unsigned WidenEx = 0) { - EVT WidenEltVT = WidenVT.getVectorElementType(); - unsigned WidenWidth = WidenVT.getSizeInBits(); - unsigned WidenEltWidth = WidenEltVT.getSizeInBits(); - unsigned AlignInBits = Align*8; - - // If we have one element to load/store, return it. - EVT RetVT = WidenEltVT; - if (Width == WidenEltWidth) - return RetVT; - - // See if there is larger legal integer than the element type to load/store - unsigned VT; - for (VT = (unsigned)MVT::LAST_INTEGER_VALUETYPE; - VT >= (unsigned)MVT::FIRST_INTEGER_VALUETYPE; --VT) { - EVT MemVT((MVT::SimpleValueType) VT); - unsigned MemVTWidth = MemVT.getSizeInBits(); - if (MemVT.getSizeInBits() <= WidenEltWidth) - break; - if (TLI.isTypeLegal(MemVT) && (WidenWidth % MemVTWidth) == 0 && - isPowerOf2_32(WidenWidth / MemVTWidth) && - (MemVTWidth <= Width || - (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) { - RetVT = MemVT; - break; - } - } - - // See if there is a larger vector type to load/store that has the same vector - // element type and is evenly divisible with the WidenVT. - for (VT = (unsigned)MVT::LAST_VECTOR_VALUETYPE; - VT >= (unsigned)MVT::FIRST_VECTOR_VALUETYPE; --VT) { - EVT MemVT = (MVT::SimpleValueType) VT; - unsigned MemVTWidth = MemVT.getSizeInBits(); - if (TLI.isTypeLegal(MemVT) && WidenEltVT == MemVT.getVectorElementType() && - (WidenWidth % MemVTWidth) == 0 && - isPowerOf2_32(WidenWidth / MemVTWidth) && - (MemVTWidth <= Width || - (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) { - if (RetVT.getSizeInBits() < MemVTWidth || MemVT == WidenVT) - return MemVT; - } - } - - return RetVT; -} - -// Builds a vector type from scalar loads -// VecTy: Resulting Vector type -// LDOps: Load operators to build a vector type -// [Start,End) the list of loads to use. -static SDValue BuildVectorFromScalar(SelectionDAG& DAG, EVT VecTy, - SmallVectorImpl<SDValue> &LdOps, - unsigned Start, unsigned End) { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SDLoc dl(LdOps[Start]); - EVT LdTy = LdOps[Start].getValueType(); - unsigned Width = VecTy.getSizeInBits(); - unsigned NumElts = Width / LdTy.getSizeInBits(); - EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), LdTy, NumElts); - - unsigned Idx = 1; - SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT,LdOps[Start]); - - for (unsigned i = Start + 1; i != End; ++i) { - EVT NewLdTy = LdOps[i].getValueType(); - if (NewLdTy != LdTy) { - NumElts = Width / NewLdTy.getSizeInBits(); - NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewLdTy, NumElts); - VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, VecOp); - // Readjust position and vector position based on new load type - Idx = Idx * LdTy.getSizeInBits() / NewLdTy.getSizeInBits(); - LdTy = NewLdTy; - } - VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVecVT, VecOp, LdOps[i], - DAG.getConstant(Idx++, TLI.getVectorIdxTy())); - } - return DAG.getNode(ISD::BITCAST, dl, VecTy, VecOp); -} - -SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain, - LoadSDNode *LD) { - // The strategy assumes that we can efficiently load powers of two widths. - // The routines chops the vector into the largest vector loads with the same - // element type or scalar loads and then recombines it to the widen vector - // type. - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0)); - unsigned WidenWidth = WidenVT.getSizeInBits(); - EVT LdVT = LD->getMemoryVT(); - SDLoc dl(LD); - assert(LdVT.isVector() && WidenVT.isVector()); - assert(LdVT.getVectorElementType() == WidenVT.getVectorElementType()); - - // Load information - SDValue Chain = LD->getChain(); - SDValue BasePtr = LD->getBasePtr(); - unsigned Align = LD->getAlignment(); - bool isVolatile = LD->isVolatile(); - bool isNonTemporal = LD->isNonTemporal(); - bool isInvariant = LD->isInvariant(); - AAMDNodes AAInfo = LD->getAAInfo(); - - int LdWidth = LdVT.getSizeInBits(); - int WidthDiff = WidenWidth - LdWidth; // Difference - unsigned LdAlign = (isVolatile) ? 0 : Align; // Allow wider loads - - // Find the vector type that can load from. - EVT NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff); - int NewVTWidth = NewVT.getSizeInBits(); - SDValue LdOp = DAG.getLoad(NewVT, dl, Chain, BasePtr, LD->getPointerInfo(), - isVolatile, isNonTemporal, isInvariant, Align, - AAInfo); - LdChain.push_back(LdOp.getValue(1)); - - // Check if we can load the element with one instruction - if (LdWidth <= NewVTWidth) { - if (!NewVT.isVector()) { - unsigned NumElts = WidenWidth / NewVTWidth; - EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts); - SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT, LdOp); - return DAG.getNode(ISD::BITCAST, dl, WidenVT, VecOp); - } - if (NewVT == WidenVT) - return LdOp; - - assert(WidenWidth % NewVTWidth == 0); - unsigned NumConcat = WidenWidth / NewVTWidth; - SmallVector<SDValue, 16> ConcatOps(NumConcat); - SDValue UndefVal = DAG.getUNDEF(NewVT); - ConcatOps[0] = LdOp; - for (unsigned i = 1; i != NumConcat; ++i) - ConcatOps[i] = UndefVal; - return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, ConcatOps); - } - - // Load vector by using multiple loads from largest vector to scalar - SmallVector<SDValue, 16> LdOps; - LdOps.push_back(LdOp); - - LdWidth -= NewVTWidth; - unsigned Offset = 0; - - while (LdWidth > 0) { - unsigned Increment = NewVTWidth / 8; - Offset += Increment; - BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, - DAG.getConstant(Increment, BasePtr.getValueType())); - - SDValue L; - if (LdWidth < NewVTWidth) { - // Our current type we are using is too large, find a better size - NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff); - NewVTWidth = NewVT.getSizeInBits(); - L = DAG.getLoad(NewVT, dl, Chain, BasePtr, - LD->getPointerInfo().getWithOffset(Offset), isVolatile, - isNonTemporal, isInvariant, MinAlign(Align, Increment), - AAInfo); - LdChain.push_back(L.getValue(1)); - if (L->getValueType(0).isVector()) { - SmallVector<SDValue, 16> Loads; - Loads.push_back(L); - unsigned size = L->getValueSizeInBits(0); - while (size < LdOp->getValueSizeInBits(0)) { - Loads.push_back(DAG.getUNDEF(L->getValueType(0))); - size += L->getValueSizeInBits(0); - } - L = DAG.getNode(ISD::CONCAT_VECTORS, dl, LdOp->getValueType(0), Loads); - } - } else { - L = DAG.getLoad(NewVT, dl, Chain, BasePtr, - LD->getPointerInfo().getWithOffset(Offset), isVolatile, - isNonTemporal, isInvariant, MinAlign(Align, Increment), - AAInfo); - LdChain.push_back(L.getValue(1)); - } - - LdOps.push_back(L); - - - LdWidth -= NewVTWidth; - } - - // Build the vector from the loads operations - unsigned End = LdOps.size(); - if (!LdOps[0].getValueType().isVector()) - // All the loads are scalar loads. - return BuildVectorFromScalar(DAG, WidenVT, LdOps, 0, End); - - // If the load contains vectors, build the vector using concat vector. - // All of the vectors used to loads are power of 2 and the scalars load - // can be combined to make a power of 2 vector. - SmallVector<SDValue, 16> ConcatOps(End); - int i = End - 1; - int Idx = End; - EVT LdTy = LdOps[i].getValueType(); - // First combine the scalar loads to a vector - if (!LdTy.isVector()) { - for (--i; i >= 0; --i) { - LdTy = LdOps[i].getValueType(); - if (LdTy.isVector()) - break; - } - ConcatOps[--Idx] = BuildVectorFromScalar(DAG, LdTy, LdOps, i+1, End); - } - ConcatOps[--Idx] = LdOps[i]; - for (--i; i >= 0; --i) { - EVT NewLdTy = LdOps[i].getValueType(); - if (NewLdTy != LdTy) { - // Create a larger vector - ConcatOps[End-1] = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewLdTy, - makeArrayRef(&ConcatOps[Idx], End - Idx)); - Idx = End - 1; - LdTy = NewLdTy; - } - ConcatOps[--Idx] = LdOps[i]; - } - - if (WidenWidth == LdTy.getSizeInBits()*(End - Idx)) - return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, - makeArrayRef(&ConcatOps[Idx], End - Idx)); - - // We need to fill the rest with undefs to build the vector - unsigned NumOps = WidenWidth / LdTy.getSizeInBits(); - SmallVector<SDValue, 16> WidenOps(NumOps); - SDValue UndefVal = DAG.getUNDEF(LdTy); - { - unsigned i = 0; - for (; i != End-Idx; ++i) - WidenOps[i] = ConcatOps[Idx+i]; - for (; i != NumOps; ++i) - WidenOps[i] = UndefVal; - } - return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, WidenOps); -} - -SDValue -DAGTypeLegalizer::GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain, - LoadSDNode *LD, - ISD::LoadExtType ExtType) { - // For extension loads, it may not be more efficient to chop up the vector - // and then extended it. Instead, we unroll the load and build a new vector. - EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0)); - EVT LdVT = LD->getMemoryVT(); - SDLoc dl(LD); - assert(LdVT.isVector() && WidenVT.isVector()); - - // Load information - SDValue Chain = LD->getChain(); - SDValue BasePtr = LD->getBasePtr(); - unsigned Align = LD->getAlignment(); - bool isVolatile = LD->isVolatile(); - bool isNonTemporal = LD->isNonTemporal(); - bool isInvariant = LD->isInvariant(); - AAMDNodes AAInfo = LD->getAAInfo(); - - EVT EltVT = WidenVT.getVectorElementType(); - EVT LdEltVT = LdVT.getVectorElementType(); - unsigned NumElts = LdVT.getVectorNumElements(); - - // Load each element and widen - unsigned WidenNumElts = WidenVT.getVectorNumElements(); - SmallVector<SDValue, 16> Ops(WidenNumElts); - unsigned Increment = LdEltVT.getSizeInBits() / 8; - Ops[0] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr, - LD->getPointerInfo(), - LdEltVT, isVolatile, isNonTemporal, isInvariant, - Align, AAInfo); - LdChain.push_back(Ops[0].getValue(1)); - unsigned i = 0, Offset = Increment; - for (i=1; i < NumElts; ++i, Offset += Increment) { - SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), - BasePtr, - DAG.getConstant(Offset, - BasePtr.getValueType())); - Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr, - LD->getPointerInfo().getWithOffset(Offset), LdEltVT, - isVolatile, isNonTemporal, isInvariant, Align, - AAInfo); - LdChain.push_back(Ops[i].getValue(1)); - } - - // Fill the rest with undefs - SDValue UndefVal = DAG.getUNDEF(EltVT); - for (; i != WidenNumElts; ++i) - Ops[i] = UndefVal; - - return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops); -} - - -void DAGTypeLegalizer::GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, - StoreSDNode *ST) { - // The strategy assumes that we can efficiently store powers of two widths. - // The routines chops the vector into the largest vector stores with the same - // element type or scalar stores. - SDValue Chain = ST->getChain(); - SDValue BasePtr = ST->getBasePtr(); - unsigned Align = ST->getAlignment(); - bool isVolatile = ST->isVolatile(); - bool isNonTemporal = ST->isNonTemporal(); - AAMDNodes AAInfo = ST->getAAInfo(); - SDValue ValOp = GetWidenedVector(ST->getValue()); - SDLoc dl(ST); - - EVT StVT = ST->getMemoryVT(); - unsigned StWidth = StVT.getSizeInBits(); - EVT ValVT = ValOp.getValueType(); - unsigned ValWidth = ValVT.getSizeInBits(); - EVT ValEltVT = ValVT.getVectorElementType(); - unsigned ValEltWidth = ValEltVT.getSizeInBits(); - assert(StVT.getVectorElementType() == ValEltVT); - - int Idx = 0; // current index to store - unsigned Offset = 0; // offset from base to store - while (StWidth != 0) { - // Find the largest vector type we can store with - EVT NewVT = FindMemType(DAG, TLI, StWidth, ValVT); - unsigned NewVTWidth = NewVT.getSizeInBits(); - unsigned Increment = NewVTWidth / 8; - if (NewVT.isVector()) { - unsigned NumVTElts = NewVT.getVectorNumElements(); - do { - SDValue EOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT, ValOp, - DAG.getConstant(Idx, TLI.getVectorIdxTy())); - StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr, - ST->getPointerInfo().getWithOffset(Offset), - isVolatile, isNonTemporal, - MinAlign(Align, Offset), AAInfo)); - StWidth -= NewVTWidth; - Offset += Increment; - Idx += NumVTElts; - BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, - DAG.getConstant(Increment, BasePtr.getValueType())); - } while (StWidth != 0 && StWidth >= NewVTWidth); - } else { - // Cast the vector to the scalar type we can store - unsigned NumElts = ValWidth / NewVTWidth; - EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts); - SDValue VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, ValOp); - // Readjust index position based on new vector type - Idx = Idx * ValEltWidth / NewVTWidth; - do { - SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewVT, VecOp, - DAG.getConstant(Idx++, TLI.getVectorIdxTy())); - StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr, - ST->getPointerInfo().getWithOffset(Offset), - isVolatile, isNonTemporal, - MinAlign(Align, Offset), AAInfo)); - StWidth -= NewVTWidth; - Offset += Increment; - BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, - DAG.getConstant(Increment, BasePtr.getValueType())); - } while (StWidth != 0 && StWidth >= NewVTWidth); - // Restore index back to be relative to the original widen element type - Idx = Idx * NewVTWidth / ValEltWidth; - } - } -} - -void -DAGTypeLegalizer::GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain, - StoreSDNode *ST) { - // For extension loads, it may not be more efficient to truncate the vector - // and then store it. Instead, we extract each element and then store it. - SDValue Chain = ST->getChain(); - SDValue BasePtr = ST->getBasePtr(); - unsigned Align = ST->getAlignment(); - bool isVolatile = ST->isVolatile(); - bool isNonTemporal = ST->isNonTemporal(); - AAMDNodes AAInfo = ST->getAAInfo(); - SDValue ValOp = GetWidenedVector(ST->getValue()); - SDLoc dl(ST); - - EVT StVT = ST->getMemoryVT(); - EVT ValVT = ValOp.getValueType(); - - // It must be true that we the widen vector type is bigger than where - // we need to store. - assert(StVT.isVector() && ValOp.getValueType().isVector()); - assert(StVT.bitsLT(ValOp.getValueType())); - - // For truncating stores, we can not play the tricks of chopping legal - // vector types and bit cast it to the right type. Instead, we unroll - // the store. - EVT StEltVT = StVT.getVectorElementType(); - EVT ValEltVT = ValVT.getVectorElementType(); - unsigned Increment = ValEltVT.getSizeInBits() / 8; - unsigned NumElts = StVT.getVectorNumElements(); - SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp, - DAG.getConstant(0, TLI.getVectorIdxTy())); - StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, BasePtr, - ST->getPointerInfo(), StEltVT, - isVolatile, isNonTemporal, Align, - AAInfo)); - unsigned Offset = Increment; - for (unsigned i=1; i < NumElts; ++i, Offset += Increment) { - SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), - BasePtr, DAG.getConstant(Offset, - BasePtr.getValueType())); - SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp, - DAG.getConstant(0, TLI.getVectorIdxTy())); - StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, NewBasePtr, - ST->getPointerInfo().getWithOffset(Offset), - StEltVT, isVolatile, isNonTemporal, - MinAlign(Align, Offset), AAInfo)); - } -} - -/// Modifies a vector input (widen or narrows) to a vector of NVT. The -/// input vector must have the same element type as NVT. -SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, EVT NVT) { - // Note that InOp might have been widened so it might already have - // the right width or it might need be narrowed. - EVT InVT = InOp.getValueType(); - assert(InVT.getVectorElementType() == NVT.getVectorElementType() && - "input and widen element type must match"); - SDLoc dl(InOp); - - // Check if InOp already has the right width. - if (InVT == NVT) - return InOp; - - unsigned InNumElts = InVT.getVectorNumElements(); - unsigned WidenNumElts = NVT.getVectorNumElements(); - if (WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0) { - unsigned NumConcat = WidenNumElts / InNumElts; - SmallVector<SDValue, 16> Ops(NumConcat); - SDValue UndefVal = DAG.getUNDEF(InVT); - Ops[0] = InOp; - for (unsigned i = 1; i != NumConcat; ++i) - Ops[i] = UndefVal; - - return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, Ops); - } - - if (WidenNumElts < InNumElts && InNumElts % WidenNumElts) - return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, InOp, - DAG.getConstant(0, TLI.getVectorIdxTy())); - - // Fall back to extract and build. - SmallVector<SDValue, 16> Ops(WidenNumElts); - EVT EltVT = NVT.getVectorElementType(); - unsigned MinNumElts = std::min(WidenNumElts, InNumElts); - unsigned Idx; - for (Idx = 0; Idx < MinNumElts; ++Idx) - Ops[Idx] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp, - DAG.getConstant(Idx, TLI.getVectorIdxTy())); - - SDValue UndefVal = DAG.getUNDEF(EltVT); - for ( ; Idx < WidenNumElts; ++Idx) - Ops[Idx] = UndefVal; - return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Ops); -} +//===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file performs vector type splitting and scalarization for LegalizeTypes.
+// Scalarization is the act of changing a computation in an illegal one-element
+// vector type to be a computation in its scalar element type. For example,
+// implementing <1 x f32> arithmetic in a scalar f32 register. This is needed
+// as a base case when scalarizing vector arithmetic like <4 x f32>, which
+// eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
+// types.
+// Splitting is the act of changing a computation in an invalid vector type to
+// be a computation in two vectors of half the size. For example, implementing
+// <128 x f32> operations in terms of two <64 x f32> operations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "LegalizeTypes.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "legalize-types"
+
+//===----------------------------------------------------------------------===//
+// Result Vector Scalarization: <1 x ty> -> ty.
+//===----------------------------------------------------------------------===//
+
+void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
+ DEBUG(dbgs() << "Scalarize node result " << ResNo << ": ";
+ N->dump(&DAG);
+ dbgs() << "\n");
+ SDValue R = SDValue();
+
+ switch (N->getOpcode()) {
+ default:
+#ifndef NDEBUG
+ dbgs() << "ScalarizeVectorResult #" << ResNo << ": ";
+ N->dump(&DAG);
+ dbgs() << "\n";
+#endif
+ report_fatal_error("Do not know how to scalarize the result of this "
+ "operator!\n");
+
+ case ISD::MERGE_VALUES: R = ScalarizeVecRes_MERGE_VALUES(N, ResNo);break;
+ case ISD::BITCAST: R = ScalarizeVecRes_BITCAST(N); break;
+ case ISD::BUILD_VECTOR: R = ScalarizeVecRes_BUILD_VECTOR(N); break;
+ case ISD::CONVERT_RNDSAT: R = ScalarizeVecRes_CONVERT_RNDSAT(N); break;
+ case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
+ case ISD::FP_ROUND: R = ScalarizeVecRes_FP_ROUND(N); break;
+ case ISD::FP_ROUND_INREG: R = ScalarizeVecRes_InregOp(N); break;
+ case ISD::FPOWI: R = ScalarizeVecRes_FPOWI(N); break;
+ case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
+ case ISD::LOAD: R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
+ case ISD::SCALAR_TO_VECTOR: R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
+ case ISD::SIGN_EXTEND_INREG: R = ScalarizeVecRes_InregOp(N); break;
+ case ISD::VSELECT: R = ScalarizeVecRes_VSELECT(N); break;
+ case ISD::SELECT: R = ScalarizeVecRes_SELECT(N); break;
+ case ISD::SELECT_CC: R = ScalarizeVecRes_SELECT_CC(N); break;
+ case ISD::SETCC: R = ScalarizeVecRes_SETCC(N); break;
+ case ISD::UNDEF: R = ScalarizeVecRes_UNDEF(N); break;
+ case ISD::VECTOR_SHUFFLE: R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
+ case ISD::ANY_EXTEND:
+ case ISD::BSWAP:
+ case ISD::CTLZ:
+ case ISD::CTLZ_ZERO_UNDEF:
+ case ISD::CTPOP:
+ case ISD::CTTZ:
+ case ISD::CTTZ_ZERO_UNDEF:
+ case ISD::FABS:
+ case ISD::FCEIL:
+ case ISD::FCOS:
+ case ISD::FEXP:
+ case ISD::FEXP2:
+ case ISD::FFLOOR:
+ case ISD::FLOG:
+ case ISD::FLOG10:
+ case ISD::FLOG2:
+ case ISD::FNEARBYINT:
+ case ISD::FNEG:
+ case ISD::FP_EXTEND:
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT:
+ case ISD::FRINT:
+ case ISD::FROUND:
+ case ISD::FSIN:
+ case ISD::FSQRT:
+ case ISD::FTRUNC:
+ case ISD::SIGN_EXTEND:
+ case ISD::SINT_TO_FP:
+ case ISD::TRUNCATE:
+ case ISD::UINT_TO_FP:
+ case ISD::ZERO_EXTEND:
+ R = ScalarizeVecRes_UnaryOp(N);
+ break;
+
+ case ISD::ADD:
+ case ISD::AND:
+ case ISD::FADD:
+ case ISD::FCOPYSIGN:
+ case ISD::FDIV:
+ case ISD::FMUL:
+ case ISD::FMINNUM:
+ case ISD::FMAXNUM:
+
+ case ISD::FPOW:
+ case ISD::FREM:
+ case ISD::FSUB:
+ case ISD::MUL:
+ case ISD::OR:
+ case ISD::SDIV:
+ case ISD::SREM:
+ case ISD::SUB:
+ case ISD::UDIV:
+ case ISD::UREM:
+ case ISD::XOR:
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL:
+ R = ScalarizeVecRes_BinOp(N);
+ break;
+ case ISD::FMA:
+ R = ScalarizeVecRes_TernaryOp(N);
+ break;
+ }
+
+ // If R is null, the sub-method took care of registering the result.
+ if (R.getNode())
+ SetScalarizedVector(SDValue(N, ResNo), R);
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
+ SDValue LHS = GetScalarizedVector(N->getOperand(0));
+ SDValue RHS = GetScalarizedVector(N->getOperand(1));
+ return DAG.getNode(N->getOpcode(), SDLoc(N),
+ LHS.getValueType(), LHS, RHS);
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_TernaryOp(SDNode *N) {
+ SDValue Op0 = GetScalarizedVector(N->getOperand(0));
+ SDValue Op1 = GetScalarizedVector(N->getOperand(1));
+ SDValue Op2 = GetScalarizedVector(N->getOperand(2));
+ return DAG.getNode(N->getOpcode(), SDLoc(N),
+ Op0.getValueType(), Op0, Op1, Op2);
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_MERGE_VALUES(SDNode *N,
+ unsigned ResNo) {
+ SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
+ return GetScalarizedVector(Op);
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_BITCAST(SDNode *N) {
+ EVT NewVT = N->getValueType(0).getVectorElementType();
+ return DAG.getNode(ISD::BITCAST, SDLoc(N),
+ NewVT, N->getOperand(0));
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_BUILD_VECTOR(SDNode *N) {
+ EVT EltVT = N->getValueType(0).getVectorElementType();
+ SDValue InOp = N->getOperand(0);
+ // The BUILD_VECTOR operands may be of wider element types and
+ // we may need to truncate them back to the requested return type.
+ if (EltVT.isInteger())
+ return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
+ return InOp;
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) {
+ EVT NewVT = N->getValueType(0).getVectorElementType();
+ SDValue Op0 = GetScalarizedVector(N->getOperand(0));
+ return DAG.getConvertRndSat(NewVT, SDLoc(N),
+ Op0, DAG.getValueType(NewVT),
+ DAG.getValueType(Op0.getValueType()),
+ N->getOperand(3),
+ N->getOperand(4),
+ cast<CvtRndSatSDNode>(N)->getCvtCode());
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
+ N->getValueType(0).getVectorElementType(),
+ N->getOperand(0), N->getOperand(1));
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_FP_ROUND(SDNode *N) {
+ EVT NewVT = N->getValueType(0).getVectorElementType();
+ SDValue Op = GetScalarizedVector(N->getOperand(0));
+ return DAG.getNode(ISD::FP_ROUND, SDLoc(N),
+ NewVT, Op, N->getOperand(1));
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) {
+ SDValue Op = GetScalarizedVector(N->getOperand(0));
+ return DAG.getNode(ISD::FPOWI, SDLoc(N),
+ Op.getValueType(), Op, N->getOperand(1));
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
+ // The value to insert may have a wider type than the vector element type,
+ // so be sure to truncate it to the element type if necessary.
+ SDValue Op = N->getOperand(1);
+ EVT EltVT = N->getValueType(0).getVectorElementType();
+ if (Op.getValueType() != EltVT)
+ // FIXME: Can this happen for floating point types?
+ Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, Op);
+ return Op;
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
+ assert(N->isUnindexed() && "Indexed vector load?");
+
+ SDValue Result = DAG.getLoad(ISD::UNINDEXED,
+ N->getExtensionType(),
+ N->getValueType(0).getVectorElementType(),
+ SDLoc(N),
+ N->getChain(), N->getBasePtr(),
+ DAG.getUNDEF(N->getBasePtr().getValueType()),
+ N->getPointerInfo(),
+ N->getMemoryVT().getVectorElementType(),
+ N->isVolatile(), N->isNonTemporal(),
+ N->isInvariant(), N->getOriginalAlignment(),
+ N->getAAInfo());
+
+ // Legalized the chain result - switch anything that used the old chain to
+ // use the new one.
+ ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
+ return Result;
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
+ // Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
+ EVT DestVT = N->getValueType(0).getVectorElementType();
+ SDValue Op = N->getOperand(0);
+ EVT OpVT = Op.getValueType();
+ SDLoc DL(N);
+ // The result needs scalarizing, but it's not a given that the source does.
+ // This is a workaround for targets where it's impossible to scalarize the
+ // result of a conversion, because the source type is legal.
+ // For instance, this happens on AArch64: v1i1 is illegal but v1i{8,16,32}
+ // are widened to v8i8, v4i16, and v2i32, which is legal, because v1i64 is
+ // legal and was not scalarized.
+ // See the similar logic in ScalarizeVecRes_VSETCC
+ if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
+ Op = GetScalarizedVector(Op);
+ } else {
+ EVT VT = OpVT.getVectorElementType();
+ Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op,
+ DAG.getConstant(0, TLI.getVectorIdxTy()));
+ }
+ return DAG.getNode(N->getOpcode(), SDLoc(N), DestVT, Op);
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_InregOp(SDNode *N) {
+ EVT EltVT = N->getValueType(0).getVectorElementType();
+ EVT ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT().getVectorElementType();
+ SDValue LHS = GetScalarizedVector(N->getOperand(0));
+ return DAG.getNode(N->getOpcode(), SDLoc(N), EltVT,
+ LHS, DAG.getValueType(ExtVT));
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
+ // If the operand is wider than the vector element type then it is implicitly
+ // truncated. Make that explicit here.
+ EVT EltVT = N->getValueType(0).getVectorElementType();
+ SDValue InOp = N->getOperand(0);
+ if (InOp.getValueType() != EltVT)
+ return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
+ return InOp;
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_VSELECT(SDNode *N) {
+ SDValue Cond = GetScalarizedVector(N->getOperand(0));
+ SDValue LHS = GetScalarizedVector(N->getOperand(1));
+ TargetLowering::BooleanContent ScalarBool =
+ TLI.getBooleanContents(false, false);
+ TargetLowering::BooleanContent VecBool = TLI.getBooleanContents(true, false);
+
+ // If integer and float booleans have different contents then we can't
+ // reliably optimize in all cases. There is a full explanation for this in
+ // DAGCombiner::visitSELECT() where the same issue affects folding
+ // (select C, 0, 1) to (xor C, 1).
+ if (TLI.getBooleanContents(false, false) !=
+ TLI.getBooleanContents(false, true)) {
+ // At least try the common case where the boolean is generated by a
+ // comparison.
+ if (Cond->getOpcode() == ISD::SETCC) {
+ EVT OpVT = Cond->getOperand(0)->getValueType(0);
+ ScalarBool = TLI.getBooleanContents(OpVT.getScalarType());
+ VecBool = TLI.getBooleanContents(OpVT);
+ } else
+ ScalarBool = TargetLowering::UndefinedBooleanContent;
+ }
+
+ if (ScalarBool != VecBool) {
+ EVT CondVT = Cond.getValueType();
+ switch (ScalarBool) {
+ case TargetLowering::UndefinedBooleanContent:
+ break;
+ case TargetLowering::ZeroOrOneBooleanContent:
+ assert(VecBool == TargetLowering::UndefinedBooleanContent ||
+ VecBool == TargetLowering::ZeroOrNegativeOneBooleanContent);
+ // Vector read from all ones, scalar expects a single 1 so mask.
+ Cond = DAG.getNode(ISD::AND, SDLoc(N), CondVT,
+ Cond, DAG.getConstant(1, CondVT));
+ break;
+ case TargetLowering::ZeroOrNegativeOneBooleanContent:
+ assert(VecBool == TargetLowering::UndefinedBooleanContent ||
+ VecBool == TargetLowering::ZeroOrOneBooleanContent);
+ // Vector reads from a one, scalar from all ones so sign extend.
+ Cond = DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), CondVT,
+ Cond, DAG.getValueType(MVT::i1));
+ break;
+ }
+ }
+
+ return DAG.getSelect(SDLoc(N),
+ LHS.getValueType(), Cond, LHS,
+ GetScalarizedVector(N->getOperand(2)));
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
+ SDValue LHS = GetScalarizedVector(N->getOperand(1));
+ return DAG.getSelect(SDLoc(N),
+ LHS.getValueType(), N->getOperand(0), LHS,
+ GetScalarizedVector(N->getOperand(2)));
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) {
+ SDValue LHS = GetScalarizedVector(N->getOperand(2));
+ return DAG.getNode(ISD::SELECT_CC, SDLoc(N), LHS.getValueType(),
+ N->getOperand(0), N->getOperand(1),
+ LHS, GetScalarizedVector(N->getOperand(3)),
+ N->getOperand(4));
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_SETCC(SDNode *N) {
+ assert(N->getValueType(0).isVector() ==
+ N->getOperand(0).getValueType().isVector() &&
+ "Scalar/Vector type mismatch");
+
+ if (N->getValueType(0).isVector()) return ScalarizeVecRes_VSETCC(N);
+
+ SDValue LHS = GetScalarizedVector(N->getOperand(0));
+ SDValue RHS = GetScalarizedVector(N->getOperand(1));
+ SDLoc DL(N);
+
+ // Turn it into a scalar SETCC.
+ return DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, N->getOperand(2));
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
+ return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
+ // Figure out if the scalar is the LHS or RHS and return it.
+ SDValue Arg = N->getOperand(2).getOperand(0);
+ if (Arg.getOpcode() == ISD::UNDEF)
+ return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
+ unsigned Op = !cast<ConstantSDNode>(Arg)->isNullValue();
+ return GetScalarizedVector(N->getOperand(Op));
+}
+
+SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
+ assert(N->getValueType(0).isVector() &&
+ N->getOperand(0).getValueType().isVector() &&
+ "Operand types must be vectors");
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ EVT OpVT = LHS.getValueType();
+ EVT NVT = N->getValueType(0).getVectorElementType();
+ SDLoc DL(N);
+
+ // The result needs scalarizing, but it's not a given that the source does.
+ if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
+ LHS = GetScalarizedVector(LHS);
+ RHS = GetScalarizedVector(RHS);
+ } else {
+ EVT VT = OpVT.getVectorElementType();
+ LHS = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, LHS,
+ DAG.getConstant(0, TLI.getVectorIdxTy()));
+ RHS = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, RHS,
+ DAG.getConstant(0, TLI.getVectorIdxTy()));
+ }
+
+ // Turn it into a scalar SETCC.
+ SDValue Res = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS,
+ N->getOperand(2));
+ // Vectors may have a different boolean contents to scalars. Promote the
+ // value appropriately.
+ ISD::NodeType ExtendCode =
+ TargetLowering::getExtendForContent(TLI.getBooleanContents(OpVT));
+ return DAG.getNode(ExtendCode, DL, NVT, Res);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Operand Vector Scalarization <1 x ty> -> ty.
+//===----------------------------------------------------------------------===//
+
+bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
+ DEBUG(dbgs() << "Scalarize node operand " << OpNo << ": ";
+ N->dump(&DAG);
+ dbgs() << "\n");
+ SDValue Res = SDValue();
+
+ if (!Res.getNode()) {
+ switch (N->getOpcode()) {
+ default:
+#ifndef NDEBUG
+ dbgs() << "ScalarizeVectorOperand Op #" << OpNo << ": ";
+ N->dump(&DAG);
+ dbgs() << "\n";
+#endif
+ llvm_unreachable("Do not know how to scalarize this operator's operand!");
+ case ISD::BITCAST:
+ Res = ScalarizeVecOp_BITCAST(N);
+ break;
+ case ISD::ANY_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::SIGN_EXTEND:
+ case ISD::TRUNCATE:
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT:
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
+ Res = ScalarizeVecOp_UnaryOp(N);
+ break;
+ case ISD::CONCAT_VECTORS:
+ Res = ScalarizeVecOp_CONCAT_VECTORS(N);
+ break;
+ case ISD::EXTRACT_VECTOR_ELT:
+ Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N);
+ break;
+ case ISD::VSELECT:
+ Res = ScalarizeVecOp_VSELECT(N);
+ break;
+ case ISD::STORE:
+ Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo);
+ break;
+ case ISD::FP_ROUND:
+ Res = ScalarizeVecOp_FP_ROUND(N, OpNo);
+ break;
+ }
+ }
+
+ // If the result is null, the sub-method took care of registering results etc.
+ if (!Res.getNode()) return false;
+
+ // If the result is N, the sub-method updated N in place. Tell the legalizer
+ // core about this.
+ if (Res.getNode() == N)
+ return true;
+
+ assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
+ "Invalid operand expansion");
+
+ ReplaceValueWith(SDValue(N, 0), Res);
+ return false;
+}
+
+/// ScalarizeVecOp_BITCAST - If the value to convert is a vector that needs
+/// to be scalarized, it must be <1 x ty>. Convert the element instead.
+SDValue DAGTypeLegalizer::ScalarizeVecOp_BITCAST(SDNode *N) {
+ SDValue Elt = GetScalarizedVector(N->getOperand(0));
+ return DAG.getNode(ISD::BITCAST, SDLoc(N),
+ N->getValueType(0), Elt);
+}
+
+/// ScalarizeVecOp_UnaryOp - If the input is a vector that needs to be
+/// scalarized, it must be <1 x ty>. Do the operation on the element instead.
+SDValue DAGTypeLegalizer::ScalarizeVecOp_UnaryOp(SDNode *N) {
+ assert(N->getValueType(0).getVectorNumElements() == 1 &&
+ "Unexpected vector type!");
+ SDValue Elt = GetScalarizedVector(N->getOperand(0));
+ SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N),
+ N->getValueType(0).getScalarType(), Elt);
+ // Revectorize the result so the types line up with what the uses of this
+ // expression expect.
+ return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N->getValueType(0), Op);
+}
+
+/// ScalarizeVecOp_CONCAT_VECTORS - The vectors to concatenate have length one -
+/// use a BUILD_VECTOR instead.
+SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) {
+ SmallVector<SDValue, 8> Ops(N->getNumOperands());
+ for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
+ Ops[i] = GetScalarizedVector(N->getOperand(i));
+ return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N->getValueType(0), Ops);
+}
+
+/// ScalarizeVecOp_EXTRACT_VECTOR_ELT - If the input is a vector that needs to
+/// be scalarized, it must be <1 x ty>, so just return the element, ignoring the
+/// index.
+SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
+ SDValue Res = GetScalarizedVector(N->getOperand(0));
+ if (Res.getValueType() != N->getValueType(0))
+ Res = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0),
+ Res);
+ return Res;
+}
+
+
+/// ScalarizeVecOp_VSELECT - If the input condition is a vector that needs to be
+/// scalarized, it must be <1 x i1>, so just convert to a normal ISD::SELECT
+/// (still with vector output type since that was acceptable if we got here).
+SDValue DAGTypeLegalizer::ScalarizeVecOp_VSELECT(SDNode *N) {
+ SDValue ScalarCond = GetScalarizedVector(N->getOperand(0));
+ EVT VT = N->getValueType(0);
+
+ return DAG.getNode(ISD::SELECT, SDLoc(N), VT, ScalarCond, N->getOperand(1),
+ N->getOperand(2));
+}
+
+/// ScalarizeVecOp_STORE - If the value to store is a vector that needs to be
+/// scalarized, it must be <1 x ty>. Just store the element.
+SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
+ assert(N->isUnindexed() && "Indexed store of one-element vector?");
+ assert(OpNo == 1 && "Do not know how to scalarize this operand!");
+ SDLoc dl(N);
+
+ if (N->isTruncatingStore())
+ return DAG.getTruncStore(N->getChain(), dl,
+ GetScalarizedVector(N->getOperand(1)),
+ N->getBasePtr(), N->getPointerInfo(),
+ N->getMemoryVT().getVectorElementType(),
+ N->isVolatile(), N->isNonTemporal(),
+ N->getAlignment(), N->getAAInfo());
+
+ return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
+ N->getBasePtr(), N->getPointerInfo(),
+ N->isVolatile(), N->isNonTemporal(),
+ N->getOriginalAlignment(), N->getAAInfo());
+}
+
+/// ScalarizeVecOp_FP_ROUND - If the value to round is a vector that needs
+/// to be scalarized, it must be <1 x ty>. Convert the element instead.
+SDValue DAGTypeLegalizer::ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo) {
+ SDValue Elt = GetScalarizedVector(N->getOperand(0));
+ SDValue Res = DAG.getNode(ISD::FP_ROUND, SDLoc(N),
+ N->getValueType(0).getVectorElementType(), Elt,
+ N->getOperand(1));
+ return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), N->getValueType(0), Res);
+}
+
+//===----------------------------------------------------------------------===//
+// Result Vector Splitting
+//===----------------------------------------------------------------------===//
+
+/// SplitVectorResult - This method is called when the specified result of the
+/// specified node is found to need vector splitting. At this point, the node
+/// may also have invalid operands or may have other results that need
+/// legalization, we just know that (at least) one result needs vector
+/// splitting.
+void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
+ DEBUG(dbgs() << "Split node result: ";
+ N->dump(&DAG);
+ dbgs() << "\n");
+ SDValue Lo, Hi;
+
+ // See if the target wants to custom expand this node.
+ if (CustomLowerNode(N, N->getValueType(ResNo), true))
+ return;
+
+ switch (N->getOpcode()) {
+ default:
+#ifndef NDEBUG
+ dbgs() << "SplitVectorResult #" << ResNo << ": ";
+ N->dump(&DAG);
+ dbgs() << "\n";
+#endif
+ report_fatal_error("Do not know how to split the result of this "
+ "operator!\n");
+
+ case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
+ case ISD::VSELECT:
+ case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break;
+ case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break;
+ case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break;
+ case ISD::BITCAST: SplitVecRes_BITCAST(N, Lo, Hi); break;
+ case ISD::BUILD_VECTOR: SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
+ case ISD::CONCAT_VECTORS: SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
+ case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break;
+ case ISD::INSERT_SUBVECTOR: SplitVecRes_INSERT_SUBVECTOR(N, Lo, Hi); break;
+ case ISD::FP_ROUND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break;
+ case ISD::FPOWI: SplitVecRes_FPOWI(N, Lo, Hi); break;
+ case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
+ case ISD::SCALAR_TO_VECTOR: SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break;
+ case ISD::SIGN_EXTEND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break;
+ case ISD::LOAD:
+ SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);
+ break;
+ case ISD::MLOAD:
+ SplitVecRes_MLOAD(cast<MaskedLoadSDNode>(N), Lo, Hi);
+ break;
+ case ISD::SETCC:
+ SplitVecRes_SETCC(N, Lo, Hi);
+ break;
+ case ISD::VECTOR_SHUFFLE:
+ SplitVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N), Lo, Hi);
+ break;
+
+ case ISD::BSWAP:
+ case ISD::CONVERT_RNDSAT:
+ case ISD::CTLZ:
+ case ISD::CTTZ:
+ case ISD::CTLZ_ZERO_UNDEF:
+ case ISD::CTTZ_ZERO_UNDEF:
+ case ISD::CTPOP:
+ case ISD::FABS:
+ case ISD::FCEIL:
+ case ISD::FCOS:
+ case ISD::FEXP:
+ case ISD::FEXP2:
+ case ISD::FFLOOR:
+ case ISD::FLOG:
+ case ISD::FLOG10:
+ case ISD::FLOG2:
+ case ISD::FNEARBYINT:
+ case ISD::FNEG:
+ case ISD::FP_EXTEND:
+ case ISD::FP_ROUND:
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT:
+ case ISD::FRINT:
+ case ISD::FROUND:
+ case ISD::FSIN:
+ case ISD::FSQRT:
+ case ISD::FTRUNC:
+ case ISD::SINT_TO_FP:
+ case ISD::TRUNCATE:
+ case ISD::UINT_TO_FP:
+ SplitVecRes_UnaryOp(N, Lo, Hi);
+ break;
+
+ case ISD::ANY_EXTEND:
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ SplitVecRes_ExtendOp(N, Lo, Hi);
+ break;
+
+ case ISD::ADD:
+ case ISD::SUB:
+ case ISD::MUL:
+ case ISD::FADD:
+ case ISD::FCOPYSIGN:
+ case ISD::FSUB:
+ case ISD::FMUL:
+ case ISD::FMINNUM:
+ case ISD::FMAXNUM:
+ case ISD::SDIV:
+ case ISD::UDIV:
+ case ISD::FDIV:
+ case ISD::FPOW:
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR:
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL:
+ case ISD::UREM:
+ case ISD::SREM:
+ case ISD::FREM:
+ SplitVecRes_BinOp(N, Lo, Hi);
+ break;
+ case ISD::FMA:
+ SplitVecRes_TernaryOp(N, Lo, Hi);
+ break;
+ }
+
+ // If Lo/Hi is null, the sub-method took care of registering results etc.
+ if (Lo.getNode())
+ SetSplitVector(SDValue(N, ResNo), Lo, Hi);
+}
+
+void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo,
+ SDValue &Hi) {
+ SDValue LHSLo, LHSHi;
+ GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
+ SDValue RHSLo, RHSHi;
+ GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
+ SDLoc dl(N);
+
+ Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo, RHSLo);
+ Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi, RHSHi);
+}
+
+void DAGTypeLegalizer::SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo,
+ SDValue &Hi) {
+ SDValue Op0Lo, Op0Hi;
+ GetSplitVector(N->getOperand(0), Op0Lo, Op0Hi);
+ SDValue Op1Lo, Op1Hi;
+ GetSplitVector(N->getOperand(1), Op1Lo, Op1Hi);
+ SDValue Op2Lo, Op2Hi;
+ GetSplitVector(N->getOperand(2), Op2Lo, Op2Hi);
+ SDLoc dl(N);
+
+ Lo = DAG.getNode(N->getOpcode(), dl, Op0Lo.getValueType(),
+ Op0Lo, Op1Lo, Op2Lo);
+ Hi = DAG.getNode(N->getOpcode(), dl, Op0Hi.getValueType(),
+ Op0Hi, Op1Hi, Op2Hi);
+}
+
+void DAGTypeLegalizer::SplitVecRes_BITCAST(SDNode *N, SDValue &Lo,
+ SDValue &Hi) {
+ // We know the result is a vector. The input may be either a vector or a
+ // scalar value.
+ EVT LoVT, HiVT;
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
+ SDLoc dl(N);
+
+ SDValue InOp = N->getOperand(0);
+ EVT InVT = InOp.getValueType();
+
+ // Handle some special cases efficiently.
+ switch (getTypeAction(InVT)) {
+ case TargetLowering::TypeLegal:
+ case TargetLowering::TypePromoteInteger:
+ case TargetLowering::TypeSoftenFloat:
+ case TargetLowering::TypeScalarizeVector:
+ case TargetLowering::TypeWidenVector:
+ break;
+ case TargetLowering::TypeExpandInteger:
+ case TargetLowering::TypeExpandFloat:
+ // A scalar to vector conversion, where the scalar needs expansion.
+ // If the vector is being split in two then we can just convert the
+ // expanded pieces.
+ if (LoVT == HiVT) {
+ GetExpandedOp(InOp, Lo, Hi);
+ if (TLI.isBigEndian())
+ std::swap(Lo, Hi);
+ Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
+ Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
+ return;
+ }
+ break;
+ case TargetLowering::TypeSplitVector:
+ // If the input is a vector that needs to be split, convert each split
+ // piece of the input now.
+ GetSplitVector(InOp, Lo, Hi);
+ Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
+ Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
+ return;
+ }
+
+ // In the general case, convert the input to an integer and split it by hand.
+ EVT LoIntVT = EVT::getIntegerVT(*DAG.getContext(), LoVT.getSizeInBits());
+ EVT HiIntVT = EVT::getIntegerVT(*DAG.getContext(), HiVT.getSizeInBits());
+ if (TLI.isBigEndian())
+ std::swap(LoIntVT, HiIntVT);
+
+ SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);
+
+ if (TLI.isBigEndian())
+ std::swap(Lo, Hi);
+ Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
+ Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
+}
+
+void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
+ SDValue &Hi) {
+ EVT LoVT, HiVT;
+ SDLoc dl(N);
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
+ unsigned LoNumElts = LoVT.getVectorNumElements();
+ SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
+ Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, LoVT, LoOps);
+
+ SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
+ Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, HiVT, HiOps);
+}
+
+void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
+ SDValue &Hi) {
+ assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS");
+ SDLoc dl(N);
+ unsigned NumSubvectors = N->getNumOperands() / 2;
+ if (NumSubvectors == 1) {
+ Lo = N->getOperand(0);
+ Hi = N->getOperand(1);
+ return;
+ }
+
+ EVT LoVT, HiVT;
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
+
+ SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
+ Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, LoOps);
+
+ SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
+ Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HiVT, HiOps);
+}
+
+void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
+ SDValue &Hi) {
+ SDValue Vec = N->getOperand(0);
+ SDValue Idx = N->getOperand(1);
+ SDLoc dl(N);
+
+ EVT LoVT, HiVT;
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
+
+ Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx);
+ uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HiVT, Vec,
+ DAG.getConstant(IdxVal + LoVT.getVectorNumElements(),
+ TLI.getVectorIdxTy()));
+}
+
+void DAGTypeLegalizer::SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo,
+ SDValue &Hi) {
+ SDValue Vec = N->getOperand(0);
+ SDValue SubVec = N->getOperand(1);
+ SDValue Idx = N->getOperand(2);
+ SDLoc dl(N);
+ GetSplitVector(Vec, Lo, Hi);
+
+ // Spill the vector to the stack.
+ EVT VecVT = Vec.getValueType();
+ EVT SubVecVT = VecVT.getVectorElementType();
+ SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
+ SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
+ MachinePointerInfo(), false, false, 0);
+
+ // Store the new subvector into the specified index.
+ SDValue SubVecPtr = GetVectorElementPointer(StackPtr, SubVecVT, Idx);
+ Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
+ unsigned Alignment = TLI.getDataLayout()->getPrefTypeAlignment(VecType);
+ Store = DAG.getStore(Store, dl, SubVec, SubVecPtr, MachinePointerInfo(),
+ false, false, 0);
+
+ // Load the Lo part from the stack slot.
+ Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
+ false, false, false, 0);
+
+ // Increment the pointer to the other part.
+ unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
+ StackPtr =
+ DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
+ DAG.getConstant(IncrementSize, StackPtr.getValueType()));
+
+ // Load the Hi part from the stack slot.
+ Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
+ false, false, false, MinAlign(Alignment, IncrementSize));
+}
+
+void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo,
+ SDValue &Hi) {
+ SDLoc dl(N);
+ GetSplitVector(N->getOperand(0), Lo, Hi);
+ Lo = DAG.getNode(ISD::FPOWI, dl, Lo.getValueType(), Lo, N->getOperand(1));
+ Hi = DAG.getNode(ISD::FPOWI, dl, Hi.getValueType(), Hi, N->getOperand(1));
+}
+
+void DAGTypeLegalizer::SplitVecRes_InregOp(SDNode *N, SDValue &Lo,
+ SDValue &Hi) {
+ SDValue LHSLo, LHSHi;
+ GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
+ SDLoc dl(N);
+
+ EVT LoVT, HiVT;
+ std::tie(LoVT, HiVT) =
+ DAG.GetSplitDestVTs(cast<VTSDNode>(N->getOperand(1))->getVT());
+
+ Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo,
+ DAG.getValueType(LoVT));
+ Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi,
+ DAG.getValueType(HiVT));
+}
+
+void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
+ SDValue &Hi) {
+ SDValue Vec = N->getOperand(0);
+ SDValue Elt = N->getOperand(1);
+ SDValue Idx = N->getOperand(2);
+ SDLoc dl(N);
+ GetSplitVector(Vec, Lo, Hi);
+
+ if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
+ unsigned IdxVal = CIdx->getZExtValue();
+ unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
+ if (IdxVal < LoNumElts)
+ Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
+ Lo.getValueType(), Lo, Elt, Idx);
+ else
+ Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Hi.getValueType(), Hi, Elt,
+ DAG.getConstant(IdxVal - LoNumElts,
+ TLI.getVectorIdxTy()));
+ return;
+ }
+
+ // See if the target wants to custom expand this node.
+ if (CustomLowerNode(N, N->getValueType(0), true))
+ return;
+
+ // Spill the vector to the stack.
+ EVT VecVT = Vec.getValueType();
+ EVT EltVT = VecVT.getVectorElementType();
+ SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
+ SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
+ MachinePointerInfo(), false, false, 0);
+
+ // Store the new element. This may be larger than the vector element type,
+ // so use a truncating store.
+ SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
+ Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
+ unsigned Alignment =
+ TLI.getDataLayout()->getPrefTypeAlignment(VecType);
+ Store = DAG.getTruncStore(Store, dl, Elt, EltPtr, MachinePointerInfo(), EltVT,
+ false, false, 0);
+
+ // Load the Lo part from the stack slot.
+ Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
+ false, false, false, 0);
+
+ // Increment the pointer to the other part.
+ unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
+ StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
+ DAG.getConstant(IncrementSize, StackPtr.getValueType()));
+
+ // Load the Hi part from the stack slot.
+ Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
+ false, false, false, MinAlign(Alignment, IncrementSize));
+}
+
+void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
+ SDValue &Hi) {
+ EVT LoVT, HiVT;
+ SDLoc dl(N);
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
+ Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0));
+ Hi = DAG.getUNDEF(HiVT);
+}
+
+void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
+ SDValue &Hi) {
+ assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
+ EVT LoVT, HiVT;
+ SDLoc dl(LD);
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(LD->getValueType(0));
+
+ ISD::LoadExtType ExtType = LD->getExtensionType();
+ SDValue Ch = LD->getChain();
+ SDValue Ptr = LD->getBasePtr();
+ SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
+ EVT MemoryVT = LD->getMemoryVT();
+ unsigned Alignment = LD->getOriginalAlignment();
+ bool isVolatile = LD->isVolatile();
+ bool isNonTemporal = LD->isNonTemporal();
+ bool isInvariant = LD->isInvariant();
+ AAMDNodes AAInfo = LD->getAAInfo();
+
+ EVT LoMemVT, HiMemVT;
+ std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
+
+ Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, LoVT, dl, Ch, Ptr, Offset,
+ LD->getPointerInfo(), LoMemVT, isVolatile, isNonTemporal,
+ isInvariant, Alignment, AAInfo);
+
+ unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
+ Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
+ Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, HiVT, dl, Ch, Ptr, Offset,
+ LD->getPointerInfo().getWithOffset(IncrementSize),
+ HiMemVT, isVolatile, isNonTemporal, isInvariant, Alignment,
+ AAInfo);
+
+ // Build a factor node to remember that this load is independent of the
+ // other one.
+ Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
+ Hi.getValue(1));
+
+ // Legalized the chain result - switch anything that used the old chain to
+ // use the new one.
+ ReplaceValueWith(SDValue(LD, 1), Ch);
+}
+
+void DAGTypeLegalizer::SplitVecRes_MLOAD(MaskedLoadSDNode *MLD,
+ SDValue &Lo, SDValue &Hi) {
+ EVT LoVT, HiVT;
+ SDLoc dl(MLD);
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0));
+
+ SDValue Ch = MLD->getChain();
+ SDValue Ptr = MLD->getBasePtr();
+ SDValue Mask = MLD->getMask();
+ unsigned Alignment = MLD->getOriginalAlignment();
+
+ // if Alignment is equal to the vector size,
+ // take the half of it for the second part
+ unsigned SecondHalfAlignment =
+ (Alignment == MLD->getValueType(0).getSizeInBits()/8) ?
+ Alignment/2 : Alignment;
+
+ SDValue MaskLo, MaskHi;
+ std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, dl);
+
+ EVT MemoryVT = MLD->getMemoryVT();
+ EVT LoMemVT, HiMemVT;
+ std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
+
+ SDValue Src0 = MLD->getSrc0();
+ SDValue Src0Lo, Src0Hi;
+ std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, dl);
+
+ MachineMemOperand *MMO = DAG.getMachineFunction().
+ getMachineMemOperand(MLD->getPointerInfo(),
+ MachineMemOperand::MOLoad, LoMemVT.getStoreSize(),
+ Alignment, MLD->getAAInfo(), MLD->getRanges());
+
+ Lo = DAG.getMaskedLoad(LoVT, dl, Ch, Ptr, MaskLo, Src0Lo, MMO);
+
+ unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
+ Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
+
+ MMO = DAG.getMachineFunction().
+ getMachineMemOperand(MLD->getPointerInfo(),
+ MachineMemOperand::MOLoad, HiMemVT.getStoreSize(),
+ SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges());
+
+ Hi = DAG.getMaskedLoad(HiVT, dl, Ch, Ptr, MaskHi, Src0Hi, MMO);
+
+
+ // Build a factor node to remember that this load is independent of the
+ // other one.
+ Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
+ Hi.getValue(1));
+
+ // Legalized the chain result - switch anything that used the old chain to
+ // use the new one.
+ ReplaceValueWith(SDValue(MLD, 1), Ch);
+
+}
+
+void DAGTypeLegalizer::SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi) {
+ assert(N->getValueType(0).isVector() &&
+ N->getOperand(0).getValueType().isVector() &&
+ "Operand types must be vectors");
+
+ EVT LoVT, HiVT;
+ SDLoc DL(N);
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
+
+ // Split the input.
+ SDValue LL, LH, RL, RH;
+ std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
+ std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
+
+ Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
+ Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
+}
+
+void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
+ SDValue &Hi) {
+ // Get the dest types - they may not match the input types, e.g. int_to_fp.
+ EVT LoVT, HiVT;
+ SDLoc dl(N);
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
+
+ // If the input also splits, handle it directly for a compile time speedup.
+ // Otherwise split it by hand.
+ EVT InVT = N->getOperand(0).getValueType();
+ if (getTypeAction(InVT) == TargetLowering::TypeSplitVector)
+ GetSplitVector(N->getOperand(0), Lo, Hi);
+ else
+ std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
+
+ if (N->getOpcode() == ISD::FP_ROUND) {
+ Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo, N->getOperand(1));
+ Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi, N->getOperand(1));
+ } else if (N->getOpcode() == ISD::CONVERT_RNDSAT) {
+ SDValue DTyOpLo = DAG.getValueType(LoVT);
+ SDValue DTyOpHi = DAG.getValueType(HiVT);
+ SDValue STyOpLo = DAG.getValueType(Lo.getValueType());
+ SDValue STyOpHi = DAG.getValueType(Hi.getValueType());
+ SDValue RndOp = N->getOperand(3);
+ SDValue SatOp = N->getOperand(4);
+ ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
+ Lo = DAG.getConvertRndSat(LoVT, dl, Lo, DTyOpLo, STyOpLo, RndOp, SatOp,
+ CvtCode);
+ Hi = DAG.getConvertRndSat(HiVT, dl, Hi, DTyOpHi, STyOpHi, RndOp, SatOp,
+ CvtCode);
+ } else {
+ Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
+ Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
+ }
+}
+
+void DAGTypeLegalizer::SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo,
+ SDValue &Hi) {
+ SDLoc dl(N);
+ EVT SrcVT = N->getOperand(0).getValueType();
+ EVT DestVT = N->getValueType(0);
+ EVT LoVT, HiVT;
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(DestVT);
+
+ // We can do better than a generic split operation if the extend is doing
+ // more than just doubling the width of the elements and the following are
+ // true:
+ // - The number of vector elements is even,
+ // - the source type is legal,
+ // - the type of a split source is illegal,
+ // - the type of an extended (by doubling element size) source is legal, and
+ // - the type of that extended source when split is legal.
+ //
+ // This won't necessarily completely legalize the operation, but it will
+ // more effectively move in the right direction and prevent falling down
+ // to scalarization in many cases due to the input vector being split too
+ // far.
+ unsigned NumElements = SrcVT.getVectorNumElements();
+ if ((NumElements & 1) == 0 &&
+ SrcVT.getSizeInBits() * 2 < DestVT.getSizeInBits()) {
+ LLVMContext &Ctx = *DAG.getContext();
+ EVT NewSrcVT = EVT::getVectorVT(
+ Ctx, EVT::getIntegerVT(
+ Ctx, SrcVT.getVectorElementType().getSizeInBits() * 2),
+ NumElements);
+ EVT SplitSrcVT =
+ EVT::getVectorVT(Ctx, SrcVT.getVectorElementType(), NumElements / 2);
+ EVT SplitLoVT, SplitHiVT;
+ std::tie(SplitLoVT, SplitHiVT) = DAG.GetSplitDestVTs(NewSrcVT);
+ if (TLI.isTypeLegal(SrcVT) && !TLI.isTypeLegal(SplitSrcVT) &&
+ TLI.isTypeLegal(NewSrcVT) && TLI.isTypeLegal(SplitLoVT)) {
+ DEBUG(dbgs() << "Split vector extend via incremental extend:";
+ N->dump(&DAG); dbgs() << "\n");
+ // Extend the source vector by one step.
+ SDValue NewSrc =
+ DAG.getNode(N->getOpcode(), dl, NewSrcVT, N->getOperand(0));
+ // Get the low and high halves of the new, extended one step, vector.
+ std::tie(Lo, Hi) = DAG.SplitVector(NewSrc, dl);
+ // Extend those vector halves the rest of the way.
+ Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
+ Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
+ return;
+ }
+ }
+ // Fall back to the generic unary operator splitting otherwise.
+ SplitVecRes_UnaryOp(N, Lo, Hi);
+}
+
+void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N,
+ SDValue &Lo, SDValue &Hi) {
+ // The low and high parts of the original input give four input vectors.
+ SDValue Inputs[4];
+ SDLoc dl(N);
+ GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]);
+ GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]);
+ EVT NewVT = Inputs[0].getValueType();
+ unsigned NewElts = NewVT.getVectorNumElements();
+
+ // If Lo or Hi uses elements from at most two of the four input vectors, then
+ // express it as a vector shuffle of those two inputs. Otherwise extract the
+ // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
+ SmallVector<int, 16> Ops;
+ for (unsigned High = 0; High < 2; ++High) {
+ SDValue &Output = High ? Hi : Lo;
+
+ // Build a shuffle mask for the output, discovering on the fly which
+ // input vectors to use as shuffle operands (recorded in InputUsed).
+ // If building a suitable shuffle vector proves too hard, then bail
+ // out with useBuildVector set.
+ unsigned InputUsed[2] = { -1U, -1U }; // Not yet discovered.
+ unsigned FirstMaskIdx = High * NewElts;
+ bool useBuildVector = false;
+ for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
+ // The mask element. This indexes into the input.
+ int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
+
+ // The input vector this mask element indexes into.
+ unsigned Input = (unsigned)Idx / NewElts;
+
+ if (Input >= array_lengthof(Inputs)) {
+ // The mask element does not index into any input vector.
+ Ops.push_back(-1);
+ continue;
+ }
+
+ // Turn the index into an offset from the start of the input vector.
+ Idx -= Input * NewElts;
+
+ // Find or create a shuffle vector operand to hold this input.
+ unsigned OpNo;
+ for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
+ if (InputUsed[OpNo] == Input) {
+ // This input vector is already an operand.
+ break;
+ } else if (InputUsed[OpNo] == -1U) {
+ // Create a new operand for this input vector.
+ InputUsed[OpNo] = Input;
+ break;
+ }
+ }
+
+ if (OpNo >= array_lengthof(InputUsed)) {
+ // More than two input vectors used! Give up on trying to create a
+ // shuffle vector. Insert all elements into a BUILD_VECTOR instead.
+ useBuildVector = true;
+ break;
+ }
+
+ // Add the mask index for the new shuffle vector.
+ Ops.push_back(Idx + OpNo * NewElts);
+ }
+
+ if (useBuildVector) {
+ EVT EltVT = NewVT.getVectorElementType();
+ SmallVector<SDValue, 16> SVOps;
+
+ // Extract the input elements by hand.
+ for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
+ // The mask element. This indexes into the input.
+ int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
+
+ // The input vector this mask element indexes into.
+ unsigned Input = (unsigned)Idx / NewElts;
+
+ if (Input >= array_lengthof(Inputs)) {
+ // The mask element is "undef" or indexes off the end of the input.
+ SVOps.push_back(DAG.getUNDEF(EltVT));
+ continue;
+ }
+
+ // Turn the index into an offset from the start of the input vector.
+ Idx -= Input * NewElts;
+
+ // Extract the vector element by hand.
+ SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
+ Inputs[Input], DAG.getConstant(Idx,
+ TLI.getVectorIdxTy())));
+ }
+
+ // Construct the Lo/Hi output using a BUILD_VECTOR.
+ Output = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, SVOps);
+ } else if (InputUsed[0] == -1U) {
+ // No input vectors were used! The result is undefined.
+ Output = DAG.getUNDEF(NewVT);
+ } else {
+ SDValue Op0 = Inputs[InputUsed[0]];
+ // If only one input was used, use an undefined vector for the other.
+ SDValue Op1 = InputUsed[1] == -1U ?
+ DAG.getUNDEF(NewVT) : Inputs[InputUsed[1]];
+ // At least one input vector was used. Create a new shuffle vector.
+ Output = DAG.getVectorShuffle(NewVT, dl, Op0, Op1, &Ops[0]);
+ }
+
+ Ops.clear();
+ }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Operand Vector Splitting
+//===----------------------------------------------------------------------===//
+
+/// SplitVectorOperand - This method is called when the specified operand of the
+/// specified node is found to need vector splitting. At this point, all of the
+/// result types of the node are known to be legal, but other operands of the
+/// node may need legalization as well as the specified one.
+bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
+ DEBUG(dbgs() << "Split node operand: ";
+ N->dump(&DAG);
+ dbgs() << "\n");
+ SDValue Res = SDValue();
+
+ // See if the target wants to custom split this node.
+ if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
+ return false;
+
+ if (!Res.getNode()) {
+ switch (N->getOpcode()) {
+ default:
+#ifndef NDEBUG
+ dbgs() << "SplitVectorOperand Op #" << OpNo << ": ";
+ N->dump(&DAG);
+ dbgs() << "\n";
+#endif
+ report_fatal_error("Do not know how to split this operator's "
+ "operand!\n");
+
+ case ISD::SETCC: Res = SplitVecOp_VSETCC(N); break;
+ case ISD::BITCAST: Res = SplitVecOp_BITCAST(N); break;
+ case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
+ case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
+ case ISD::CONCAT_VECTORS: Res = SplitVecOp_CONCAT_VECTORS(N); break;
+ case ISD::TRUNCATE: Res = SplitVecOp_TRUNCATE(N); break;
+ case ISD::FP_ROUND: Res = SplitVecOp_FP_ROUND(N); break;
+ case ISD::STORE:
+ Res = SplitVecOp_STORE(cast<StoreSDNode>(N), OpNo);
+ break;
+ case ISD::MSTORE:
+ Res = SplitVecOp_MSTORE(cast<MaskedStoreSDNode>(N), OpNo);
+ break;
+ case ISD::VSELECT:
+ Res = SplitVecOp_VSELECT(N, OpNo);
+ break;
+ case ISD::CTTZ:
+ case ISD::CTLZ:
+ case ISD::CTPOP:
+ case ISD::FP_EXTEND:
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT:
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
+ case ISD::FTRUNC:
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ Res = SplitVecOp_UnaryOp(N);
+ break;
+ }
+ }
+
+ // If the result is null, the sub-method took care of registering results etc.
+ if (!Res.getNode()) return false;
+
+ // If the result is N, the sub-method updated N in place. Tell the legalizer
+ // core about this.
+ if (Res.getNode() == N)
+ return true;
+
+ assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
+ "Invalid operand expansion");
+
+ ReplaceValueWith(SDValue(N, 0), Res);
+ return false;
+}
+
+SDValue DAGTypeLegalizer::SplitVecOp_VSELECT(SDNode *N, unsigned OpNo) {
+ // The only possibility for an illegal operand is the mask, since result type
+ // legalization would have handled this node already otherwise.
+ assert(OpNo == 0 && "Illegal operand must be mask");
+
+ SDValue Mask = N->getOperand(0);
+ SDValue Src0 = N->getOperand(1);
+ SDValue Src1 = N->getOperand(2);
+ EVT Src0VT = Src0.getValueType();
+ SDLoc DL(N);
+ assert(Mask.getValueType().isVector() && "VSELECT without a vector mask?");
+
+ SDValue Lo, Hi;
+ GetSplitVector(N->getOperand(0), Lo, Hi);
+ assert(Lo.getValueType() == Hi.getValueType() &&
+ "Lo and Hi have differing types");
+
+ EVT LoOpVT, HiOpVT;
+ std::tie(LoOpVT, HiOpVT) = DAG.GetSplitDestVTs(Src0VT);
+ assert(LoOpVT == HiOpVT && "Asymmetric vector split?");
+
+ SDValue LoOp0, HiOp0, LoOp1, HiOp1, LoMask, HiMask;
+ std::tie(LoOp0, HiOp0) = DAG.SplitVector(Src0, DL);
+ std::tie(LoOp1, HiOp1) = DAG.SplitVector(Src1, DL);
+ std::tie(LoMask, HiMask) = DAG.SplitVector(Mask, DL);
+
+ SDValue LoSelect =
+ DAG.getNode(ISD::VSELECT, DL, LoOpVT, LoMask, LoOp0, LoOp1);
+ SDValue HiSelect =
+ DAG.getNode(ISD::VSELECT, DL, HiOpVT, HiMask, HiOp0, HiOp1);
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, Src0VT, LoSelect, HiSelect);
+}
+
+SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) {
+ // The result has a legal vector type, but the input needs splitting.
+ EVT ResVT = N->getValueType(0);
+ SDValue Lo, Hi;
+ SDLoc dl(N);
+ GetSplitVector(N->getOperand(0), Lo, Hi);
+ EVT InVT = Lo.getValueType();
+
+ EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
+ InVT.getVectorNumElements());
+
+ Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo);
+ Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi);
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
+}
+
+SDValue DAGTypeLegalizer::SplitVecOp_BITCAST(SDNode *N) {
+ // For example, i64 = BITCAST v4i16 on alpha. Typically the vector will
+ // end up being split all the way down to individual components. Convert the
+ // split pieces into integers and reassemble.
+ SDValue Lo, Hi;
+ GetSplitVector(N->getOperand(0), Lo, Hi);
+ Lo = BitConvertToInteger(Lo);
+ Hi = BitConvertToInteger(Hi);
+
+ if (TLI.isBigEndian())
+ std::swap(Lo, Hi);
+
+ return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0),
+ JoinIntegers(Lo, Hi));
+}
+
+SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
+ // We know that the extracted result type is legal.
+ EVT SubVT = N->getValueType(0);
+ SDValue Idx = N->getOperand(1);
+ SDLoc dl(N);
+ SDValue Lo, Hi;
+ GetSplitVector(N->getOperand(0), Lo, Hi);
+
+ uint64_t LoElts = Lo.getValueType().getVectorNumElements();
+ uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+
+ if (IdxVal < LoElts) {
+ assert(IdxVal + SubVT.getVectorNumElements() <= LoElts &&
+ "Extracted subvector crosses vector split!");
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Lo, Idx);
+ } else {
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Hi,
+ DAG.getConstant(IdxVal - LoElts, Idx.getValueType()));
+ }
+}
+
+SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
+ SDValue Vec = N->getOperand(0);
+ SDValue Idx = N->getOperand(1);
+ EVT VecVT = Vec.getValueType();
+
+ if (isa<ConstantSDNode>(Idx)) {
+ uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ assert(IdxVal < VecVT.getVectorNumElements() && "Invalid vector index!");
+
+ SDValue Lo, Hi;
+ GetSplitVector(Vec, Lo, Hi);
+
+ uint64_t LoElts = Lo.getValueType().getVectorNumElements();
+
+ if (IdxVal < LoElts)
+ return SDValue(DAG.UpdateNodeOperands(N, Lo, Idx), 0);
+ return SDValue(DAG.UpdateNodeOperands(N, Hi,
+ DAG.getConstant(IdxVal - LoElts,
+ Idx.getValueType())), 0);
+ }
+
+ // See if the target wants to custom expand this node.
+ if (CustomLowerNode(N, N->getValueType(0), true))
+ return SDValue();
+
+ // Store the vector to the stack.
+ EVT EltVT = VecVT.getVectorElementType();
+ SDLoc dl(N);
+ SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
+ SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
+ MachinePointerInfo(), false, false, 0);
+
+ // Load back the required element.
+ StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
+ return DAG.getExtLoad(ISD::EXTLOAD, dl, N->getValueType(0), Store, StackPtr,
+ MachinePointerInfo(), EltVT, false, false, false, 0);
+}
+
+SDValue DAGTypeLegalizer::SplitVecOp_MSTORE(MaskedStoreSDNode *N,
+ unsigned OpNo) {
+ SDValue Ch = N->getChain();
+ SDValue Ptr = N->getBasePtr();
+ SDValue Mask = N->getMask();
+ SDValue Data = N->getData();
+ EVT MemoryVT = N->getMemoryVT();
+ unsigned Alignment = N->getOriginalAlignment();
+ SDLoc DL(N);
+
+ EVT LoMemVT, HiMemVT;
+ std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
+
+ SDValue DataLo, DataHi;
+ GetSplitVector(Data, DataLo, DataHi);
+ SDValue MaskLo, MaskHi;
+ GetSplitVector(Mask, MaskLo, MaskHi);
+
+ // if Alignment is equal to the vector size,
+ // take the half of it for the second part
+ unsigned SecondHalfAlignment =
+ (Alignment == Data->getValueType(0).getSizeInBits()/8) ?
+ Alignment/2 : Alignment;
+
+ SDValue Lo, Hi;
+ MachineMemOperand *MMO = DAG.getMachineFunction().
+ getMachineMemOperand(N->getPointerInfo(),
+ MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
+ Alignment, N->getAAInfo(), N->getRanges());
+
+ Lo = DAG.getMaskedStore(Ch, DL, DataLo, Ptr, MaskLo, MMO);
+
+ unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
+ Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
+
+ MMO = DAG.getMachineFunction().
+ getMachineMemOperand(N->getPointerInfo(),
+ MachineMemOperand::MOStore, HiMemVT.getStoreSize(),
+ SecondHalfAlignment, N->getAAInfo(), N->getRanges());
+
+ Hi = DAG.getMaskedStore(Ch, DL, DataHi, Ptr, MaskHi, MMO);
+
+
+ // Build a factor node to remember that this store is independent of the
+ // other one.
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
+
+}
+
+SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
+ assert(N->isUnindexed() && "Indexed store of vector?");
+ assert(OpNo == 1 && "Can only split the stored value");
+ SDLoc DL(N);
+
+ bool isTruncating = N->isTruncatingStore();
+ SDValue Ch = N->getChain();
+ SDValue Ptr = N->getBasePtr();
+ EVT MemoryVT = N->getMemoryVT();
+ unsigned Alignment = N->getOriginalAlignment();
+ bool isVol = N->isVolatile();
+ bool isNT = N->isNonTemporal();
+ AAMDNodes AAInfo = N->getAAInfo();
+ SDValue Lo, Hi;
+ GetSplitVector(N->getOperand(1), Lo, Hi);
+
+ EVT LoMemVT, HiMemVT;
+ std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
+
+ unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
+
+ if (isTruncating)
+ Lo = DAG.getTruncStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
+ LoMemVT, isVol, isNT, Alignment, AAInfo);
+ else
+ Lo = DAG.getStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
+ isVol, isNT, Alignment, AAInfo);
+
+ // Increment the pointer to the other half.
+ Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
+ DAG.getConstant(IncrementSize, Ptr.getValueType()));
+
+ if (isTruncating)
+ Hi = DAG.getTruncStore(Ch, DL, Hi, Ptr,
+ N->getPointerInfo().getWithOffset(IncrementSize),
+ HiMemVT, isVol, isNT, Alignment, AAInfo);
+ else
+ Hi = DAG.getStore(Ch, DL, Hi, Ptr,
+ N->getPointerInfo().getWithOffset(IncrementSize),
+ isVol, isNT, Alignment, AAInfo);
+
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
+}
+
+SDValue DAGTypeLegalizer::SplitVecOp_CONCAT_VECTORS(SDNode *N) {
+ SDLoc DL(N);
+
+ // The input operands all must have the same type, and we know the result
+ // type is valid. Convert this to a buildvector which extracts all the
+ // input elements.
+ // TODO: If the input elements are power-two vectors, we could convert this to
+ // a new CONCAT_VECTORS node with elements that are half-wide.
+ SmallVector<SDValue, 32> Elts;
+ EVT EltVT = N->getValueType(0).getVectorElementType();
+ for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
+ SDValue Op = N->getOperand(op);
+ for (unsigned i = 0, e = Op.getValueType().getVectorNumElements();
+ i != e; ++i) {
+ Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
+ Op, DAG.getConstant(i, TLI.getVectorIdxTy())));
+
+ }
+ }
+
+ return DAG.getNode(ISD::BUILD_VECTOR, DL, N->getValueType(0), Elts);
+}
+
+SDValue DAGTypeLegalizer::SplitVecOp_TRUNCATE(SDNode *N) {
+ // The result type is legal, but the input type is illegal. If splitting
+ // ends up with the result type of each half still being legal, just
+ // do that. If, however, that would result in an illegal result type,
+ // we can try to get more clever with power-two vectors. Specifically,
+ // split the input type, but also widen the result element size, then
+ // concatenate the halves and truncate again. For example, consider a target
+ // where v8i8 is legal and v8i32 is not (ARM, which doesn't have 256-bit
+ // vectors). To perform a "%res = v8i8 trunc v8i32 %in" we do:
+ // %inlo = v4i32 extract_subvector %in, 0
+ // %inhi = v4i32 extract_subvector %in, 4
+ // %lo16 = v4i16 trunc v4i32 %inlo
+ // %hi16 = v4i16 trunc v4i32 %inhi
+ // %in16 = v8i16 concat_vectors v4i16 %lo16, v4i16 %hi16
+ // %res = v8i8 trunc v8i16 %in16
+ //
+ // Without this transform, the original truncate would end up being
+ // scalarized, which is pretty much always a last resort.
+ SDValue InVec = N->getOperand(0);
+ EVT InVT = InVec->getValueType(0);
+ EVT OutVT = N->getValueType(0);
+ unsigned NumElements = OutVT.getVectorNumElements();
+ // Widening should have already made sure this is a power-two vector
+ // if we're trying to split it at all. assert() that's true, just in case.
+ assert(!(NumElements & 1) && "Splitting vector, but not in half!");
+
+ unsigned InElementSize = InVT.getVectorElementType().getSizeInBits();
+ unsigned OutElementSize = OutVT.getVectorElementType().getSizeInBits();
+
+ // If the input elements are only 1/2 the width of the result elements,
+ // just use the normal splitting. Our trick only work if there's room
+ // to split more than once.
+ if (InElementSize <= OutElementSize * 2)
+ return SplitVecOp_UnaryOp(N);
+ SDLoc DL(N);
+
+ // Extract the halves of the input via extract_subvector.
+ SDValue InLoVec, InHiVec;
+ std::tie(InLoVec, InHiVec) = DAG.SplitVector(InVec, DL);
+ // Truncate them to 1/2 the element size.
+ EVT HalfElementVT = EVT::getIntegerVT(*DAG.getContext(), InElementSize/2);
+ EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT,
+ NumElements/2);
+ SDValue HalfLo = DAG.getNode(ISD::TRUNCATE, DL, HalfVT, InLoVec);
+ SDValue HalfHi = DAG.getNode(ISD::TRUNCATE, DL, HalfVT, InHiVec);
+ // Concatenate them to get the full intermediate truncation result.
+ EVT InterVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT, NumElements);
+ SDValue InterVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InterVT, HalfLo,
+ HalfHi);
+ // Now finish up by truncating all the way down to the original result
+ // type. This should normally be something that ends up being legal directly,
+ // but in theory if a target has very wide vectors and an annoyingly
+ // restricted set of legal types, this split can chain to build things up.
+ return DAG.getNode(ISD::TRUNCATE, DL, OutVT, InterVec);
+}
+
+SDValue DAGTypeLegalizer::SplitVecOp_VSETCC(SDNode *N) {
+ assert(N->getValueType(0).isVector() &&
+ N->getOperand(0).getValueType().isVector() &&
+ "Operand types must be vectors");
+ // The result has a legal vector type, but the input needs splitting.
+ SDValue Lo0, Hi0, Lo1, Hi1, LoRes, HiRes;
+ SDLoc DL(N);
+ GetSplitVector(N->getOperand(0), Lo0, Hi0);
+ GetSplitVector(N->getOperand(1), Lo1, Hi1);
+ unsigned PartElements = Lo0.getValueType().getVectorNumElements();
+ EVT PartResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, PartElements);
+ EVT WideResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 2*PartElements);
+
+ LoRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Lo0, Lo1, N->getOperand(2));
+ HiRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Hi0, Hi1, N->getOperand(2));
+ SDValue Con = DAG.getNode(ISD::CONCAT_VECTORS, DL, WideResVT, LoRes, HiRes);
+ return PromoteTargetBoolean(Con, N->getValueType(0));
+}
+
+
+SDValue DAGTypeLegalizer::SplitVecOp_FP_ROUND(SDNode *N) {
+ // The result has a legal vector type, but the input needs splitting.
+ EVT ResVT = N->getValueType(0);
+ SDValue Lo, Hi;
+ SDLoc DL(N);
+ GetSplitVector(N->getOperand(0), Lo, Hi);
+ EVT InVT = Lo.getValueType();
+
+ EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
+ InVT.getVectorNumElements());
+
+ Lo = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Lo, N->getOperand(1));
+ Hi = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Hi, N->getOperand(1));
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
+}
+
+
+
+//===----------------------------------------------------------------------===//
+// Result Vector Widening
+//===----------------------------------------------------------------------===//
+
+void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
+ DEBUG(dbgs() << "Widen node result " << ResNo << ": ";
+ N->dump(&DAG);
+ dbgs() << "\n");
+
+ // See if the target wants to custom widen this node.
+ if (CustomWidenLowerNode(N, N->getValueType(ResNo)))
+ return;
+
+ SDValue Res = SDValue();
+ switch (N->getOpcode()) {
+ default:
+#ifndef NDEBUG
+ dbgs() << "WidenVectorResult #" << ResNo << ": ";
+ N->dump(&DAG);
+ dbgs() << "\n";
+#endif
+ llvm_unreachable("Do not know how to widen the result of this operator!");
+
+ case ISD::MERGE_VALUES: Res = WidenVecRes_MERGE_VALUES(N, ResNo); break;
+ case ISD::BITCAST: Res = WidenVecRes_BITCAST(N); break;
+ case ISD::BUILD_VECTOR: Res = WidenVecRes_BUILD_VECTOR(N); break;
+ case ISD::CONCAT_VECTORS: Res = WidenVecRes_CONCAT_VECTORS(N); break;
+ case ISD::CONVERT_RNDSAT: Res = WidenVecRes_CONVERT_RNDSAT(N); break;
+ case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break;
+ case ISD::FP_ROUND_INREG: Res = WidenVecRes_InregOp(N); break;
+ case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break;
+ case ISD::LOAD: Res = WidenVecRes_LOAD(N); break;
+ case ISD::SCALAR_TO_VECTOR: Res = WidenVecRes_SCALAR_TO_VECTOR(N); break;
+ case ISD::SIGN_EXTEND_INREG: Res = WidenVecRes_InregOp(N); break;
+ case ISD::VSELECT:
+ case ISD::SELECT: Res = WidenVecRes_SELECT(N); break;
+ case ISD::SELECT_CC: Res = WidenVecRes_SELECT_CC(N); break;
+ case ISD::SETCC: Res = WidenVecRes_SETCC(N); break;
+ case ISD::UNDEF: Res = WidenVecRes_UNDEF(N); break;
+ case ISD::VECTOR_SHUFFLE:
+ Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N));
+ break;
+
+ case ISD::ADD:
+ case ISD::AND:
+ case ISD::MUL:
+ case ISD::MULHS:
+ case ISD::MULHU:
+ case ISD::OR:
+ case ISD::SUB:
+ case ISD::XOR:
+ case ISD::FMINNUM:
+ case ISD::FMAXNUM:
+ Res = WidenVecRes_Binary(N);
+ break;
+
+ case ISD::FADD:
+ case ISD::FCOPYSIGN:
+ case ISD::FMUL:
+ case ISD::FPOW:
+ case ISD::FSUB:
+ case ISD::FDIV:
+ case ISD::FREM:
+ case ISD::SDIV:
+ case ISD::UDIV:
+ case ISD::SREM:
+ case ISD::UREM:
+ Res = WidenVecRes_BinaryCanTrap(N);
+ break;
+
+ case ISD::FPOWI:
+ Res = WidenVecRes_POWI(N);
+ break;
+
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL:
+ Res = WidenVecRes_Shift(N);
+ break;
+
+ case ISD::ANY_EXTEND:
+ case ISD::FP_EXTEND:
+ case ISD::FP_ROUND:
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT:
+ case ISD::SIGN_EXTEND:
+ case ISD::SINT_TO_FP:
+ case ISD::TRUNCATE:
+ case ISD::UINT_TO_FP:
+ case ISD::ZERO_EXTEND:
+ Res = WidenVecRes_Convert(N);
+ break;
+
+ case ISD::BSWAP:
+ case ISD::CTLZ:
+ case ISD::CTPOP:
+ case ISD::CTTZ:
+ case ISD::FABS:
+ case ISD::FCEIL:
+ case ISD::FCOS:
+ case ISD::FEXP:
+ case ISD::FEXP2:
+ case ISD::FFLOOR:
+ case ISD::FLOG:
+ case ISD::FLOG10:
+ case ISD::FLOG2:
+ case ISD::FNEARBYINT:
+ case ISD::FNEG:
+ case ISD::FRINT:
+ case ISD::FROUND:
+ case ISD::FSIN:
+ case ISD::FSQRT:
+ case ISD::FTRUNC:
+ Res = WidenVecRes_Unary(N);
+ break;
+ case ISD::FMA:
+ Res = WidenVecRes_Ternary(N);
+ break;
+ }
+
+ // If Res is null, the sub-method took care of registering the result.
+ if (Res.getNode())
+ SetWidenedVector(SDValue(N, ResNo), Res);
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_Ternary(SDNode *N) {
+ // Ternary op widening.
+ SDLoc dl(N);
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ SDValue InOp1 = GetWidenedVector(N->getOperand(0));
+ SDValue InOp2 = GetWidenedVector(N->getOperand(1));
+ SDValue InOp3 = GetWidenedVector(N->getOperand(2));
+ return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, InOp3);
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
+ // Binary op widening.
+ SDLoc dl(N);
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ SDValue InOp1 = GetWidenedVector(N->getOperand(0));
+ SDValue InOp2 = GetWidenedVector(N->getOperand(1));
+ return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2);
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_BinaryCanTrap(SDNode *N) {
+ // Binary op widening for operations that can trap.
+ unsigned Opcode = N->getOpcode();
+ SDLoc dl(N);
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ EVT WidenEltVT = WidenVT.getVectorElementType();
+ EVT VT = WidenVT;
+ unsigned NumElts = VT.getVectorNumElements();
+ while (!TLI.isTypeLegal(VT) && NumElts != 1) {
+ NumElts = NumElts / 2;
+ VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
+ }
+
+ if (NumElts != 1 && !TLI.canOpTrap(N->getOpcode(), VT)) {
+ // Operation doesn't trap so just widen as normal.
+ SDValue InOp1 = GetWidenedVector(N->getOperand(0));
+ SDValue InOp2 = GetWidenedVector(N->getOperand(1));
+ return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2);
+ }
+
+ // No legal vector version so unroll the vector operation and then widen.
+ if (NumElts == 1)
+ return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements());
+
+ // Since the operation can trap, apply operation on the original vector.
+ EVT MaxVT = VT;
+ SDValue InOp1 = GetWidenedVector(N->getOperand(0));
+ SDValue InOp2 = GetWidenedVector(N->getOperand(1));
+ unsigned CurNumElts = N->getValueType(0).getVectorNumElements();
+
+ SmallVector<SDValue, 16> ConcatOps(CurNumElts);
+ unsigned ConcatEnd = 0; // Current ConcatOps index.
+ int Idx = 0; // Current Idx into input vectors.
+
+ // NumElts := greatest legal vector size (at most WidenVT)
+ // while (orig. vector has unhandled elements) {
+ // take munches of size NumElts from the beginning and add to ConcatOps
+ // NumElts := next smaller supported vector size or 1
+ // }
+ while (CurNumElts != 0) {
+ while (CurNumElts >= NumElts) {
+ SDValue EOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp1,
+ DAG.getConstant(Idx, TLI.getVectorIdxTy()));
+ SDValue EOp2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp2,
+ DAG.getConstant(Idx, TLI.getVectorIdxTy()));
+ ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, VT, EOp1, EOp2);
+ Idx += NumElts;
+ CurNumElts -= NumElts;
+ }
+ do {
+ NumElts = NumElts / 2;
+ VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
+ } while (!TLI.isTypeLegal(VT) && NumElts != 1);
+
+ if (NumElts == 1) {
+ for (unsigned i = 0; i != CurNumElts; ++i, ++Idx) {
+ SDValue EOp1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT,
+ InOp1, DAG.getConstant(Idx,
+ TLI.getVectorIdxTy()));
+ SDValue EOp2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT,
+ InOp2, DAG.getConstant(Idx,
+ TLI.getVectorIdxTy()));
+ ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, WidenEltVT,
+ EOp1, EOp2);
+ }
+ CurNumElts = 0;
+ }
+ }
+
+ // Check to see if we have a single operation with the widen type.
+ if (ConcatEnd == 1) {
+ VT = ConcatOps[0].getValueType();
+ if (VT == WidenVT)
+ return ConcatOps[0];
+ }
+
+ // while (Some element of ConcatOps is not of type MaxVT) {
+ // From the end of ConcatOps, collect elements of the same type and put
+ // them into an op of the next larger supported type
+ // }
+ while (ConcatOps[ConcatEnd-1].getValueType() != MaxVT) {
+ Idx = ConcatEnd - 1;
+ VT = ConcatOps[Idx--].getValueType();
+ while (Idx >= 0 && ConcatOps[Idx].getValueType() == VT)
+ Idx--;
+
+ int NextSize = VT.isVector() ? VT.getVectorNumElements() : 1;
+ EVT NextVT;
+ do {
+ NextSize *= 2;
+ NextVT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NextSize);
+ } while (!TLI.isTypeLegal(NextVT));
+
+ if (!VT.isVector()) {
+ // Scalar type, create an INSERT_VECTOR_ELEMENT of type NextVT
+ SDValue VecOp = DAG.getUNDEF(NextVT);
+ unsigned NumToInsert = ConcatEnd - Idx - 1;
+ for (unsigned i = 0, OpIdx = Idx+1; i < NumToInsert; i++, OpIdx++) {
+ VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NextVT, VecOp,
+ ConcatOps[OpIdx], DAG.getConstant(i,
+ TLI.getVectorIdxTy()));
+ }
+ ConcatOps[Idx+1] = VecOp;
+ ConcatEnd = Idx + 2;
+ } else {
+ // Vector type, create a CONCAT_VECTORS of type NextVT
+ SDValue undefVec = DAG.getUNDEF(VT);
+ unsigned OpsToConcat = NextSize/VT.getVectorNumElements();
+ SmallVector<SDValue, 16> SubConcatOps(OpsToConcat);
+ unsigned RealVals = ConcatEnd - Idx - 1;
+ unsigned SubConcatEnd = 0;
+ unsigned SubConcatIdx = Idx + 1;
+ while (SubConcatEnd < RealVals)
+ SubConcatOps[SubConcatEnd++] = ConcatOps[++Idx];
+ while (SubConcatEnd < OpsToConcat)
+ SubConcatOps[SubConcatEnd++] = undefVec;
+ ConcatOps[SubConcatIdx] = DAG.getNode(ISD::CONCAT_VECTORS, dl,
+ NextVT, SubConcatOps);
+ ConcatEnd = SubConcatIdx + 1;
+ }
+ }
+
+ // Check to see if we have a single operation with the widen type.
+ if (ConcatEnd == 1) {
+ VT = ConcatOps[0].getValueType();
+ if (VT == WidenVT)
+ return ConcatOps[0];
+ }
+
+ // add undefs of size MaxVT until ConcatOps grows to length of WidenVT
+ unsigned NumOps = WidenVT.getVectorNumElements()/MaxVT.getVectorNumElements();
+ if (NumOps != ConcatEnd ) {
+ SDValue UndefVal = DAG.getUNDEF(MaxVT);
+ for (unsigned j = ConcatEnd; j < NumOps; ++j)
+ ConcatOps[j] = UndefVal;
+ }
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
+ makeArrayRef(ConcatOps.data(), NumOps));
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
+ SDValue InOp = N->getOperand(0);
+ SDLoc DL(N);
+
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ unsigned WidenNumElts = WidenVT.getVectorNumElements();
+
+ EVT InVT = InOp.getValueType();
+ EVT InEltVT = InVT.getVectorElementType();
+ EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
+
+ unsigned Opcode = N->getOpcode();
+ unsigned InVTNumElts = InVT.getVectorNumElements();
+
+ if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
+ InOp = GetWidenedVector(N->getOperand(0));
+ InVT = InOp.getValueType();
+ InVTNumElts = InVT.getVectorNumElements();
+ if (InVTNumElts == WidenNumElts) {
+ if (N->getNumOperands() == 1)
+ return DAG.getNode(Opcode, DL, WidenVT, InOp);
+ return DAG.getNode(Opcode, DL, WidenVT, InOp, N->getOperand(1));
+ }
+ }
+
+ if (TLI.isTypeLegal(InWidenVT)) {
+ // Because the result and the input are different vector types, widening
+ // the result could create a legal type but widening the input might make
+ // it an illegal type that might lead to repeatedly splitting the input
+ // and then widening it. To avoid this, we widen the input only if
+ // it results in a legal type.
+ if (WidenNumElts % InVTNumElts == 0) {
+ // Widen the input and call convert on the widened input vector.
+ unsigned NumConcat = WidenNumElts/InVTNumElts;
+ SmallVector<SDValue, 16> Ops(NumConcat);
+ Ops[0] = InOp;
+ SDValue UndefVal = DAG.getUNDEF(InVT);
+ for (unsigned i = 1; i != NumConcat; ++i)
+ Ops[i] = UndefVal;
+ SDValue InVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InWidenVT, Ops);
+ if (N->getNumOperands() == 1)
+ return DAG.getNode(Opcode, DL, WidenVT, InVec);
+ return DAG.getNode(Opcode, DL, WidenVT, InVec, N->getOperand(1));
+ }
+
+ if (InVTNumElts % WidenNumElts == 0) {
+ SDValue InVal = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InWidenVT,
+ InOp, DAG.getConstant(0,
+ TLI.getVectorIdxTy()));
+ // Extract the input and convert the shorten input vector.
+ if (N->getNumOperands() == 1)
+ return DAG.getNode(Opcode, DL, WidenVT, InVal);
+ return DAG.getNode(Opcode, DL, WidenVT, InVal, N->getOperand(1));
+ }
+ }
+
+ // Otherwise unroll into some nasty scalar code and rebuild the vector.
+ SmallVector<SDValue, 16> Ops(WidenNumElts);
+ EVT EltVT = WidenVT.getVectorElementType();
+ unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
+ unsigned i;
+ for (i=0; i < MinElts; ++i) {
+ SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, InEltVT, InOp,
+ DAG.getConstant(i, TLI.getVectorIdxTy()));
+ if (N->getNumOperands() == 1)
+ Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val);
+ else
+ Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val, N->getOperand(1));
+ }
+
+ SDValue UndefVal = DAG.getUNDEF(EltVT);
+ for (; i < WidenNumElts; ++i)
+ Ops[i] = UndefVal;
+
+ return DAG.getNode(ISD::BUILD_VECTOR, DL, WidenVT, Ops);
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_POWI(SDNode *N) {
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ SDValue InOp = GetWidenedVector(N->getOperand(0));
+ SDValue ShOp = N->getOperand(1);
+ return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp);
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) {
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ SDValue InOp = GetWidenedVector(N->getOperand(0));
+ SDValue ShOp = N->getOperand(1);
+
+ EVT ShVT = ShOp.getValueType();
+ if (getTypeAction(ShVT) == TargetLowering::TypeWidenVector) {
+ ShOp = GetWidenedVector(ShOp);
+ ShVT = ShOp.getValueType();
+ }
+ EVT ShWidenVT = EVT::getVectorVT(*DAG.getContext(),
+ ShVT.getVectorElementType(),
+ WidenVT.getVectorNumElements());
+ if (ShVT != ShWidenVT)
+ ShOp = ModifyToType(ShOp, ShWidenVT);
+
+ return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp);
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) {
+ // Unary op widening.
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ SDValue InOp = GetWidenedVector(N->getOperand(0));
+ return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp);
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_InregOp(SDNode *N) {
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
+ cast<VTSDNode>(N->getOperand(1))->getVT()
+ .getVectorElementType(),
+ WidenVT.getVectorNumElements());
+ SDValue WidenLHS = GetWidenedVector(N->getOperand(0));
+ return DAG.getNode(N->getOpcode(), SDLoc(N),
+ WidenVT, WidenLHS, DAG.getValueType(ExtVT));
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo) {
+ SDValue WidenVec = DisintegrateMERGE_VALUES(N, ResNo);
+ return GetWidenedVector(WidenVec);
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_BITCAST(SDNode *N) {
+ SDValue InOp = N->getOperand(0);
+ EVT InVT = InOp.getValueType();
+ EVT VT = N->getValueType(0);
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
+ SDLoc dl(N);
+
+ switch (getTypeAction(InVT)) {
+ case TargetLowering::TypeLegal:
+ break;
+ case TargetLowering::TypePromoteInteger:
+ // If the incoming type is a vector that is being promoted, then
+ // we know that the elements are arranged differently and that we
+ // must perform the conversion using a stack slot.
+ if (InVT.isVector())
+ break;
+
+ // If the InOp is promoted to the same size, convert it. Otherwise,
+ // fall out of the switch and widen the promoted input.
+ InOp = GetPromotedInteger(InOp);
+ InVT = InOp.getValueType();
+ if (WidenVT.bitsEq(InVT))
+ return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
+ break;
+ case TargetLowering::TypeSoftenFloat:
+ case TargetLowering::TypeExpandInteger:
+ case TargetLowering::TypeExpandFloat:
+ case TargetLowering::TypeScalarizeVector:
+ case TargetLowering::TypeSplitVector:
+ break;
+ case TargetLowering::TypeWidenVector:
+ // If the InOp is widened to the same size, convert it. Otherwise, fall
+ // out of the switch and widen the widened input.
+ InOp = GetWidenedVector(InOp);
+ InVT = InOp.getValueType();
+ if (WidenVT.bitsEq(InVT))
+ // The input widens to the same size. Convert to the widen value.
+ return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
+ break;
+ }
+
+ unsigned WidenSize = WidenVT.getSizeInBits();
+ unsigned InSize = InVT.getSizeInBits();
+ // x86mmx is not an acceptable vector element type, so don't try.
+ if (WidenSize % InSize == 0 && InVT != MVT::x86mmx) {
+ // Determine new input vector type. The new input vector type will use
+ // the same element type (if its a vector) or use the input type as a
+ // vector. It is the same size as the type to widen to.
+ EVT NewInVT;
+ unsigned NewNumElts = WidenSize / InSize;
+ if (InVT.isVector()) {
+ EVT InEltVT = InVT.getVectorElementType();
+ NewInVT = EVT::getVectorVT(*DAG.getContext(), InEltVT,
+ WidenSize / InEltVT.getSizeInBits());
+ } else {
+ NewInVT = EVT::getVectorVT(*DAG.getContext(), InVT, NewNumElts);
+ }
+
+ if (TLI.isTypeLegal(NewInVT)) {
+ // Because the result and the input are different vector types, widening
+ // the result could create a legal type but widening the input might make
+ // it an illegal type that might lead to repeatedly splitting the input
+ // and then widening it. To avoid this, we widen the input only if
+ // it results in a legal type.
+ SmallVector<SDValue, 16> Ops(NewNumElts);
+ SDValue UndefVal = DAG.getUNDEF(InVT);
+ Ops[0] = InOp;
+ for (unsigned i = 1; i < NewNumElts; ++i)
+ Ops[i] = UndefVal;
+
+ SDValue NewVec;
+ if (InVT.isVector())
+ NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewInVT, Ops);
+ else
+ NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl, NewInVT, Ops);
+ return DAG.getNode(ISD::BITCAST, dl, WidenVT, NewVec);
+ }
+ }
+
+ return CreateStackStoreLoad(InOp, WidenVT);
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) {
+ SDLoc dl(N);
+ // Build a vector with undefined for the new nodes.
+ EVT VT = N->getValueType(0);
+
+ // Integer BUILD_VECTOR operands may be larger than the node's vector element
+ // type. The UNDEFs need to have the same type as the existing operands.
+ EVT EltVT = N->getOperand(0).getValueType();
+ unsigned NumElts = VT.getVectorNumElements();
+
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
+ unsigned WidenNumElts = WidenVT.getVectorNumElements();
+
+ SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end());
+ assert(WidenNumElts >= NumElts && "Shrinking vector instead of widening!");
+ NewOps.append(WidenNumElts - NumElts, DAG.getUNDEF(EltVT));
+
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, NewOps);
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
+ EVT InVT = N->getOperand(0).getValueType();
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ SDLoc dl(N);
+ unsigned WidenNumElts = WidenVT.getVectorNumElements();
+ unsigned NumInElts = InVT.getVectorNumElements();
+ unsigned NumOperands = N->getNumOperands();
+
+ bool InputWidened = false; // Indicates we need to widen the input.
+ if (getTypeAction(InVT) != TargetLowering::TypeWidenVector) {
+ if (WidenVT.getVectorNumElements() % InVT.getVectorNumElements() == 0) {
+ // Add undef vectors to widen to correct length.
+ unsigned NumConcat = WidenVT.getVectorNumElements() /
+ InVT.getVectorNumElements();
+ SDValue UndefVal = DAG.getUNDEF(InVT);
+ SmallVector<SDValue, 16> Ops(NumConcat);
+ for (unsigned i=0; i < NumOperands; ++i)
+ Ops[i] = N->getOperand(i);
+ for (unsigned i = NumOperands; i != NumConcat; ++i)
+ Ops[i] = UndefVal;
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, Ops);
+ }
+ } else {
+ InputWidened = true;
+ if (WidenVT == TLI.getTypeToTransformTo(*DAG.getContext(), InVT)) {
+ // The inputs and the result are widen to the same value.
+ unsigned i;
+ for (i=1; i < NumOperands; ++i)
+ if (N->getOperand(i).getOpcode() != ISD::UNDEF)
+ break;
+
+ if (i == NumOperands)
+ // Everything but the first operand is an UNDEF so just return the
+ // widened first operand.
+ return GetWidenedVector(N->getOperand(0));
+
+ if (NumOperands == 2) {
+ // Replace concat of two operands with a shuffle.
+ SmallVector<int, 16> MaskOps(WidenNumElts, -1);
+ for (unsigned i = 0; i < NumInElts; ++i) {
+ MaskOps[i] = i;
+ MaskOps[i + NumInElts] = i + WidenNumElts;
+ }
+ return DAG.getVectorShuffle(WidenVT, dl,
+ GetWidenedVector(N->getOperand(0)),
+ GetWidenedVector(N->getOperand(1)),
+ &MaskOps[0]);
+ }
+ }
+ }
+
+ // Fall back to use extracts and build vector.
+ EVT EltVT = WidenVT.getVectorElementType();
+ SmallVector<SDValue, 16> Ops(WidenNumElts);
+ unsigned Idx = 0;
+ for (unsigned i=0; i < NumOperands; ++i) {
+ SDValue InOp = N->getOperand(i);
+ if (InputWidened)
+ InOp = GetWidenedVector(InOp);
+ for (unsigned j=0; j < NumInElts; ++j)
+ Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
+ DAG.getConstant(j, TLI.getVectorIdxTy()));
+ }
+ SDValue UndefVal = DAG.getUNDEF(EltVT);
+ for (; Idx < WidenNumElts; ++Idx)
+ Ops[Idx] = UndefVal;
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) {
+ SDLoc dl(N);
+ SDValue InOp = N->getOperand(0);
+ SDValue RndOp = N->getOperand(3);
+ SDValue SatOp = N->getOperand(4);
+
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ unsigned WidenNumElts = WidenVT.getVectorNumElements();
+
+ EVT InVT = InOp.getValueType();
+ EVT InEltVT = InVT.getVectorElementType();
+ EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
+
+ SDValue DTyOp = DAG.getValueType(WidenVT);
+ SDValue STyOp = DAG.getValueType(InWidenVT);
+ ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
+
+ unsigned InVTNumElts = InVT.getVectorNumElements();
+ if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
+ InOp = GetWidenedVector(InOp);
+ InVT = InOp.getValueType();
+ InVTNumElts = InVT.getVectorNumElements();
+ if (InVTNumElts == WidenNumElts)
+ return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
+ SatOp, CvtCode);
+ }
+
+ if (TLI.isTypeLegal(InWidenVT)) {
+ // Because the result and the input are different vector types, widening
+ // the result could create a legal type but widening the input might make
+ // it an illegal type that might lead to repeatedly splitting the input
+ // and then widening it. To avoid this, we widen the input only if
+ // it results in a legal type.
+ if (WidenNumElts % InVTNumElts == 0) {
+ // Widen the input and call convert on the widened input vector.
+ unsigned NumConcat = WidenNumElts/InVTNumElts;
+ SmallVector<SDValue, 16> Ops(NumConcat);
+ Ops[0] = InOp;
+ SDValue UndefVal = DAG.getUNDEF(InVT);
+ for (unsigned i = 1; i != NumConcat; ++i)
+ Ops[i] = UndefVal;
+
+ InOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT, Ops);
+ return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
+ SatOp, CvtCode);
+ }
+
+ if (InVTNumElts % WidenNumElts == 0) {
+ // Extract the input and convert the shorten input vector.
+ InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InWidenVT, InOp,
+ DAG.getConstant(0, TLI.getVectorIdxTy()));
+ return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
+ SatOp, CvtCode);
+ }
+ }
+
+ // Otherwise unroll into some nasty scalar code and rebuild the vector.
+ SmallVector<SDValue, 16> Ops(WidenNumElts);
+ EVT EltVT = WidenVT.getVectorElementType();
+ DTyOp = DAG.getValueType(EltVT);
+ STyOp = DAG.getValueType(InEltVT);
+
+ unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
+ unsigned i;
+ for (i=0; i < MinElts; ++i) {
+ SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
+ DAG.getConstant(i, TLI.getVectorIdxTy()));
+ Ops[i] = DAG.getConvertRndSat(WidenVT, dl, ExtVal, DTyOp, STyOp, RndOp,
+ SatOp, CvtCode);
+ }
+
+ SDValue UndefVal = DAG.getUNDEF(EltVT);
+ for (; i < WidenNumElts; ++i)
+ Ops[i] = UndefVal;
+
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
+ EVT VT = N->getValueType(0);
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
+ unsigned WidenNumElts = WidenVT.getVectorNumElements();
+ SDValue InOp = N->getOperand(0);
+ SDValue Idx = N->getOperand(1);
+ SDLoc dl(N);
+
+ if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
+ InOp = GetWidenedVector(InOp);
+
+ EVT InVT = InOp.getValueType();
+
+ // Check if we can just return the input vector after widening.
+ uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ if (IdxVal == 0 && InVT == WidenVT)
+ return InOp;
+
+ // Check if we can extract from the vector.
+ unsigned InNumElts = InVT.getVectorNumElements();
+ if (IdxVal % WidenNumElts == 0 && IdxVal + WidenNumElts < InNumElts)
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, InOp, Idx);
+
+ // We could try widening the input to the right length but for now, extract
+ // the original elements, fill the rest with undefs and build a vector.
+ SmallVector<SDValue, 16> Ops(WidenNumElts);
+ EVT EltVT = VT.getVectorElementType();
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned i;
+ for (i=0; i < NumElts; ++i)
+ Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
+ DAG.getConstant(IdxVal+i, TLI.getVectorIdxTy()));
+
+ SDValue UndefVal = DAG.getUNDEF(EltVT);
+ for (; i < WidenNumElts; ++i)
+ Ops[i] = UndefVal;
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_INSERT_VECTOR_ELT(SDNode *N) {
+ SDValue InOp = GetWidenedVector(N->getOperand(0));
+ return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N),
+ InOp.getValueType(), InOp,
+ N->getOperand(1), N->getOperand(2));
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ ISD::LoadExtType ExtType = LD->getExtensionType();
+
+ SDValue Result;
+ SmallVector<SDValue, 16> LdChain; // Chain for the series of load
+ if (ExtType != ISD::NON_EXTLOAD)
+ Result = GenWidenVectorExtLoads(LdChain, LD, ExtType);
+ else
+ Result = GenWidenVectorLoads(LdChain, LD);
+
+ // If we generate a single load, we can use that for the chain. Otherwise,
+ // build a factor node to remember the multiple loads are independent and
+ // chain to that.
+ SDValue NewChain;
+ if (LdChain.size() == 1)
+ NewChain = LdChain[0];
+ else
+ NewChain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, LdChain);
+
+ // Modified the chain - switch anything that used the old chain to use
+ // the new one.
+ ReplaceValueWith(SDValue(N, 1), NewChain);
+
+ return Result;
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) {
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N),
+ WidenVT, N->getOperand(0));
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_SELECT(SDNode *N) {
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ unsigned WidenNumElts = WidenVT.getVectorNumElements();
+
+ SDValue Cond1 = N->getOperand(0);
+ EVT CondVT = Cond1.getValueType();
+ if (CondVT.isVector()) {
+ EVT CondEltVT = CondVT.getVectorElementType();
+ EVT CondWidenVT = EVT::getVectorVT(*DAG.getContext(),
+ CondEltVT, WidenNumElts);
+ if (getTypeAction(CondVT) == TargetLowering::TypeWidenVector)
+ Cond1 = GetWidenedVector(Cond1);
+
+ // If we have to split the condition there is no point in widening the
+ // select. This would result in an cycle of widening the select ->
+ // widening the condition operand -> splitting the condition operand ->
+ // splitting the select -> widening the select. Instead split this select
+ // further and widen the resulting type.
+ if (getTypeAction(CondVT) == TargetLowering::TypeSplitVector) {
+ SDValue SplitSelect = SplitVecOp_VSELECT(N, 0);
+ SDValue Res = ModifyToType(SplitSelect, WidenVT);
+ return Res;
+ }
+
+ if (Cond1.getValueType() != CondWidenVT)
+ Cond1 = ModifyToType(Cond1, CondWidenVT);
+ }
+
+ SDValue InOp1 = GetWidenedVector(N->getOperand(1));
+ SDValue InOp2 = GetWidenedVector(N->getOperand(2));
+ assert(InOp1.getValueType() == WidenVT && InOp2.getValueType() == WidenVT);
+ return DAG.getNode(N->getOpcode(), SDLoc(N),
+ WidenVT, Cond1, InOp1, InOp2);
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_SELECT_CC(SDNode *N) {
+ SDValue InOp1 = GetWidenedVector(N->getOperand(2));
+ SDValue InOp2 = GetWidenedVector(N->getOperand(3));
+ return DAG.getNode(ISD::SELECT_CC, SDLoc(N),
+ InOp1.getValueType(), N->getOperand(0),
+ N->getOperand(1), InOp1, InOp2, N->getOperand(4));
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_SETCC(SDNode *N) {
+ assert(N->getValueType(0).isVector() ==
+ N->getOperand(0).getValueType().isVector() &&
+ "Scalar/Vector type mismatch");
+ if (N->getValueType(0).isVector()) return WidenVecRes_VSETCC(N);
+
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ SDValue InOp1 = GetWidenedVector(N->getOperand(0));
+ SDValue InOp2 = GetWidenedVector(N->getOperand(1));
+ return DAG.getNode(ISD::SETCC, SDLoc(N), WidenVT,
+ InOp1, InOp2, N->getOperand(2));
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_UNDEF(SDNode *N) {
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ return DAG.getUNDEF(WidenVT);
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N) {
+ EVT VT = N->getValueType(0);
+ SDLoc dl(N);
+
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned WidenNumElts = WidenVT.getVectorNumElements();
+
+ SDValue InOp1 = GetWidenedVector(N->getOperand(0));
+ SDValue InOp2 = GetWidenedVector(N->getOperand(1));
+
+ // Adjust mask based on new input vector length.
+ SmallVector<int, 16> NewMask;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ int Idx = N->getMaskElt(i);
+ if (Idx < (int)NumElts)
+ NewMask.push_back(Idx);
+ else
+ NewMask.push_back(Idx - NumElts + WidenNumElts);
+ }
+ for (unsigned i = NumElts; i != WidenNumElts; ++i)
+ NewMask.push_back(-1);
+ return DAG.getVectorShuffle(WidenVT, dl, InOp1, InOp2, &NewMask[0]);
+}
+
+SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) {
+ assert(N->getValueType(0).isVector() &&
+ N->getOperand(0).getValueType().isVector() &&
+ "Operands must be vectors");
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
+ unsigned WidenNumElts = WidenVT.getVectorNumElements();
+
+ SDValue InOp1 = N->getOperand(0);
+ EVT InVT = InOp1.getValueType();
+ assert(InVT.isVector() && "can not widen non-vector type");
+ EVT WidenInVT = EVT::getVectorVT(*DAG.getContext(),
+ InVT.getVectorElementType(), WidenNumElts);
+ InOp1 = GetWidenedVector(InOp1);
+ SDValue InOp2 = GetWidenedVector(N->getOperand(1));
+
+ // Assume that the input and output will be widen appropriately. If not,
+ // we will have to unroll it at some point.
+ assert(InOp1.getValueType() == WidenInVT &&
+ InOp2.getValueType() == WidenInVT &&
+ "Input not widened to expected type!");
+ (void)WidenInVT;
+ return DAG.getNode(ISD::SETCC, SDLoc(N),
+ WidenVT, InOp1, InOp2, N->getOperand(2));
+}
+
+
+//===----------------------------------------------------------------------===//
+// Widen Vector Operand
+//===----------------------------------------------------------------------===//
+bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned OpNo) {
+ DEBUG(dbgs() << "Widen node operand " << OpNo << ": ";
+ N->dump(&DAG);
+ dbgs() << "\n");
+ SDValue Res = SDValue();
+
+ // See if the target wants to custom widen this node.
+ if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
+ return false;
+
+ switch (N->getOpcode()) {
+ default:
+#ifndef NDEBUG
+ dbgs() << "WidenVectorOperand op #" << OpNo << ": ";
+ N->dump(&DAG);
+ dbgs() << "\n";
+#endif
+ llvm_unreachable("Do not know how to widen this operator's operand!");
+
+ case ISD::BITCAST: Res = WidenVecOp_BITCAST(N); break;
+ case ISD::CONCAT_VECTORS: Res = WidenVecOp_CONCAT_VECTORS(N); break;
+ case ISD::EXTRACT_SUBVECTOR: Res = WidenVecOp_EXTRACT_SUBVECTOR(N); break;
+ case ISD::EXTRACT_VECTOR_ELT: Res = WidenVecOp_EXTRACT_VECTOR_ELT(N); break;
+ case ISD::STORE: Res = WidenVecOp_STORE(N); break;
+ case ISD::SETCC: Res = WidenVecOp_SETCC(N); break;
+
+ case ISD::ANY_EXTEND:
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ Res = WidenVecOp_EXTEND(N);
+ break;
+
+ case ISD::FP_EXTEND:
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT:
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP:
+ case ISD::TRUNCATE:
+ Res = WidenVecOp_Convert(N);
+ break;
+ }
+
+ // If Res is null, the sub-method took care of registering the result.
+ if (!Res.getNode()) return false;
+
+ // If the result is N, the sub-method updated N in place. Tell the legalizer
+ // core about this.
+ if (Res.getNode() == N)
+ return true;
+
+
+ assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
+ "Invalid operand expansion");
+
+ ReplaceValueWith(SDValue(N, 0), Res);
+ return false;
+}
+
+SDValue DAGTypeLegalizer::WidenVecOp_EXTEND(SDNode *N) {
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+
+ SDValue InOp = N->getOperand(0);
+ // If some legalization strategy other than widening is used on the operand,
+ // we can't safely assume that just extending the low lanes is the correct
+ // transformation.
+ if (getTypeAction(InOp.getValueType()) != TargetLowering::TypeWidenVector)
+ return WidenVecOp_Convert(N);
+ InOp = GetWidenedVector(InOp);
+ assert(VT.getVectorNumElements() <
+ InOp.getValueType().getVectorNumElements() &&
+ "Input wasn't widened!");
+
+ // We may need to further widen the operand until it has the same total
+ // vector size as the result.
+ EVT InVT = InOp.getValueType();
+ if (InVT.getSizeInBits() != VT.getSizeInBits()) {
+ EVT InEltVT = InVT.getVectorElementType();
+ for (int i = MVT::FIRST_VECTOR_VALUETYPE, e = MVT::LAST_VECTOR_VALUETYPE; i < e; ++i) {
+ EVT FixedVT = (MVT::SimpleValueType)i;
+ EVT FixedEltVT = FixedVT.getVectorElementType();
+ if (TLI.isTypeLegal(FixedVT) &&
+ FixedVT.getSizeInBits() == VT.getSizeInBits() &&
+ FixedEltVT == InEltVT) {
+ assert(FixedVT.getVectorNumElements() >= VT.getVectorNumElements() &&
+ "Not enough elements in the fixed type for the operand!");
+ assert(FixedVT.getVectorNumElements() != InVT.getVectorNumElements() &&
+ "We can't have the same type as we started with!");
+ if (FixedVT.getVectorNumElements() > InVT.getVectorNumElements())
+ InOp = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, FixedVT,
+ DAG.getUNDEF(FixedVT), InOp,
+ DAG.getConstant(0, TLI.getVectorIdxTy()));
+ else
+ InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, FixedVT, InOp,
+ DAG.getConstant(0, TLI.getVectorIdxTy()));
+ break;
+ }
+ }
+ InVT = InOp.getValueType();
+ if (InVT.getSizeInBits() != VT.getSizeInBits())
+ // We couldn't find a legal vector type that was a widening of the input
+ // and could be extended in-register to the result type, so we have to
+ // scalarize.
+ return WidenVecOp_Convert(N);
+ }
+
+ // Use special DAG nodes to represent the operation of extending the
+ // low lanes.
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Extend legalization on on extend operation!");
+ case ISD::ANY_EXTEND:
+ return DAG.getAnyExtendVectorInReg(InOp, DL, VT);
+ case ISD::SIGN_EXTEND:
+ return DAG.getSignExtendVectorInReg(InOp, DL, VT);
+ case ISD::ZERO_EXTEND:
+ return DAG.getZeroExtendVectorInReg(InOp, DL, VT);
+ }
+}
+
+SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) {
+ // Since the result is legal and the input is illegal, it is unlikely
+ // that we can fix the input to a legal type so unroll the convert
+ // into some scalar code and create a nasty build vector.
+ EVT VT = N->getValueType(0);
+ EVT EltVT = VT.getVectorElementType();
+ SDLoc dl(N);
+ unsigned NumElts = VT.getVectorNumElements();
+ SDValue InOp = N->getOperand(0);
+ if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
+ InOp = GetWidenedVector(InOp);
+ EVT InVT = InOp.getValueType();
+ EVT InEltVT = InVT.getVectorElementType();
+
+ unsigned Opcode = N->getOpcode();
+ SmallVector<SDValue, 16> Ops(NumElts);
+ for (unsigned i=0; i < NumElts; ++i)
+ Ops[i] = DAG.getNode(Opcode, dl, EltVT,
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
+ DAG.getConstant(i, TLI.getVectorIdxTy())));
+
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
+}
+
+SDValue DAGTypeLegalizer::WidenVecOp_BITCAST(SDNode *N) {
+ EVT VT = N->getValueType(0);
+ SDValue InOp = GetWidenedVector(N->getOperand(0));
+ EVT InWidenVT = InOp.getValueType();
+ SDLoc dl(N);
+
+ // Check if we can convert between two legal vector types and extract.
+ unsigned InWidenSize = InWidenVT.getSizeInBits();
+ unsigned Size = VT.getSizeInBits();
+ // x86mmx is not an acceptable vector element type, so don't try.
+ if (InWidenSize % Size == 0 && !VT.isVector() && VT != MVT::x86mmx) {
+ unsigned NewNumElts = InWidenSize / Size;
+ EVT NewVT = EVT::getVectorVT(*DAG.getContext(), VT, NewNumElts);
+ if (TLI.isTypeLegal(NewVT)) {
+ SDValue BitOp = DAG.getNode(ISD::BITCAST, dl, NewVT, InOp);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
+ DAG.getConstant(0, TLI.getVectorIdxTy()));
+ }
+ }
+
+ return CreateStackStoreLoad(InOp, VT);
+}
+
+SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) {
+ // If the input vector is not legal, it is likely that we will not find a
+ // legal vector of the same size. Replace the concatenate vector with a
+ // nasty build vector.
+ EVT VT = N->getValueType(0);
+ EVT EltVT = VT.getVectorElementType();
+ SDLoc dl(N);
+ unsigned NumElts = VT.getVectorNumElements();
+ SmallVector<SDValue, 16> Ops(NumElts);
+
+ EVT InVT = N->getOperand(0).getValueType();
+ unsigned NumInElts = InVT.getVectorNumElements();
+
+ unsigned Idx = 0;
+ unsigned NumOperands = N->getNumOperands();
+ for (unsigned i=0; i < NumOperands; ++i) {
+ SDValue InOp = N->getOperand(i);
+ if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
+ InOp = GetWidenedVector(InOp);
+ for (unsigned j=0; j < NumInElts; ++j)
+ Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
+ DAG.getConstant(j, TLI.getVectorIdxTy()));
+ }
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
+}
+
+SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
+ SDValue InOp = GetWidenedVector(N->getOperand(0));
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N),
+ N->getValueType(0), InOp, N->getOperand(1));
+}
+
+SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
+ SDValue InOp = GetWidenedVector(N->getOperand(0));
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
+ N->getValueType(0), InOp, N->getOperand(1));
+}
+
+SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
+ // We have to widen the value but we want only to store the original
+ // vector type.
+ StoreSDNode *ST = cast<StoreSDNode>(N);
+
+ SmallVector<SDValue, 16> StChain;
+ if (ST->isTruncatingStore())
+ GenWidenVectorTruncStores(StChain, ST);
+ else
+ GenWidenVectorStores(StChain, ST);
+
+ if (StChain.size() == 1)
+ return StChain[0];
+ else
+ return DAG.getNode(ISD::TokenFactor, SDLoc(ST), MVT::Other, StChain);
+}
+
+SDValue DAGTypeLegalizer::WidenVecOp_SETCC(SDNode *N) {
+ SDValue InOp0 = GetWidenedVector(N->getOperand(0));
+ SDValue InOp1 = GetWidenedVector(N->getOperand(1));
+ SDLoc dl(N);
+
+ // WARNING: In this code we widen the compare instruction with garbage.
+ // This garbage may contain denormal floats which may be slow. Is this a real
+ // concern ? Should we zero the unused lanes if this is a float compare ?
+
+ // Get a new SETCC node to compare the newly widened operands.
+ // Only some of the compared elements are legal.
+ EVT SVT = TLI.getSetCCResultType(*DAG.getContext(), InOp0.getValueType());
+ SDValue WideSETCC = DAG.getNode(ISD::SETCC, SDLoc(N),
+ SVT, InOp0, InOp1, N->getOperand(2));
+
+ // Extract the needed results from the result vector.
+ EVT ResVT = EVT::getVectorVT(*DAG.getContext(),
+ SVT.getVectorElementType(),
+ N->getValueType(0).getVectorNumElements());
+ SDValue CC = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
+ ResVT, WideSETCC, DAG.getConstant(0,
+ TLI.getVectorIdxTy()));
+
+ return PromoteTargetBoolean(CC, N->getValueType(0));
+}
+
+
+//===----------------------------------------------------------------------===//
+// Vector Widening Utilities
+//===----------------------------------------------------------------------===//
+
+// Utility function to find the type to chop up a widen vector for load/store
+// TLI: Target lowering used to determine legal types.
+// Width: Width left need to load/store.
+// WidenVT: The widen vector type to load to/store from
+// Align: If 0, don't allow use of a wider type
+// WidenEx: If Align is not 0, the amount additional we can load/store from.
+
+static EVT FindMemType(SelectionDAG& DAG, const TargetLowering &TLI,
+ unsigned Width, EVT WidenVT,
+ unsigned Align = 0, unsigned WidenEx = 0) {
+ EVT WidenEltVT = WidenVT.getVectorElementType();
+ unsigned WidenWidth = WidenVT.getSizeInBits();
+ unsigned WidenEltWidth = WidenEltVT.getSizeInBits();
+ unsigned AlignInBits = Align*8;
+
+ // If we have one element to load/store, return it.
+ EVT RetVT = WidenEltVT;
+ if (Width == WidenEltWidth)
+ return RetVT;
+
+ // See if there is larger legal integer than the element type to load/store
+ unsigned VT;
+ for (VT = (unsigned)MVT::LAST_INTEGER_VALUETYPE;
+ VT >= (unsigned)MVT::FIRST_INTEGER_VALUETYPE; --VT) {
+ EVT MemVT((MVT::SimpleValueType) VT);
+ unsigned MemVTWidth = MemVT.getSizeInBits();
+ if (MemVT.getSizeInBits() <= WidenEltWidth)
+ break;
+ if (TLI.isTypeLegal(MemVT) && (WidenWidth % MemVTWidth) == 0 &&
+ isPowerOf2_32(WidenWidth / MemVTWidth) &&
+ (MemVTWidth <= Width ||
+ (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
+ RetVT = MemVT;
+ break;
+ }
+ }
+
+ // See if there is a larger vector type to load/store that has the same vector
+ // element type and is evenly divisible with the WidenVT.
+ for (VT = (unsigned)MVT::LAST_VECTOR_VALUETYPE;
+ VT >= (unsigned)MVT::FIRST_VECTOR_VALUETYPE; --VT) {
+ EVT MemVT = (MVT::SimpleValueType) VT;
+ unsigned MemVTWidth = MemVT.getSizeInBits();
+ if (TLI.isTypeLegal(MemVT) && WidenEltVT == MemVT.getVectorElementType() &&
+ (WidenWidth % MemVTWidth) == 0 &&
+ isPowerOf2_32(WidenWidth / MemVTWidth) &&
+ (MemVTWidth <= Width ||
+ (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
+ if (RetVT.getSizeInBits() < MemVTWidth || MemVT == WidenVT)
+ return MemVT;
+ }
+ }
+
+ return RetVT;
+}
+
+// Builds a vector type from scalar loads
+// VecTy: Resulting Vector type
+// LDOps: Load operators to build a vector type
+// [Start,End) the list of loads to use.
+static SDValue BuildVectorFromScalar(SelectionDAG& DAG, EVT VecTy,
+ SmallVectorImpl<SDValue> &LdOps,
+ unsigned Start, unsigned End) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDLoc dl(LdOps[Start]);
+ EVT LdTy = LdOps[Start].getValueType();
+ unsigned Width = VecTy.getSizeInBits();
+ unsigned NumElts = Width / LdTy.getSizeInBits();
+ EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), LdTy, NumElts);
+
+ unsigned Idx = 1;
+ SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT,LdOps[Start]);
+
+ for (unsigned i = Start + 1; i != End; ++i) {
+ EVT NewLdTy = LdOps[i].getValueType();
+ if (NewLdTy != LdTy) {
+ NumElts = Width / NewLdTy.getSizeInBits();
+ NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewLdTy, NumElts);
+ VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, VecOp);
+ // Readjust position and vector position based on new load type
+ Idx = Idx * LdTy.getSizeInBits() / NewLdTy.getSizeInBits();
+ LdTy = NewLdTy;
+ }
+ VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVecVT, VecOp, LdOps[i],
+ DAG.getConstant(Idx++, TLI.getVectorIdxTy()));
+ }
+ return DAG.getNode(ISD::BITCAST, dl, VecTy, VecOp);
+}
+
+SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
+ LoadSDNode *LD) {
+ // The strategy assumes that we can efficiently load powers of two widths.
+ // The routines chops the vector into the largest vector loads with the same
+ // element type or scalar loads and then recombines it to the widen vector
+ // type.
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
+ unsigned WidenWidth = WidenVT.getSizeInBits();
+ EVT LdVT = LD->getMemoryVT();
+ SDLoc dl(LD);
+ assert(LdVT.isVector() && WidenVT.isVector());
+ assert(LdVT.getVectorElementType() == WidenVT.getVectorElementType());
+
+ // Load information
+ SDValue Chain = LD->getChain();
+ SDValue BasePtr = LD->getBasePtr();
+ unsigned Align = LD->getAlignment();
+ bool isVolatile = LD->isVolatile();
+ bool isNonTemporal = LD->isNonTemporal();
+ bool isInvariant = LD->isInvariant();
+ AAMDNodes AAInfo = LD->getAAInfo();
+
+ int LdWidth = LdVT.getSizeInBits();
+ int WidthDiff = WidenWidth - LdWidth; // Difference
+ unsigned LdAlign = (isVolatile) ? 0 : Align; // Allow wider loads
+
+ // Find the vector type that can load from.
+ EVT NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
+ int NewVTWidth = NewVT.getSizeInBits();
+ SDValue LdOp = DAG.getLoad(NewVT, dl, Chain, BasePtr, LD->getPointerInfo(),
+ isVolatile, isNonTemporal, isInvariant, Align,
+ AAInfo);
+ LdChain.push_back(LdOp.getValue(1));
+
+ // Check if we can load the element with one instruction
+ if (LdWidth <= NewVTWidth) {
+ if (!NewVT.isVector()) {
+ unsigned NumElts = WidenWidth / NewVTWidth;
+ EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
+ SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT, LdOp);
+ return DAG.getNode(ISD::BITCAST, dl, WidenVT, VecOp);
+ }
+ if (NewVT == WidenVT)
+ return LdOp;
+
+ assert(WidenWidth % NewVTWidth == 0);
+ unsigned NumConcat = WidenWidth / NewVTWidth;
+ SmallVector<SDValue, 16> ConcatOps(NumConcat);
+ SDValue UndefVal = DAG.getUNDEF(NewVT);
+ ConcatOps[0] = LdOp;
+ for (unsigned i = 1; i != NumConcat; ++i)
+ ConcatOps[i] = UndefVal;
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, ConcatOps);
+ }
+
+ // Load vector by using multiple loads from largest vector to scalar
+ SmallVector<SDValue, 16> LdOps;
+ LdOps.push_back(LdOp);
+
+ LdWidth -= NewVTWidth;
+ unsigned Offset = 0;
+
+ while (LdWidth > 0) {
+ unsigned Increment = NewVTWidth / 8;
+ Offset += Increment;
+ BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
+ DAG.getConstant(Increment, BasePtr.getValueType()));
+
+ SDValue L;
+ if (LdWidth < NewVTWidth) {
+ // Our current type we are using is too large, find a better size
+ NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
+ NewVTWidth = NewVT.getSizeInBits();
+ L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
+ LD->getPointerInfo().getWithOffset(Offset), isVolatile,
+ isNonTemporal, isInvariant, MinAlign(Align, Increment),
+ AAInfo);
+ LdChain.push_back(L.getValue(1));
+ if (L->getValueType(0).isVector()) {
+ SmallVector<SDValue, 16> Loads;
+ Loads.push_back(L);
+ unsigned size = L->getValueSizeInBits(0);
+ while (size < LdOp->getValueSizeInBits(0)) {
+ Loads.push_back(DAG.getUNDEF(L->getValueType(0)));
+ size += L->getValueSizeInBits(0);
+ }
+ L = DAG.getNode(ISD::CONCAT_VECTORS, dl, LdOp->getValueType(0), Loads);
+ }
+ } else {
+ L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
+ LD->getPointerInfo().getWithOffset(Offset), isVolatile,
+ isNonTemporal, isInvariant, MinAlign(Align, Increment),
+ AAInfo);
+ LdChain.push_back(L.getValue(1));
+ }
+
+ LdOps.push_back(L);
+
+
+ LdWidth -= NewVTWidth;
+ }
+
+ // Build the vector from the loads operations
+ unsigned End = LdOps.size();
+ if (!LdOps[0].getValueType().isVector())
+ // All the loads are scalar loads.
+ return BuildVectorFromScalar(DAG, WidenVT, LdOps, 0, End);
+
+ // If the load contains vectors, build the vector using concat vector.
+ // All of the vectors used to loads are power of 2 and the scalars load
+ // can be combined to make a power of 2 vector.
+ SmallVector<SDValue, 16> ConcatOps(End);
+ int i = End - 1;
+ int Idx = End;
+ EVT LdTy = LdOps[i].getValueType();
+ // First combine the scalar loads to a vector
+ if (!LdTy.isVector()) {
+ for (--i; i >= 0; --i) {
+ LdTy = LdOps[i].getValueType();
+ if (LdTy.isVector())
+ break;
+ }
+ ConcatOps[--Idx] = BuildVectorFromScalar(DAG, LdTy, LdOps, i+1, End);
+ }
+ ConcatOps[--Idx] = LdOps[i];
+ for (--i; i >= 0; --i) {
+ EVT NewLdTy = LdOps[i].getValueType();
+ if (NewLdTy != LdTy) {
+ // Create a larger vector
+ ConcatOps[End-1] = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewLdTy,
+ makeArrayRef(&ConcatOps[Idx], End - Idx));
+ Idx = End - 1;
+ LdTy = NewLdTy;
+ }
+ ConcatOps[--Idx] = LdOps[i];
+ }
+
+ if (WidenWidth == LdTy.getSizeInBits()*(End - Idx))
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
+ makeArrayRef(&ConcatOps[Idx], End - Idx));
+
+ // We need to fill the rest with undefs to build the vector
+ unsigned NumOps = WidenWidth / LdTy.getSizeInBits();
+ SmallVector<SDValue, 16> WidenOps(NumOps);
+ SDValue UndefVal = DAG.getUNDEF(LdTy);
+ {
+ unsigned i = 0;
+ for (; i != End-Idx; ++i)
+ WidenOps[i] = ConcatOps[Idx+i];
+ for (; i != NumOps; ++i)
+ WidenOps[i] = UndefVal;
+ }
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, WidenOps);
+}
+
+SDValue
+DAGTypeLegalizer::GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
+ LoadSDNode *LD,
+ ISD::LoadExtType ExtType) {
+ // For extension loads, it may not be more efficient to chop up the vector
+ // and then extended it. Instead, we unroll the load and build a new vector.
+ EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
+ EVT LdVT = LD->getMemoryVT();
+ SDLoc dl(LD);
+ assert(LdVT.isVector() && WidenVT.isVector());
+
+ // Load information
+ SDValue Chain = LD->getChain();
+ SDValue BasePtr = LD->getBasePtr();
+ unsigned Align = LD->getAlignment();
+ bool isVolatile = LD->isVolatile();
+ bool isNonTemporal = LD->isNonTemporal();
+ bool isInvariant = LD->isInvariant();
+ AAMDNodes AAInfo = LD->getAAInfo();
+
+ EVT EltVT = WidenVT.getVectorElementType();
+ EVT LdEltVT = LdVT.getVectorElementType();
+ unsigned NumElts = LdVT.getVectorNumElements();
+
+ // Load each element and widen
+ unsigned WidenNumElts = WidenVT.getVectorNumElements();
+ SmallVector<SDValue, 16> Ops(WidenNumElts);
+ unsigned Increment = LdEltVT.getSizeInBits() / 8;
+ Ops[0] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr,
+ LD->getPointerInfo(),
+ LdEltVT, isVolatile, isNonTemporal, isInvariant,
+ Align, AAInfo);
+ LdChain.push_back(Ops[0].getValue(1));
+ unsigned i = 0, Offset = Increment;
+ for (i=1; i < NumElts; ++i, Offset += Increment) {
+ SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
+ BasePtr,
+ DAG.getConstant(Offset,
+ BasePtr.getValueType()));
+ Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr,
+ LD->getPointerInfo().getWithOffset(Offset), LdEltVT,
+ isVolatile, isNonTemporal, isInvariant, Align,
+ AAInfo);
+ LdChain.push_back(Ops[i].getValue(1));
+ }
+
+ // Fill the rest with undefs
+ SDValue UndefVal = DAG.getUNDEF(EltVT);
+ for (; i != WidenNumElts; ++i)
+ Ops[i] = UndefVal;
+
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
+}
+
+
+void DAGTypeLegalizer::GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain,
+ StoreSDNode *ST) {
+ // The strategy assumes that we can efficiently store powers of two widths.
+ // The routines chops the vector into the largest vector stores with the same
+ // element type or scalar stores.
+ SDValue Chain = ST->getChain();
+ SDValue BasePtr = ST->getBasePtr();
+ unsigned Align = ST->getAlignment();
+ bool isVolatile = ST->isVolatile();
+ bool isNonTemporal = ST->isNonTemporal();
+ AAMDNodes AAInfo = ST->getAAInfo();
+ SDValue ValOp = GetWidenedVector(ST->getValue());
+ SDLoc dl(ST);
+
+ EVT StVT = ST->getMemoryVT();
+ unsigned StWidth = StVT.getSizeInBits();
+ EVT ValVT = ValOp.getValueType();
+ unsigned ValWidth = ValVT.getSizeInBits();
+ EVT ValEltVT = ValVT.getVectorElementType();
+ unsigned ValEltWidth = ValEltVT.getSizeInBits();
+ assert(StVT.getVectorElementType() == ValEltVT);
+
+ int Idx = 0; // current index to store
+ unsigned Offset = 0; // offset from base to store
+ while (StWidth != 0) {
+ // Find the largest vector type we can store with
+ EVT NewVT = FindMemType(DAG, TLI, StWidth, ValVT);
+ unsigned NewVTWidth = NewVT.getSizeInBits();
+ unsigned Increment = NewVTWidth / 8;
+ if (NewVT.isVector()) {
+ unsigned NumVTElts = NewVT.getVectorNumElements();
+ do {
+ SDValue EOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT, ValOp,
+ DAG.getConstant(Idx, TLI.getVectorIdxTy()));
+ StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
+ ST->getPointerInfo().getWithOffset(Offset),
+ isVolatile, isNonTemporal,
+ MinAlign(Align, Offset), AAInfo));
+ StWidth -= NewVTWidth;
+ Offset += Increment;
+ Idx += NumVTElts;
+ BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
+ DAG.getConstant(Increment, BasePtr.getValueType()));
+ } while (StWidth != 0 && StWidth >= NewVTWidth);
+ } else {
+ // Cast the vector to the scalar type we can store
+ unsigned NumElts = ValWidth / NewVTWidth;
+ EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
+ SDValue VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, ValOp);
+ // Readjust index position based on new vector type
+ Idx = Idx * ValEltWidth / NewVTWidth;
+ do {
+ SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewVT, VecOp,
+ DAG.getConstant(Idx++, TLI.getVectorIdxTy()));
+ StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
+ ST->getPointerInfo().getWithOffset(Offset),
+ isVolatile, isNonTemporal,
+ MinAlign(Align, Offset), AAInfo));
+ StWidth -= NewVTWidth;
+ Offset += Increment;
+ BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
+ DAG.getConstant(Increment, BasePtr.getValueType()));
+ } while (StWidth != 0 && StWidth >= NewVTWidth);
+ // Restore index back to be relative to the original widen element type
+ Idx = Idx * NewVTWidth / ValEltWidth;
+ }
+ }
+}
+
+void
+DAGTypeLegalizer::GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
+ StoreSDNode *ST) {
+ // For extension loads, it may not be more efficient to truncate the vector
+ // and then store it. Instead, we extract each element and then store it.
+ SDValue Chain = ST->getChain();
+ SDValue BasePtr = ST->getBasePtr();
+ unsigned Align = ST->getAlignment();
+ bool isVolatile = ST->isVolatile();
+ bool isNonTemporal = ST->isNonTemporal();
+ AAMDNodes AAInfo = ST->getAAInfo();
+ SDValue ValOp = GetWidenedVector(ST->getValue());
+ SDLoc dl(ST);
+
+ EVT StVT = ST->getMemoryVT();
+ EVT ValVT = ValOp.getValueType();
+
+ // It must be true that we the widen vector type is bigger than where
+ // we need to store.
+ assert(StVT.isVector() && ValOp.getValueType().isVector());
+ assert(StVT.bitsLT(ValOp.getValueType()));
+
+ // For truncating stores, we can not play the tricks of chopping legal
+ // vector types and bit cast it to the right type. Instead, we unroll
+ // the store.
+ EVT StEltVT = StVT.getVectorElementType();
+ EVT ValEltVT = ValVT.getVectorElementType();
+ unsigned Increment = ValEltVT.getSizeInBits() / 8;
+ unsigned NumElts = StVT.getVectorNumElements();
+ SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
+ DAG.getConstant(0, TLI.getVectorIdxTy()));
+ StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, BasePtr,
+ ST->getPointerInfo(), StEltVT,
+ isVolatile, isNonTemporal, Align,
+ AAInfo));
+ unsigned Offset = Increment;
+ for (unsigned i=1; i < NumElts; ++i, Offset += Increment) {
+ SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
+ BasePtr, DAG.getConstant(Offset,
+ BasePtr.getValueType()));
+ SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
+ DAG.getConstant(0, TLI.getVectorIdxTy()));
+ StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, NewBasePtr,
+ ST->getPointerInfo().getWithOffset(Offset),
+ StEltVT, isVolatile, isNonTemporal,
+ MinAlign(Align, Offset), AAInfo));
+ }
+}
+
+/// Modifies a vector input (widen or narrows) to a vector of NVT. The
+/// input vector must have the same element type as NVT.
+SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, EVT NVT) {
+ // Note that InOp might have been widened so it might already have
+ // the right width or it might need be narrowed.
+ EVT InVT = InOp.getValueType();
+ assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
+ "input and widen element type must match");
+ SDLoc dl(InOp);
+
+ // Check if InOp already has the right width.
+ if (InVT == NVT)
+ return InOp;
+
+ unsigned InNumElts = InVT.getVectorNumElements();
+ unsigned WidenNumElts = NVT.getVectorNumElements();
+ if (WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0) {
+ unsigned NumConcat = WidenNumElts / InNumElts;
+ SmallVector<SDValue, 16> Ops(NumConcat);
+ SDValue UndefVal = DAG.getUNDEF(InVT);
+ Ops[0] = InOp;
+ for (unsigned i = 1; i != NumConcat; ++i)
+ Ops[i] = UndefVal;
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, Ops);
+ }
+
+ if (WidenNumElts < InNumElts && InNumElts % WidenNumElts)
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, InOp,
+ DAG.getConstant(0, TLI.getVectorIdxTy()));
+
+ // Fall back to extract and build.
+ SmallVector<SDValue, 16> Ops(WidenNumElts);
+ EVT EltVT = NVT.getVectorElementType();
+ unsigned MinNumElts = std::min(WidenNumElts, InNumElts);
+ unsigned Idx;
+ for (Idx = 0; Idx < MinNumElts; ++Idx)
+ Ops[Idx] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
+ DAG.getConstant(Idx, TLI.getVectorIdxTy()));
+
+ SDValue UndefVal = DAG.getUNDEF(EltVT);
+ for ( ; Idx < WidenNumElts; ++Idx)
+ Ops[Idx] = UndefVal;
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Ops);
+}
diff --git a/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp b/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp index 7961e66d8c8..57ec81bba4a 100644 --- a/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp +++ b/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp @@ -4917,6 +4917,60 @@ SelectionDAG::getIndexedStore(SDValue OrigStore, SDLoc dl, SDValue Base, return SDValue(N, 0); } +SDValue +SelectionDAG::getMaskedLoad(EVT VT, SDLoc dl, SDValue Chain, + SDValue Ptr, SDValue Mask, SDValue Src0, + MachineMemOperand *MMO) { + + SDVTList VTs = getVTList(VT, MVT::Other); + SDValue Ops[] = { Chain, Ptr, Mask, Src0 }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops); + ID.AddInteger(VT.getRawBits()); + ID.AddInteger(encodeMemSDNodeFlags(ISD::NON_EXTLOAD, ISD::UNINDEXED, + MMO->isVolatile(), + MMO->isNonTemporal(), + MMO->isInvariant())); + ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); + void *IP = nullptr; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) { + cast<MaskedLoadSDNode>(E)->refineAlignment(MMO); + return SDValue(E, 0); + } + SDNode *N = new (NodeAllocator) MaskedLoadSDNode(dl.getIROrder(), + dl.getDebugLoc(), Ops, 4, VTs, + VT, MMO); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + +SDValue SelectionDAG::getMaskedStore(SDValue Chain, SDLoc dl, SDValue Val, + SDValue Ptr, SDValue Mask, MachineMemOperand *MMO) { + assert(Chain.getValueType() == MVT::Other && + "Invalid chain type"); + EVT VT = Val.getValueType(); + SDVTList VTs = getVTList(MVT::Other); + SDValue Ops[] = { Chain, Ptr, Mask, Val }; + FoldingSetNodeID ID; + AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops); + ID.AddInteger(VT.getRawBits()); + ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(), + MMO->isNonTemporal(), MMO->isInvariant())); + ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); + void *IP = nullptr; + if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) { + cast<MaskedStoreSDNode>(E)->refineAlignment(MMO); + return SDValue(E, 0); + } + SDNode *N = new (NodeAllocator) MaskedStoreSDNode(dl.getIROrder(), + dl.getDebugLoc(), Ops, 4, + VTs, VT, MMO); + CSEMap.InsertNode(N, IP); + InsertNode(N); + return SDValue(N, 0); +} + SDValue SelectionDAG::getVAArg(EVT VT, SDLoc dl, SDValue Chain, SDValue Ptr, SDValue SV, diff --git a/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp b/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp index 8f582f1aeb6..8618ab212ee 100644 --- a/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp +++ b/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp @@ -3613,6 +3613,70 @@ void SelectionDAGBuilder::visitStore(const StoreInst &I) { DAG.setRoot(StoreNode); } +void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { + SDLoc sdl = getCurSDLoc(); + + Value *PtrOperand = I.getArgOperand(0); + SDValue Ptr = getValue(PtrOperand); + SDValue Src0 = getValue(I.getArgOperand(1)); + SDValue Mask = getValue(I.getArgOperand(3)); + EVT VT = Src0.getValueType(); + unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); + if (!Alignment) + Alignment = DAG.getEVTAlignment(VT); + + AAMDNodes AAInfo; + I.getAAMetadata(AAInfo); + + MachineMemOperand *MMO = + DAG.getMachineFunction(). + getMachineMemOperand(MachinePointerInfo(PtrOperand), + MachineMemOperand::MOStore, VT.getStoreSize(), + Alignment, AAInfo); + SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, MMO); + DAG.setRoot(StoreNode); + setValue(&I, StoreNode); +} + +void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { + SDLoc sdl = getCurSDLoc(); + + Value *PtrOperand = I.getArgOperand(0); + SDValue Ptr = getValue(PtrOperand); + SDValue Src0 = getValue(I.getArgOperand(1)); + SDValue Mask = getValue(I.getArgOperand(3)); + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + EVT VT = TLI.getValueType(I.getType()); + unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); + if (!Alignment) + Alignment = DAG.getEVTAlignment(VT); + + AAMDNodes AAInfo; + I.getAAMetadata(AAInfo); + const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); + + SDValue InChain = DAG.getRoot(); + if (AA->pointsToConstantMemory( + AliasAnalysis::Location(PtrOperand, + AA->getTypeStoreSize(I.getType()), + AAInfo))) { + // Do not serialize (non-volatile) loads of constant memory with anything. + InChain = DAG.getEntryNode(); + } + + MachineMemOperand *MMO = + DAG.getMachineFunction(). + getMachineMemOperand(MachinePointerInfo(PtrOperand), + MachineMemOperand::MOLoad, VT.getStoreSize(), + Alignment, AAInfo, Ranges); + + SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, MMO); + SDValue OutChain = Load.getValue(1); + DAG.setRoot(OutChain); + setValue(&I, Load); +} + void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { SDLoc dl = getCurSDLoc(); AtomicOrdering SuccessOrder = I.getSuccessOrdering(); @@ -4914,6 +4978,12 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { return nullptr; } + case Intrinsic::masked_load: + visitMaskedLoad(I); + return nullptr; + case Intrinsic::masked_store: + visitMaskedStore(I); + return nullptr; case Intrinsic::x86_mmx_pslli_w: case Intrinsic::x86_mmx_pslli_d: case Intrinsic::x86_mmx_pslli_q: diff --git a/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h b/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h index f74e6525b0c..2637e07a49b 100644 --- a/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h +++ b/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.h @@ -756,6 +756,8 @@ private: void visitAlloca(const AllocaInst &I); void visitLoad(const LoadInst &I); void visitStore(const StoreInst &I); + void visitMaskedLoad(const CallInst &I); + void visitMaskedStore(const CallInst &I); void visitAtomicCmpXchg(const AtomicCmpXchgInst &I); void visitAtomicRMW(const AtomicRMWInst &I); void visitFence(const FenceInst &I); diff --git a/llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp b/llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp index c9f6cff9155..e8577d898c2 100644 --- a/llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp +++ b/llvm/lib/CodeGen/SelectionDAG/SelectionDAGDumper.cpp @@ -269,6 +269,8 @@ std::string SDNode::getOperationName(const SelectionDAG *G) const { // Other operators case ISD::LOAD: return "load"; case ISD::STORE: return "store"; + case ISD::MLOAD: return "masked_load"; + case ISD::MSTORE: return "masked_store"; case ISD::VAARG: return "vaarg"; case ISD::VACOPY: return "vacopy"; case ISD::VAEND: return "vaend"; |