summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--llvm/include/llvm/Analysis/DataStructure/DSGraph.h448
-rw-r--r--llvm/include/llvm/Analysis/DataStructure/DSGraphTraits.h155
-rw-r--r--llvm/include/llvm/Analysis/DataStructure/DSNode.h468
-rw-r--r--llvm/include/llvm/Analysis/DataStructure/DSSupport.h313
-rw-r--r--llvm/include/llvm/Analysis/DataStructure/DataStructure.h248
5 files changed, 1632 insertions, 0 deletions
diff --git a/llvm/include/llvm/Analysis/DataStructure/DSGraph.h b/llvm/include/llvm/Analysis/DataStructure/DSGraph.h
new file mode 100644
index 00000000000..81c12fcad65
--- /dev/null
+++ b/llvm/include/llvm/Analysis/DataStructure/DSGraph.h
@@ -0,0 +1,448 @@
+//===- DSGraph.h - Represent a collection of data structures ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This header defines the data structure graph (DSGraph) and the
+// ReachabilityCloner class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_DSGRAPH_H
+#define LLVM_ANALYSIS_DSGRAPH_H
+
+#include "llvm/Analysis/DataStructure/DSNode.h"
+
+namespace llvm {
+
+class GlobalValue;
+
+//===----------------------------------------------------------------------===//
+/// DSScalarMap - An instance of this class is used to keep track of all of
+/// which DSNode each scalar in a function points to. This is specialized to
+/// keep track of globals with nodes in the function, and to keep track of the
+/// unique DSNodeHandle being used by the scalar map.
+///
+/// This class is crucial to the efficiency of DSA with some large SCC's. In
+/// these cases, the cost of iterating over the scalar map dominates the cost
+/// of DSA. In all of these cases, the DSA phase is really trying to identify
+/// globals or unique node handles active in the function.
+///
+class DSScalarMap {
+ typedef hash_map<Value*, DSNodeHandle> ValueMapTy;
+ ValueMapTy ValueMap;
+
+ typedef hash_set<GlobalValue*> GlobalSetTy;
+ GlobalSetTy GlobalSet;
+public:
+
+ // Compatibility methods: provide an interface compatible with a map of
+ // Value* to DSNodeHandle's.
+ typedef ValueMapTy::const_iterator const_iterator;
+ typedef ValueMapTy::iterator iterator;
+ iterator begin() { return ValueMap.begin(); }
+ iterator end() { return ValueMap.end(); }
+ const_iterator begin() const { return ValueMap.begin(); }
+ const_iterator end() const { return ValueMap.end(); }
+ iterator find(Value *V) { return ValueMap.find(V); }
+ const_iterator find(Value *V) const { return ValueMap.find(V); }
+ unsigned count(Value *V) const { return ValueMap.count(V); }
+
+ void erase(Value *V) { erase(find(V)); }
+
+ /// replaceScalar - When an instruction needs to be modified, this method can
+ /// be used to update the scalar map to remove the old and insert the new.
+ ///
+ void replaceScalar(Value *Old, Value *New) {
+ iterator I = find(Old);
+ assert(I != end() && "Old value is not in the map!");
+ ValueMap.insert(std::make_pair(New, I->second));
+ erase(I);
+ }
+
+ DSNodeHandle &operator[](Value *V) {
+ std::pair<iterator,bool> IP =
+ ValueMap.insert(std::make_pair(V, DSNodeHandle()));
+ if (IP.second) { // Inserted the new entry into the map.
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
+ GlobalSet.insert(GV);
+ }
+ return IP.first->second;
+ }
+
+ void erase(iterator I) {
+ assert(I != ValueMap.end() && "Cannot erase end!");
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(I->first))
+ GlobalSet.erase(GV);
+ ValueMap.erase(I);
+ }
+
+ void clear() {
+ ValueMap.clear();
+ GlobalSet.clear();
+ }
+
+ // Access to the global set: the set of all globals currently in the
+ // scalar map.
+ typedef GlobalSetTy::const_iterator global_iterator;
+ global_iterator global_begin() const { return GlobalSet.begin(); }
+ global_iterator global_end() const { return GlobalSet.end(); }
+};
+
+
+//===----------------------------------------------------------------------===//
+/// DSGraph - The graph that represents a function.
+///
+struct DSGraph {
+ // Public data-type declarations...
+ typedef DSScalarMap ScalarMapTy;
+ typedef hash_map<Function*, DSNodeHandle> ReturnNodesTy;
+ typedef hash_set<GlobalValue*> GlobalSetTy;
+ typedef ilist<DSNode> NodeListTy;
+
+ /// NodeMapTy - This data type is used when cloning one graph into another to
+ /// keep track of the correspondence between the nodes in the old and new
+ /// graphs.
+ typedef hash_map<const DSNode*, DSNodeHandle> NodeMapTy;
+private:
+ DSGraph *GlobalsGraph; // Pointer to the common graph of global objects
+ bool PrintAuxCalls; // Should this graph print the Aux calls vector?
+
+ NodeListTy Nodes;
+ ScalarMapTy ScalarMap;
+
+ // ReturnNodes - A return value for every function merged into this graph.
+ // Each DSGraph may have multiple functions merged into it at any time, which
+ // is used for representing SCCs.
+ //
+ ReturnNodesTy ReturnNodes;
+
+ // FunctionCalls - This vector maintains a single entry for each call
+ // instruction in the current graph. The first entry in the vector is the
+ // scalar that holds the return value for the call, the second is the function
+ // scalar being invoked, and the rest are pointer arguments to the function.
+ // This vector is built by the Local graph and is never modified after that.
+ //
+ std::vector<DSCallSite> FunctionCalls;
+
+ // AuxFunctionCalls - This vector contains call sites that have been processed
+ // by some mechanism. In pratice, the BU Analysis uses this vector to hold
+ // the _unresolved_ call sites, because it cannot modify FunctionCalls.
+ //
+ std::vector<DSCallSite> AuxFunctionCalls;
+
+ // InlinedGlobals - This set records which globals have been inlined from
+ // other graphs (callers or callees, depending on the pass) into this one.
+ //
+ GlobalSetTy InlinedGlobals;
+
+ /// TD - This is the target data object for the machine this graph is
+ /// constructed for.
+ const TargetData &TD;
+
+ void operator=(const DSGraph &); // DO NOT IMPLEMENT
+
+public:
+ // Create a new, empty, DSGraph.
+ DSGraph(const TargetData &td)
+ : GlobalsGraph(0), PrintAuxCalls(false), TD(td) {}
+
+ // Compute the local DSGraph
+ DSGraph(const TargetData &td, Function &F, DSGraph *GlobalsGraph);
+
+ // Copy ctor - If you want to capture the node mapping between the source and
+ // destination graph, you may optionally do this by specifying a map to record
+ // this into.
+ //
+ // Note that a copied graph does not retain the GlobalsGraph pointer of the
+ // source. You need to set a new GlobalsGraph with the setGlobalsGraph
+ // method.
+ //
+ DSGraph(const DSGraph &DSG);
+ DSGraph(const DSGraph &DSG, NodeMapTy &NodeMap);
+ ~DSGraph();
+
+ DSGraph *getGlobalsGraph() const { return GlobalsGraph; }
+ void setGlobalsGraph(DSGraph *G) { GlobalsGraph = G; }
+
+ /// getTargetData - Return the TargetData object for the current target.
+ ///
+ const TargetData &getTargetData() const { return TD; }
+
+ /// setPrintAuxCalls - If you call this method, the auxillary call vector will
+ /// be printed instead of the standard call vector to the dot file.
+ ///
+ void setPrintAuxCalls() { PrintAuxCalls = true; }
+ bool shouldPrintAuxCalls() const { return PrintAuxCalls; }
+
+ /// node_iterator/begin/end - Iterate over all of the nodes in the graph. Be
+ /// extremely careful with these methods because any merging of nodes could
+ /// cause the node to be removed from this list. This means that if you are
+ /// iterating over nodes and doing something that could cause _any_ node to
+ /// merge, your node_iterators into this graph can be invalidated.
+ typedef NodeListTy::compat_iterator node_iterator;
+ node_iterator node_begin() const { return Nodes.compat_begin(); }
+ node_iterator node_end() const { return Nodes.compat_end(); }
+
+ /// getFunctionNames - Return a space separated list of the name of the
+ /// functions in this graph (if any)
+ ///
+ std::string getFunctionNames() const;
+
+ /// addNode - Add a new node to the graph.
+ ///
+ void addNode(DSNode *N) { Nodes.push_back(N); }
+ void unlinkNode(DSNode *N) { Nodes.remove(N); }
+
+ /// getScalarMap - Get a map that describes what the nodes the scalars in this
+ /// function point to...
+ ///
+ ScalarMapTy &getScalarMap() { return ScalarMap; }
+ const ScalarMapTy &getScalarMap() const { return ScalarMap; }
+
+ /// getFunctionCalls - Return the list of call sites in the original local
+ /// graph...
+ ///
+ const std::vector<DSCallSite> &getFunctionCalls() const {
+ return FunctionCalls;
+ }
+
+ /// getAuxFunctionCalls - Get the call sites as modified by whatever passes
+ /// have been run.
+ ///
+ std::vector<DSCallSite> &getAuxFunctionCalls() {
+ return AuxFunctionCalls;
+ }
+ const std::vector<DSCallSite> &getAuxFunctionCalls() const {
+ return AuxFunctionCalls;
+ }
+
+ /// getInlinedGlobals - Get the set of globals that are have been inlined
+ /// (from callees in BU or from callers in TD) into the current graph.
+ ///
+ GlobalSetTy& getInlinedGlobals() {
+ return InlinedGlobals;
+ }
+
+ /// getNodeForValue - Given a value that is used or defined in the body of the
+ /// current function, return the DSNode that it points to.
+ ///
+ DSNodeHandle &getNodeForValue(Value *V) { return ScalarMap[V]; }
+
+ const DSNodeHandle &getNodeForValue(Value *V) const {
+ ScalarMapTy::const_iterator I = ScalarMap.find(V);
+ assert(I != ScalarMap.end() &&
+ "Use non-const lookup function if node may not be in the map");
+ return I->second;
+ }
+
+ /// getReturnNodes - Return the mapping of functions to their return nodes for
+ /// this graph.
+ ///
+ const ReturnNodesTy &getReturnNodes() const { return ReturnNodes; }
+ ReturnNodesTy &getReturnNodes() { return ReturnNodes; }
+
+ /// getReturnNodeFor - Return the return node for the specified function.
+ ///
+ DSNodeHandle &getReturnNodeFor(Function &F) {
+ ReturnNodesTy::iterator I = ReturnNodes.find(&F);
+ assert(I != ReturnNodes.end() && "F not in this DSGraph!");
+ return I->second;
+ }
+
+ const DSNodeHandle &getReturnNodeFor(Function &F) const {
+ ReturnNodesTy::const_iterator I = ReturnNodes.find(&F);
+ assert(I != ReturnNodes.end() && "F not in this DSGraph!");
+ return I->second;
+ }
+
+ /// getGraphSize - Return the number of nodes in this graph.
+ ///
+ unsigned getGraphSize() const {
+ return Nodes.size();
+ }
+
+ /// print - Print a dot graph to the specified ostream...
+ ///
+ void print(std::ostream &O) const;
+
+ /// dump - call print(std::cerr), for use from the debugger...
+ ///
+ void dump() const;
+
+ /// viewGraph - Emit a dot graph, run 'dot', run gv on the postscript file,
+ /// then cleanup. For use from the debugger.
+ ///
+ void viewGraph() const;
+
+ void writeGraphToFile(std::ostream &O, const std::string &GraphName) const;
+
+ /// maskNodeTypes - Apply a mask to all of the node types in the graph. This
+ /// is useful for clearing out markers like Incomplete.
+ ///
+ void maskNodeTypes(unsigned Mask) {
+ for (node_iterator I = node_begin(), E = node_end(); I != E; ++I)
+ (*I)->maskNodeTypes(Mask);
+ }
+ void maskIncompleteMarkers() { maskNodeTypes(~DSNode::Incomplete); }
+
+ // markIncompleteNodes - Traverse the graph, identifying nodes that may be
+ // modified by other functions that have not been resolved yet. This marks
+ // nodes that are reachable through three sources of "unknownness":
+ // Global Variables, Function Calls, and Incoming Arguments
+ //
+ // For any node that may have unknown components (because something outside
+ // the scope of current analysis may have modified it), the 'Incomplete' flag
+ // is added to the NodeType.
+ //
+ enum MarkIncompleteFlags {
+ MarkFormalArgs = 1, IgnoreFormalArgs = 0,
+ IgnoreGlobals = 2, MarkGlobalsIncomplete = 0,
+ };
+ void markIncompleteNodes(unsigned Flags);
+
+ // removeDeadNodes - Use a reachability analysis to eliminate subgraphs that
+ // are unreachable. This often occurs because the data structure doesn't
+ // "escape" into it's caller, and thus should be eliminated from the caller's
+ // graph entirely. This is only appropriate to use when inlining graphs.
+ //
+ enum RemoveDeadNodesFlags {
+ RemoveUnreachableGlobals = 1, KeepUnreachableGlobals = 0,
+ };
+ void removeDeadNodes(unsigned Flags);
+
+ /// CloneFlags enum - Bits that may be passed into the cloneInto method to
+ /// specify how to clone the function graph.
+ enum CloneFlags {
+ StripAllocaBit = 1 << 0, KeepAllocaBit = 0,
+ DontCloneCallNodes = 1 << 1, CloneCallNodes = 0,
+ DontCloneAuxCallNodes = 1 << 2, CloneAuxCallNodes = 0,
+ StripModRefBits = 1 << 3, KeepModRefBits = 0,
+ StripIncompleteBit = 1 << 4, KeepIncompleteBit = 0,
+ UpdateInlinedGlobals = 1 << 5, DontUpdateInlinedGlobals = 0,
+ };
+
+ void updateFromGlobalGraph();
+
+ /// computeNodeMapping - Given roots in two different DSGraphs, traverse the
+ /// nodes reachable from the two graphs, computing the mapping of nodes from
+ /// the first to the second graph.
+ ///
+ static void computeNodeMapping(const DSNodeHandle &NH1,
+ const DSNodeHandle &NH2, NodeMapTy &NodeMap,
+ bool StrictChecking = true);
+
+
+ /// cloneInto - Clone the specified DSGraph into the current graph. The
+ /// translated ScalarMap for the old function is filled into the OldValMap
+ /// member, and the translated ReturnNodes map is returned into ReturnNodes.
+ /// OldNodeMap contains a mapping from the original nodes to the newly cloned
+ /// nodes.
+ ///
+ /// The CloneFlags member controls various aspects of the cloning process.
+ ///
+ void cloneInto(const DSGraph &G, ScalarMapTy &OldValMap,
+ ReturnNodesTy &OldReturnNodes, NodeMapTy &OldNodeMap,
+ unsigned CloneFlags = 0);
+
+ /// mergeInGraph - The method is used for merging graphs together. If the
+ /// argument graph is not *this, it makes a clone of the specified graph, then
+ /// merges the nodes specified in the call site with the formal arguments in
+ /// the graph. If the StripAlloca's argument is 'StripAllocaBit' then Alloca
+ /// markers are removed from nodes.
+ ///
+ void mergeInGraph(const DSCallSite &CS, Function &F, const DSGraph &Graph,
+ unsigned CloneFlags);
+
+ /// getCallSiteForArguments - Get the arguments and return value bindings for
+ /// the specified function in the current graph.
+ ///
+ DSCallSite getCallSiteForArguments(Function &F) const;
+
+ /// getDSCallSiteForCallSite - Given an LLVM CallSite object that is live in
+ /// the context of this graph, return the DSCallSite for it.
+ DSCallSite getDSCallSiteForCallSite(CallSite CS) const;
+
+ // Methods for checking to make sure graphs are well formed...
+ void AssertNodeInGraph(const DSNode *N) const {
+ assert((!N || N->getParentGraph() == this) &&
+ "AssertNodeInGraph: Node is not in graph!");
+ }
+ void AssertNodeContainsGlobal(const DSNode *N, GlobalValue *GV) const {
+ assert(std::find(N->getGlobals().begin(), N->getGlobals().end(), GV) !=
+ N->getGlobals().end() && "Global value not in node!");
+ }
+
+ void AssertCallSiteInGraph(const DSCallSite &CS) const;
+ void AssertCallNodesInGraph() const;
+ void AssertAuxCallNodesInGraph() const;
+
+ void AssertGraphOK() const;
+
+ /// removeTriviallyDeadNodes - After the graph has been constructed, this
+ /// method removes all unreachable nodes that are created because they got
+ /// merged with other nodes in the graph. This is used as the first step of
+ /// removeDeadNodes.
+ ///
+ void removeTriviallyDeadNodes();
+};
+
+
+/// ReachabilityCloner - This class is used to incrementally clone and merge
+/// nodes from a non-changing source graph into a potentially mutating
+/// destination graph. Nodes are only cloned over on demand, either in
+/// responds to a merge() or getClonedNH() call. When a node is cloned over,
+/// all of the nodes reachable from it are automatically brought over as well.
+///
+class ReachabilityCloner {
+ DSGraph &Dest;
+ const DSGraph &Src;
+
+ /// BitsToKeep - These bits are retained from the source node when the
+ /// source nodes are merged into the destination graph.
+ unsigned BitsToKeep;
+ unsigned CloneFlags;
+
+ // NodeMap - A mapping from nodes in the source graph to the nodes that
+ // represent them in the destination graph.
+ DSGraph::NodeMapTy NodeMap;
+public:
+ ReachabilityCloner(DSGraph &dest, const DSGraph &src, unsigned cloneFlags)
+ : Dest(dest), Src(src), CloneFlags(cloneFlags) {
+ assert(&Dest != &Src && "Cannot clone from graph to same graph!");
+ BitsToKeep = ~DSNode::DEAD;
+ if (CloneFlags & DSGraph::StripAllocaBit)
+ BitsToKeep &= ~DSNode::AllocaNode;
+ if (CloneFlags & DSGraph::StripModRefBits)
+ BitsToKeep &= ~(DSNode::Modified | DSNode::Read);
+ if (CloneFlags & DSGraph::StripIncompleteBit)
+ BitsToKeep &= ~DSNode::Incomplete;
+ }
+
+ DSNodeHandle getClonedNH(const DSNodeHandle &SrcNH);
+
+ void merge(const DSNodeHandle &NH, const DSNodeHandle &SrcNH);
+
+ /// mergeCallSite - Merge the nodes reachable from the specified src call
+ /// site into the nodes reachable from DestCS.
+ ///
+ void mergeCallSite(const DSCallSite &DestCS, const DSCallSite &SrcCS);
+
+ bool clonedAnyNodes() const { return !NodeMap.empty(); }
+
+ /// hasClonedNode - Return true if the specified node has been cloned from
+ /// the source graph into the destination graph.
+ bool hasClonedNode(const DSNode *N) {
+ return NodeMap.count(N);
+ }
+
+ void destroy() { NodeMap.clear(); }
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/llvm/include/llvm/Analysis/DataStructure/DSGraphTraits.h b/llvm/include/llvm/Analysis/DataStructure/DSGraphTraits.h
new file mode 100644
index 00000000000..608cd198efc
--- /dev/null
+++ b/llvm/include/llvm/Analysis/DataStructure/DSGraphTraits.h
@@ -0,0 +1,155 @@
+//===- DSGraphTraits.h - Provide generic graph interface --------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides GraphTraits specializations for the DataStructure graph
+// nodes, allowing datastructure graphs to be processed by generic graph
+// algorithms.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_DSGRAPHTRAITS_H
+#define LLVM_ANALYSIS_DSGRAPHTRAITS_H
+
+#include "llvm/Analysis/DataStructure/DSGraph.h"
+#include "Support/GraphTraits.h"
+#include "Support/iterator"
+#include "Support/STLExtras.h"
+
+namespace llvm {
+
+template<typename NodeTy>
+class DSNodeIterator : public forward_iterator<const DSNode, ptrdiff_t> {
+ friend class DSNode;
+ NodeTy * const Node;
+ unsigned Offset;
+
+ typedef DSNodeIterator<NodeTy> _Self;
+
+ DSNodeIterator(NodeTy *N) : Node(N), Offset(0) {} // begin iterator
+ DSNodeIterator(NodeTy *N, bool) : Node(N) { // Create end iterator
+ if (N != 0) {
+ Offset = N->getNumLinks() << DS::PointerShift;
+ if (Offset == 0 && Node->getForwardNode() &&
+ Node->isDeadNode()) // Model Forward link
+ Offset += DS::PointerSize;
+ } else {
+ Offset = 0;
+ }
+ }
+public:
+ DSNodeIterator(const DSNodeHandle &NH)
+ : Node(NH.getNode()), Offset(NH.getOffset()) {}
+
+ bool operator==(const _Self& x) const {
+ return Offset == x.Offset;
+ }
+ bool operator!=(const _Self& x) const { return !operator==(x); }
+
+ const _Self &operator=(const _Self &I) {
+ assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
+ Offset = I.Offset;
+ return *this;
+ }
+
+ pointer operator*() const {
+ if (Node->isDeadNode())
+ return Node->getForwardNode();
+ else
+ return Node->getLink(Offset).getNode();
+ }
+ pointer operator->() const { return operator*(); }
+
+ _Self& operator++() { // Preincrement
+ Offset += (1 << DS::PointerShift);
+ return *this;
+ }
+ _Self operator++(int) { // Postincrement
+ _Self tmp = *this; ++*this; return tmp;
+ }
+
+ unsigned getOffset() const { return Offset; }
+ const DSNode *getNode() const { return Node; }
+};
+
+// Provide iterators for DSNode...
+inline DSNode::iterator DSNode::begin() {
+ return DSNode::iterator(this);
+}
+inline DSNode::iterator DSNode::end() {
+ return DSNode::iterator(this, false);
+}
+inline DSNode::const_iterator DSNode::begin() const {
+ return DSNode::const_iterator(this);
+}
+inline DSNode::const_iterator DSNode::end() const {
+ return DSNode::const_iterator(this, false);
+}
+
+template <> struct GraphTraits<DSNode*> {
+ typedef DSNode NodeType;
+ typedef DSNode::iterator ChildIteratorType;
+
+ static NodeType *getEntryNode(NodeType *N) { return N; }
+ static ChildIteratorType child_begin(NodeType *N) { return N->begin(); }
+ static ChildIteratorType child_end(NodeType *N) { return N->end(); }
+};
+
+template <> struct GraphTraits<const DSNode*> {
+ typedef const DSNode NodeType;
+ typedef DSNode::const_iterator ChildIteratorType;
+
+ static NodeType *getEntryNode(NodeType *N) { return N; }
+ static ChildIteratorType child_begin(NodeType *N) { return N->begin(); }
+ static ChildIteratorType child_end(NodeType *N) { return N->end(); }
+};
+
+static DSNode &dereference ( DSNode *N) { return *N; }
+static const DSNode &dereferenceC(const DSNode *N) { return *N; }
+
+template <> struct GraphTraits<DSGraph*> {
+ typedef DSNode NodeType;
+ typedef DSNode::iterator ChildIteratorType;
+
+ typedef std::pointer_to_unary_function<DSNode *, DSNode&> DerefFun;
+
+ // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
+ typedef mapped_iterator<DSGraph::node_iterator, DerefFun> nodes_iterator;
+ static nodes_iterator nodes_begin(DSGraph *G) {
+ return map_iterator(G->node_begin(), DerefFun(dereference));
+ }
+ static nodes_iterator nodes_end(DSGraph *G) {
+ return map_iterator(G->node_end(), DerefFun(dereference));
+ }
+
+ static ChildIteratorType child_begin(NodeType *N) { return N->begin(); }
+ static ChildIteratorType child_end(NodeType *N) { return N->end(); }
+};
+
+template <> struct GraphTraits<const DSGraph*> {
+ typedef const DSNode NodeType;
+ typedef DSNode::const_iterator ChildIteratorType;
+
+ typedef std::pointer_to_unary_function<const DSNode *,const DSNode&> DerefFun;
+
+ // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
+ typedef mapped_iterator<DSGraph::node_iterator, DerefFun> nodes_iterator;
+ static nodes_iterator nodes_begin(const DSGraph *G) {
+ return map_iterator(G->node_begin(), DerefFun(dereferenceC));
+ }
+ static nodes_iterator nodes_end(const DSGraph *G) {
+ return map_iterator(G->node_end(), DerefFun(dereferenceC));
+ }
+
+ static ChildIteratorType child_begin(const NodeType *N) { return N->begin(); }
+ static ChildIteratorType child_end(const NodeType *N) { return N->end(); }
+};
+
+} // End llvm namespace
+
+#endif
diff --git a/llvm/include/llvm/Analysis/DataStructure/DSNode.h b/llvm/include/llvm/Analysis/DataStructure/DSNode.h
new file mode 100644
index 00000000000..27ae67ee1dd
--- /dev/null
+++ b/llvm/include/llvm/Analysis/DataStructure/DSNode.h
@@ -0,0 +1,468 @@
+//===- DSNode.h - Node definition for datastructure graphs ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Data structure graph nodes and some implementation of DSNodeHandle.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_DSNODE_H
+#define LLVM_ANALYSIS_DSNODE_H
+
+#include "llvm/Analysis/DataStructure/DSSupport.h"
+
+namespace llvm {
+
+template<typename BaseType>
+class DSNodeIterator; // Data structure graph traversal iterator
+class TargetData;
+
+//===----------------------------------------------------------------------===//
+/// DSNode - Data structure node class
+///
+/// This class represents an untyped memory object of Size bytes. It keeps
+/// track of any pointers that have been stored into the object as well as the
+/// different types represented in this object.
+///
+class DSNode {
+ /// NumReferrers - The number of DSNodeHandles pointing to this node... if
+ /// this is a forwarding node, then this is the number of node handles which
+ /// are still forwarding over us.
+ ///
+ unsigned NumReferrers;
+
+ /// ForwardNH - This NodeHandle contain the node (and offset into the node)
+ /// that this node really is. When nodes get folded together, the node to be
+ /// eliminated has these fields filled in, otherwise ForwardNH.getNode() is
+ /// null.
+ ///
+ DSNodeHandle ForwardNH;
+
+ /// Next, Prev - These instance variables are used to keep the node on a
+ /// doubly-linked ilist in the DSGraph.
+ ///
+ DSNode *Next, *Prev;
+ friend class ilist_traits<DSNode>;
+
+ /// Size - The current size of the node. This should be equal to the size of
+ /// the current type record.
+ ///
+ unsigned Size;
+
+ /// ParentGraph - The graph this node is currently embedded into.
+ ///
+ DSGraph *ParentGraph;
+
+ /// Ty - Keep track of the current outer most type of this object, in addition
+ /// to whether or not it has been indexed like an array or not. If the
+ /// isArray bit is set, the node cannot grow.
+ ///
+ const Type *Ty; // The type itself...
+
+ /// Links - Contains one entry for every sizeof(void*) bytes in this memory
+ /// object. Note that if the node is not a multiple of size(void*) bytes
+ /// large, that there is an extra entry for the "remainder" of the node as
+ /// well. For this reason, nodes of 1 byte in size do have one link.
+ ///
+ std::vector<DSNodeHandle> Links;
+
+ /// Globals - The list of global values that are merged into this node.
+ ///
+ std::vector<GlobalValue*> Globals;
+
+ void operator=(const DSNode &); // DO NOT IMPLEMENT
+ DSNode(const DSNode &); // DO NOT IMPLEMENT
+public:
+ enum NodeTy {
+ ShadowNode = 0, // Nothing is known about this node...
+ AllocaNode = 1 << 0, // This node was allocated with alloca
+ HeapNode = 1 << 1, // This node was allocated with malloc
+ GlobalNode = 1 << 2, // This node was allocated by a global var decl
+ UnknownNode = 1 << 3, // This node points to unknown allocated memory
+ Incomplete = 1 << 4, // This node may not be complete
+
+ Modified = 1 << 5, // This node is modified in this context
+ Read = 1 << 6, // This node is read in this context
+
+ Array = 1 << 7, // This node is treated like an array
+ //#ifndef NDEBUG
+ DEAD = 1 << 8, // This node is dead and should not be pointed to
+ //#endif
+
+ Composition = AllocaNode | HeapNode | GlobalNode | UnknownNode,
+ };
+
+ /// NodeType - A union of the above bits. "Shadow" nodes do not add any flags
+ /// to the nodes in the data structure graph, so it is possible to have nodes
+ /// with a value of 0 for their NodeType.
+ ///
+private:
+ unsigned short NodeType;
+public:
+
+ /// DSNode ctor - Create a node of the specified type, inserting it into the
+ /// specified graph.
+ ///
+ DSNode(const Type *T, DSGraph *G);
+
+ /// DSNode "copy ctor" - Copy the specified node, inserting it into the
+ /// specified graph. If NullLinks is true, then null out all of the links,
+ /// but keep the same number of them. This can be used for efficiency if the
+ /// links are just going to be clobbered anyway.
+ ///
+ DSNode(const DSNode &, DSGraph *G, bool NullLinks = false);
+
+ ~DSNode() {
+ dropAllReferences();
+ assert(hasNoReferrers() && "Referrers to dead node exist!");
+ }
+
+ // Iterator for graph interface... Defined in DSGraphTraits.h
+ typedef DSNodeIterator<DSNode> iterator;
+ typedef DSNodeIterator<const DSNode> const_iterator;
+ inline iterator begin();
+ inline iterator end();
+ inline const_iterator begin() const;
+ inline const_iterator end() const;
+
+ //===--------------------------------------------------
+ // Accessors
+
+ /// getSize - Return the maximum number of bytes occupied by this object...
+ ///
+ unsigned getSize() const { return Size; }
+
+ /// getType - Return the node type of this object...
+ ///
+ const Type *getType() const { return Ty; }
+
+ bool isArray() const { return NodeType & Array; }
+
+ /// hasNoReferrers - Return true if nothing is pointing to this node at all.
+ ///
+ bool hasNoReferrers() const { return getNumReferrers() == 0; }
+
+ /// getNumReferrers - This method returns the number of referrers to the
+ /// current node. Note that if this node is a forwarding node, this will
+ /// return the number of nodes forwarding over the node!
+ unsigned getNumReferrers() const { return NumReferrers; }
+
+ DSGraph *getParentGraph() const { return ParentGraph; }
+ void setParentGraph(DSGraph *G) { ParentGraph = G; }
+
+
+ /// getTargetData - Get the target data object used to construct this node.
+ ///
+ const TargetData &getTargetData() const;
+
+ /// getForwardNode - This method returns the node that this node is forwarded
+ /// to, if any.
+ ///
+ DSNode *getForwardNode() const { return ForwardNH.getNode(); }
+
+ /// isForwarding - Return true if this node is forwarding to another.
+ ///
+ bool isForwarding() const { return !ForwardNH.isNull(); }
+
+ /// stopForwarding - When the last reference to this forwarding node has been
+ /// dropped, delete the node.
+ ///
+ void stopForwarding() {
+ assert(isForwarding() &&
+ "Node isn't forwarding, cannot stopForwarding()!");
+ ForwardNH.setTo(0, 0);
+ assert(ParentGraph == 0 &&
+ "Forwarding nodes must have been removed from graph!");
+ delete this;
+ }
+
+ /// hasLink - Return true if this memory object has a link in slot #LinkNo
+ ///
+ bool hasLink(unsigned Offset) const {
+ assert((Offset & ((1 << DS::PointerShift)-1)) == 0 &&
+ "Pointer offset not aligned correctly!");
+ unsigned Index = Offset >> DS::PointerShift;
+ assert(Index < Links.size() && "Link index is out of range!");
+ return Links[Index].getNode();
+ }
+
+ /// getLink - Return the link at the specified offset.
+ ///
+ DSNodeHandle &getLink(unsigned Offset) {
+ assert((Offset & ((1 << DS::PointerShift)-1)) == 0 &&
+ "Pointer offset not aligned correctly!");
+ unsigned Index = Offset >> DS::PointerShift;
+ assert(Index < Links.size() && "Link index is out of range!");
+ return Links[Index];
+ }
+ const DSNodeHandle &getLink(unsigned Offset) const {
+ assert((Offset & ((1 << DS::PointerShift)-1)) == 0 &&
+ "Pointer offset not aligned correctly!");
+ unsigned Index = Offset >> DS::PointerShift;
+ assert(Index < Links.size() && "Link index is out of range!");
+ return Links[Index];
+ }
+
+ /// getNumLinks - Return the number of links in a node...
+ ///
+ unsigned getNumLinks() const { return Links.size(); }
+
+ /// mergeTypeInfo - This method merges the specified type into the current
+ /// node at the specified offset. This may update the current node's type
+ /// record if this gives more information to the node, it may do nothing to
+ /// the node if this information is already known, or it may merge the node
+ /// completely (and return true) if the information is incompatible with what
+ /// is already known.
+ ///
+ /// This method returns true if the node is completely folded, otherwise
+ /// false.
+ ///
+ bool mergeTypeInfo(const Type *Ty, unsigned Offset,
+ bool FoldIfIncompatible = true);
+
+ /// foldNodeCompletely - If we determine that this node has some funny
+ /// behavior happening to it that we cannot represent, we fold it down to a
+ /// single, completely pessimistic, node. This node is represented as a
+ /// single byte with a single TypeEntry of "void" with isArray = true.
+ ///
+ void foldNodeCompletely();
+
+ /// isNodeCompletelyFolded - Return true if this node has been completely
+ /// folded down to something that can never be expanded, effectively losing
+ /// all of the field sensitivity that may be present in the node.
+ ///
+ bool isNodeCompletelyFolded() const;
+
+ /// setLink - Set the link at the specified offset to the specified
+ /// NodeHandle, replacing what was there. It is uncommon to use this method,
+ /// instead one of the higher level methods should be used, below.
+ ///
+ void setLink(unsigned Offset, const DSNodeHandle &NH) {
+ assert((Offset & ((1 << DS::PointerShift)-1)) == 0 &&
+ "Pointer offset not aligned correctly!");
+ unsigned Index = Offset >> DS::PointerShift;
+ assert(Index < Links.size() && "Link index is out of range!");
+ Links[Index] = NH;
+ }
+
+ /// getPointerSize - Return the size of a pointer for the current target.
+ ///
+ unsigned getPointerSize() const { return DS::PointerSize; }
+
+ /// addEdgeTo - Add an edge from the current node to the specified node. This
+ /// can cause merging of nodes in the graph.
+ ///
+ void addEdgeTo(unsigned Offset, const DSNodeHandle &NH);
+
+ /// mergeWith - Merge this node and the specified node, moving all links to
+ /// and from the argument node into the current node, deleting the node
+ /// argument. Offset indicates what offset the specified node is to be merged
+ /// into the current node.
+ ///
+ /// The specified node may be a null pointer (in which case, nothing happens).
+ ///
+ void mergeWith(const DSNodeHandle &NH, unsigned Offset);
+
+ /// addGlobal - Add an entry for a global value to the Globals list. This
+ /// also marks the node with the 'G' flag if it does not already have it.
+ ///
+ void addGlobal(GlobalValue *GV);
+ void mergeGlobals(const std::vector<GlobalValue*> &RHS);
+ const std::vector<GlobalValue*> &getGlobals() const { return Globals; }
+
+ typedef std::vector<GlobalValue*>::const_iterator global_iterator;
+ global_iterator global_begin() const { return Globals.begin(); }
+ global_iterator global_end() const { return Globals.end(); }
+
+
+ /// maskNodeTypes - Apply a mask to the node types bitfield.
+ ///
+ void maskNodeTypes(unsigned Mask) {
+ NodeType &= Mask;
+ }
+
+ void mergeNodeFlags(unsigned RHS) {
+ NodeType |= RHS;
+ }
+
+ /// getNodeFlags - Return all of the flags set on the node. If the DEAD flag
+ /// is set, hide it from the caller.
+ ///
+ unsigned getNodeFlags() const { return NodeType & ~DEAD; }
+
+ bool isAllocaNode() const { return NodeType & AllocaNode; }
+ bool isHeapNode() const { return NodeType & HeapNode; }
+ bool isGlobalNode() const { return NodeType & GlobalNode; }
+ bool isUnknownNode() const { return NodeType & UnknownNode; }
+
+ bool isModified() const { return NodeType & Modified; }
+ bool isRead() const { return NodeType & Read; }
+
+ bool isIncomplete() const { return NodeType & Incomplete; }
+ bool isComplete() const { return !isIncomplete(); }
+ bool isDeadNode() const { return NodeType & DEAD; }
+
+ DSNode *setAllocaNodeMarker() { NodeType |= AllocaNode; return this; }
+ DSNode *setHeapNodeMarker() { NodeType |= HeapNode; return this; }
+ DSNode *setGlobalNodeMarker() { NodeType |= GlobalNode; return this; }
+ DSNode *setUnknownNodeMarker() { NodeType |= UnknownNode; return this; }
+
+ DSNode *setIncompleteMarker() { NodeType |= Incomplete; return this; }
+ DSNode *setModifiedMarker() { NodeType |= Modified; return this; }
+ DSNode *setReadMarker() { NodeType |= Read; return this; }
+ DSNode *setArrayMarker() { NodeType |= Array; return this; }
+
+ void makeNodeDead() {
+ Globals.clear();
+ assert(hasNoReferrers() && "Dead node shouldn't have refs!");
+ NodeType = DEAD;
+ }
+
+ /// forwardNode - Mark this node as being obsolete, and all references to it
+ /// should be forwarded to the specified node and offset.
+ ///
+ void forwardNode(DSNode *To, unsigned Offset);
+
+ void print(std::ostream &O, const DSGraph *G) const;
+ void dump() const;
+
+ void assertOK() const;
+
+ void dropAllReferences() {
+ Links.clear();
+ if (isForwarding())
+ ForwardNH.setTo(0, 0);
+ }
+
+ /// remapLinks - Change all of the Links in the current node according to the
+ /// specified mapping.
+ ///
+ void remapLinks(hash_map<const DSNode*, DSNodeHandle> &OldNodeMap);
+
+ /// markReachableNodes - This method recursively traverses the specified
+ /// DSNodes, marking any nodes which are reachable. All reachable nodes it
+ /// adds to the set, which allows it to only traverse visited nodes once.
+ ///
+ void markReachableNodes(hash_set<DSNode*> &ReachableNodes);
+
+private:
+ friend class DSNodeHandle;
+
+ // static mergeNodes - Helper for mergeWith()
+ static void MergeNodes(DSNodeHandle& CurNodeH, DSNodeHandle& NH);
+};
+
+//===----------------------------------------------------------------------===//
+// Define the ilist_traits specialization for the DSGraph ilist.
+//
+template<>
+struct ilist_traits<DSNode> {
+ static DSNode *getPrev(const DSNode *N) { return N->Prev; }
+ static DSNode *getNext(const DSNode *N) { return N->Next; }
+
+ static void setPrev(DSNode *N, DSNode *Prev) { N->Prev = Prev; }
+ static void setNext(DSNode *N, DSNode *Next) { N->Next = Next; }
+
+ static DSNode *createNode() { return new DSNode(0,0); }
+ //static DSNode *createNode(const DSNode &V) { return new DSNode(V); }
+
+
+ void addNodeToList(DSNode *NTy) {}
+ void removeNodeFromList(DSNode *NTy) {}
+ void transferNodesFromList(iplist<DSNode, ilist_traits> &L2,
+ ilist_iterator<DSNode> first,
+ ilist_iterator<DSNode> last) {}
+};
+
+template<>
+struct ilist_traits<const DSNode> : public ilist_traits<DSNode> {};
+
+//===----------------------------------------------------------------------===//
+// Define inline DSNodeHandle functions that depend on the definition of DSNode
+//
+inline DSNode *DSNodeHandle::getNode() const {
+ // Disabling this assertion because it is failing on a "magic" struct
+ // in named (from bind). The fourth field is an array of length 0,
+ // presumably used to create struct instances of different sizes.
+ assert((!N ||
+ N->isNodeCompletelyFolded() ||
+ (N->Size == 0 && Offset == 0) ||
+ (int(Offset) >= 0 && Offset < N->Size) ||
+ (int(Offset) < 0 && -int(Offset) < int(N->Size)) ||
+ N->isForwarding()) && "Node handle offset out of range!");
+ if (N == 0 || !N->isForwarding())
+ return N;
+
+ return HandleForwarding();
+}
+
+inline void DSNodeHandle::setTo(DSNode *n, unsigned NewOffset) const {
+ assert(!n || !n->isForwarding() && "Cannot set node to a forwarded node!");
+ if (N) getNode()->NumReferrers--;
+ N = n;
+ Offset = NewOffset;
+ if (N) {
+ N->NumReferrers++;
+ if (Offset >= N->Size) {
+ assert((Offset == 0 || N->Size == 1) &&
+ "Pointer to non-collapsed node with invalid offset!");
+ Offset = 0;
+ }
+ }
+ assert(!N || ((N->NodeType & DSNode::DEAD) == 0));
+ assert((!N || Offset < N->Size || (N->Size == 0 && Offset == 0) ||
+ N->isForwarding()) && "Node handle offset out of range!");
+}
+
+inline bool DSNodeHandle::hasLink(unsigned Num) const {
+ assert(N && "DSNodeHandle does not point to a node yet!");
+ return getNode()->hasLink(Num+Offset);
+}
+
+
+/// getLink - Treat this current node pointer as a pointer to a structure of
+/// some sort. This method will return the pointer a mem[this+Num]
+///
+inline const DSNodeHandle &DSNodeHandle::getLink(unsigned Off) const {
+ assert(N && "DSNodeHandle does not point to a node yet!");
+ return getNode()->getLink(Offset+Off);
+}
+inline DSNodeHandle &DSNodeHandle::getLink(unsigned Off) {
+ assert(N && "DSNodeHandle does not point to a node yet!");
+ return getNode()->getLink(Off+Offset);
+}
+
+inline void DSNodeHandle::setLink(unsigned Off, const DSNodeHandle &NH) {
+ assert(N && "DSNodeHandle does not point to a node yet!");
+ getNode()->setLink(Off+Offset, NH);
+}
+
+/// addEdgeTo - Add an edge from the current node to the specified node. This
+/// can cause merging of nodes in the graph.
+///
+inline void DSNodeHandle::addEdgeTo(unsigned Off, const DSNodeHandle &Node) {
+ assert(N && "DSNodeHandle does not point to a node yet!");
+ getNode()->addEdgeTo(Off+Offset, Node);
+}
+
+/// mergeWith - Merge the logical node pointed to by 'this' with the node
+/// pointed to by 'N'.
+///
+inline void DSNodeHandle::mergeWith(const DSNodeHandle &Node) const {
+ if (!isNull())
+ getNode()->mergeWith(Node, Offset);
+ else { // No node to merge with, so just point to Node
+ Offset = 0;
+ DSNode *NN = Node.getNode();
+ setTo(NN, Node.getOffset());
+ }
+}
+
+} // End llvm namespace
+
+#endif
diff --git a/llvm/include/llvm/Analysis/DataStructure/DSSupport.h b/llvm/include/llvm/Analysis/DataStructure/DSSupport.h
new file mode 100644
index 00000000000..8cce6c98fde
--- /dev/null
+++ b/llvm/include/llvm/Analysis/DataStructure/DSSupport.h
@@ -0,0 +1,313 @@
+//===- DSSupport.h - Support for datastructure graphs -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Support for graph nodes, call sites, and types.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_DSSUPPORT_H
+#define LLVM_ANALYSIS_DSSUPPORT_H
+
+#include <functional>
+#include "Support/hash_set"
+#include "llvm/Support/CallSite.h"
+
+namespace llvm {
+
+class Function;
+class CallInst;
+class Value;
+class GlobalValue;
+class Type;
+
+class DSNode; // Each node in the graph
+class DSGraph; // A graph for a function
+class ReachabilityCloner;
+
+namespace DS { // FIXME: After the paper, this should get cleaned up
+ enum { PointerShift = 2, // 64bit ptrs = 3, 32 bit ptrs = 2
+ PointerSize = 1 << PointerShift
+ };
+
+ /// isPointerType - Return true if this first class type is big enough to hold
+ /// a pointer.
+ ///
+ bool isPointerType(const Type *Ty);
+};
+
+//===----------------------------------------------------------------------===//
+/// DSNodeHandle - Implement a "handle" to a data structure node that takes care
+/// of all of the add/un'refing of the node to prevent the backpointers in the
+/// graph from getting out of date. This class represents a "pointer" in the
+/// graph, whose destination is an indexed offset into a node.
+///
+/// Note: some functions that are marked as inline in DSNodeHandle are actually
+/// defined in DSNode.h because they need knowledge of DSNode operation. Putting
+/// them in a CPP file wouldn't help making them inlined and keeping DSNode and
+/// DSNodeHandle (and friends) in one file complicates things.
+///
+class DSNodeHandle {
+ mutable DSNode *N;
+ mutable unsigned Offset;
+ void operator==(const DSNode *N); // DISALLOW, use to promote N to nodehandle
+public:
+ // Allow construction, destruction, and assignment...
+ DSNodeHandle(DSNode *n = 0, unsigned offs = 0) : N(0), Offset(0) {
+ setTo(n, offs);
+ }
+ DSNodeHandle(const DSNodeHandle &H) : N(0), Offset(0) {
+ DSNode *NN = H.getNode();
+ setTo(NN, H.Offset); // Must read offset AFTER the getNode()
+ }
+ ~DSNodeHandle() { setTo(0, 0); }
+ DSNodeHandle &operator=(const DSNodeHandle &H) {
+ if (&H == this) return *this; // Don't set offset to 0 if self assigning.
+ DSNode *NN = H.getNode(); // Call getNode() before .Offset
+ setTo(NN, H.Offset);
+ return *this;
+ }
+
+ bool operator<(const DSNodeHandle &H) const { // Allow sorting
+ return getNode() < H.getNode() || (N == H.N && Offset < H.Offset);
+ }
+ bool operator>(const DSNodeHandle &H) const { return H < *this; }
+ bool operator==(const DSNodeHandle &H) const { // Allow comparison
+ // getNode can change the offset, so we must call getNode() first.
+ return getNode() == H.getNode() && Offset == H.Offset;
+ }
+ bool operator!=(const DSNodeHandle &H) const { return !operator==(H); }
+
+ inline void swap(DSNodeHandle &NH) {
+ std::swap(Offset, NH.Offset);
+ std::swap(N, NH.N);
+ }
+
+ /// isNull - Check to see if getNode() == 0, without going through the trouble
+ /// of checking to see if we are forwarding...
+ ///
+ bool isNull() const { return N == 0; }
+
+ // Allow explicit conversion to DSNode...
+ inline DSNode *getNode() const; // Defined inline in DSNode.h
+ unsigned getOffset() const { return Offset; }
+
+ void setOffset(unsigned O) {
+ //assert((!N || Offset < N->Size || (N->Size == 0 && Offset == 0) ||
+ // !N->ForwardNH.isNull()) && "Node handle offset out of range!");
+ //assert((!N || O < N->Size || (N->Size == 0 && O == 0) ||
+ // !N->ForwardNH.isNull()) && "Node handle offset out of range!");
+ Offset = O;
+ }
+
+ inline void setTo(DSNode *N, unsigned O) const; // Defined inline in DSNode.h
+
+ void addEdgeTo(unsigned LinkNo, const DSNodeHandle &N);
+ void addEdgeTo(const DSNodeHandle &N) { addEdgeTo(0, N); }
+
+ /// mergeWith - Merge the logical node pointed to by 'this' with the node
+ /// pointed to by 'N'.
+ ///
+ void mergeWith(const DSNodeHandle &N) const;
+
+ /// hasLink - Return true if there is a link at the specified offset...
+ ///
+ inline bool hasLink(unsigned Num) const;
+
+ /// getLink - Treat this current node pointer as a pointer to a structure of
+ /// some sort. This method will return the pointer a mem[this+Num]
+ ///
+ inline const DSNodeHandle &getLink(unsigned Num) const;
+ inline DSNodeHandle &getLink(unsigned Num);
+
+ inline void setLink(unsigned Num, const DSNodeHandle &NH);
+private:
+ DSNode *HandleForwarding() const;
+};
+
+} // End llvm namespace
+
+namespace std {
+ template<>
+ inline void swap<llvm::DSNodeHandle>(llvm::DSNodeHandle &NH1, llvm::DSNodeHandle &NH2) { NH1.swap(NH2); }
+}
+
+namespace llvm {
+
+//===----------------------------------------------------------------------===//
+/// DSCallSite - Representation of a call site via its call instruction,
+/// the DSNode handle for the callee function (or function pointer), and
+/// the DSNode handles for the function arguments.
+///
+class DSCallSite {
+ CallSite Site; // Actual call site
+ Function *CalleeF; // The function called (direct call)
+ DSNodeHandle CalleeN; // The function node called (indirect call)
+ DSNodeHandle RetVal; // Returned value
+ std::vector<DSNodeHandle> CallArgs;// The pointer arguments
+
+ static void InitNH(DSNodeHandle &NH, const DSNodeHandle &Src,
+ const hash_map<const DSNode*, DSNode*> &NodeMap) {
+ if (DSNode *N = Src.getNode()) {
+ hash_map<const DSNode*, DSNode*>::const_iterator I = NodeMap.find(N);
+ assert(I != NodeMap.end() && "Node not in mapping!");
+ NH.setTo(I->second, Src.getOffset());
+ }
+ }
+
+ static void InitNH(DSNodeHandle &NH, const DSNodeHandle &Src,
+ const hash_map<const DSNode*, DSNodeHandle> &NodeMap) {
+ if (DSNode *N = Src.getNode()) {
+ hash_map<const DSNode*, DSNodeHandle>::const_iterator I = NodeMap.find(N);
+ assert(I != NodeMap.end() && "Node not in mapping!");
+
+ DSNode *NN = I->second.getNode(); // Call getNode before getOffset()
+ NH.setTo(NN, Src.getOffset()+I->second.getOffset());
+ }
+ }
+
+ static void InitNH(DSNodeHandle &NH, const DSNodeHandle &Src,
+ ReachabilityCloner &RC);
+
+
+ DSCallSite(); // DO NOT IMPLEMENT
+public:
+ /// Constructor. Note - This ctor destroys the argument vector passed in. On
+ /// exit, the argument vector is empty.
+ ///
+ DSCallSite(CallSite CS, const DSNodeHandle &rv, DSNode *Callee,
+ std::vector<DSNodeHandle> &Args)
+ : Site(CS), CalleeF(0), CalleeN(Callee), RetVal(rv) {
+ assert(Callee && "Null callee node specified for call site!");
+ Args.swap(CallArgs);
+ }
+ DSCallSite(CallSite CS, const DSNodeHandle &rv, Function *Callee,
+ std::vector<DSNodeHandle> &Args)
+ : Site(CS), CalleeF(Callee), RetVal(rv) {
+ assert(Callee && "Null callee function specified for call site!");
+ Args.swap(CallArgs);
+ }
+
+ DSCallSite(const DSCallSite &DSCS) // Simple copy ctor
+ : Site(DSCS.Site), CalleeF(DSCS.CalleeF), CalleeN(DSCS.CalleeN),
+ RetVal(DSCS.RetVal), CallArgs(DSCS.CallArgs) {}
+
+ /// Mapping copy constructor - This constructor takes a preexisting call site
+ /// to copy plus a map that specifies how the links should be transformed.
+ /// This is useful when moving a call site from one graph to another.
+ ///
+ template<typename MapTy>
+ DSCallSite(const DSCallSite &FromCall, MapTy &NodeMap) {
+ Site = FromCall.Site;
+ InitNH(RetVal, FromCall.RetVal, NodeMap);
+ InitNH(CalleeN, FromCall.CalleeN, NodeMap);
+ CalleeF = FromCall.CalleeF;
+
+ CallArgs.resize(FromCall.CallArgs.size());
+ for (unsigned i = 0, e = FromCall.CallArgs.size(); i != e; ++i)
+ InitNH(CallArgs[i], FromCall.CallArgs[i], NodeMap);
+ }
+
+ const DSCallSite &operator=(const DSCallSite &RHS) {
+ Site = RHS.Site;
+ CalleeF = RHS.CalleeF;
+ CalleeN = RHS.CalleeN;
+ RetVal = RHS.RetVal;
+ CallArgs = RHS.CallArgs;
+ return *this;
+ }
+
+ /// isDirectCall - Return true if this call site is a direct call of the
+ /// function specified by getCalleeFunc. If not, it is an indirect call to
+ /// the node specified by getCalleeNode.
+ ///
+ bool isDirectCall() const { return CalleeF != 0; }
+ bool isIndirectCall() const { return !isDirectCall(); }
+
+
+ // Accessor functions...
+ Function &getCaller() const;
+ CallSite getCallSite() const { return Site; }
+ DSNodeHandle &getRetVal() { return RetVal; }
+ const DSNodeHandle &getRetVal() const { return RetVal; }
+
+ DSNode *getCalleeNode() const {
+ assert(!CalleeF && CalleeN.getNode()); return CalleeN.getNode();
+ }
+ Function *getCalleeFunc() const {
+ assert(!CalleeN.getNode() && CalleeF); return CalleeF;
+ }
+
+ unsigned getNumPtrArgs() const { return CallArgs.size(); }
+
+ DSNodeHandle &getPtrArg(unsigned i) {
+ assert(i < CallArgs.size() && "Argument to getPtrArgNode is out of range!");
+ return CallArgs[i];
+ }
+ const DSNodeHandle &getPtrArg(unsigned i) const {
+ assert(i < CallArgs.size() && "Argument to getPtrArgNode is out of range!");
+ return CallArgs[i];
+ }
+
+ void swap(DSCallSite &CS) {
+ if (this != &CS) {
+ std::swap(Site, CS.Site);
+ std::swap(RetVal, CS.RetVal);
+ std::swap(CalleeN, CS.CalleeN);
+ std::swap(CalleeF, CS.CalleeF);
+ std::swap(CallArgs, CS.CallArgs);
+ }
+ }
+
+ /// mergeWith - Merge the return value and parameters of the these two call
+ /// sites.
+ ///
+ void mergeWith(DSCallSite &CS) {
+ getRetVal().mergeWith(CS.getRetVal());
+ unsigned MinArgs = getNumPtrArgs();
+ if (CS.getNumPtrArgs() < MinArgs) MinArgs = CS.getNumPtrArgs();
+
+ for (unsigned a = 0; a != MinArgs; ++a)
+ getPtrArg(a).mergeWith(CS.getPtrArg(a));
+ }
+
+ /// markReachableNodes - This method recursively traverses the specified
+ /// DSNodes, marking any nodes which are reachable. All reachable nodes it
+ /// adds to the set, which allows it to only traverse visited nodes once.
+ ///
+ void markReachableNodes(hash_set<DSNode*> &Nodes);
+
+ bool operator<(const DSCallSite &CS) const {
+ if (isDirectCall()) { // This must sort by callee first!
+ if (CS.isIndirectCall()) return true;
+ if (CalleeF < CS.CalleeF) return true;
+ if (CalleeF > CS.CalleeF) return false;
+ } else {
+ if (CS.isDirectCall()) return false;
+ if (CalleeN < CS.CalleeN) return true;
+ if (CalleeN > CS.CalleeN) return false;
+ }
+ if (RetVal < CS.RetVal) return true;
+ if (RetVal > CS.RetVal) return false;
+ return CallArgs < CS.CallArgs;
+ }
+
+ bool operator==(const DSCallSite &CS) const {
+ return CalleeF == CS.CalleeF && CalleeN == CS.CalleeN &&
+ RetVal == CS.RetVal && CallArgs == CS.CallArgs;
+ }
+};
+
+} // End llvm namespace
+
+namespace std {
+ template<>
+ inline void swap<llvm::DSCallSite>(llvm::DSCallSite &CS1,
+ llvm::DSCallSite &CS2) { CS1.swap(CS2); }
+}
+#endif
diff --git a/llvm/include/llvm/Analysis/DataStructure/DataStructure.h b/llvm/include/llvm/Analysis/DataStructure/DataStructure.h
new file mode 100644
index 00000000000..f210003213c
--- /dev/null
+++ b/llvm/include/llvm/Analysis/DataStructure/DataStructure.h
@@ -0,0 +1,248 @@
+//===- DataStructure.h - Build data structure graphs ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implement the LLVM data structure analysis library.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_DATA_STRUCTURE_H
+#define LLVM_ANALYSIS_DATA_STRUCTURE_H
+
+#include "llvm/Pass.h"
+#include "llvm/Target/TargetData.h"
+#include "Support/hash_set"
+
+namespace llvm {
+
+class Type;
+class Instruction;
+class DSGraph;
+class DSNode;
+
+// FIXME: move this stuff to a private header
+namespace DataStructureAnalysis {
+ /// isPointerType - Return true if this first class type is big enough to hold
+ /// a pointer.
+ ///
+ bool isPointerType(const Type *Ty);
+}
+
+
+// LocalDataStructures - The analysis that computes the local data structure
+// graphs for all of the functions in the program.
+//
+// FIXME: This should be a Function pass that can be USED by a Pass, and would
+// be automatically preserved. Until we can do that, this is a Pass.
+//
+class LocalDataStructures : public Pass {
+ // DSInfo, one graph for each function
+ hash_map<Function*, DSGraph*> DSInfo;
+ DSGraph *GlobalsGraph;
+public:
+ ~LocalDataStructures() { releaseMemory(); }
+
+ virtual bool run(Module &M);
+
+ bool hasGraph(const Function &F) const {
+ return DSInfo.find(const_cast<Function*>(&F)) != DSInfo.end();
+ }
+
+ /// getDSGraph - Return the data structure graph for the specified function.
+ ///
+ DSGraph &getDSGraph(const Function &F) const {
+ hash_map<Function*, DSGraph*>::const_iterator I =
+ DSInfo.find(const_cast<Function*>(&F));
+ assert(I != DSInfo.end() && "Function not in module!");
+ return *I->second;
+ }
+
+ DSGraph &getGlobalsGraph() const { return *GlobalsGraph; }
+
+ /// print - Print out the analysis results...
+ ///
+ void print(std::ostream &O, const Module *M) const;
+
+ /// releaseMemory - if the pass pipeline is done with this pass, we can
+ /// release our memory...
+ ///
+ virtual void releaseMemory();
+
+ /// getAnalysisUsage - This obviously provides a data structure graph.
+ ///
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequired<TargetData>();
+ }
+};
+
+
+/// BUDataStructures - The analysis that computes the interprocedurally closed
+/// data structure graphs for all of the functions in the program. This pass
+/// only performs a "Bottom Up" propagation (hence the name).
+///
+class BUDataStructures : public Pass {
+protected:
+ // DSInfo, one graph for each function
+ hash_map<Function*, DSGraph*> DSInfo;
+ DSGraph *GlobalsGraph;
+ hash_multimap<Instruction*, Function*> ActualCallees;
+public:
+ ~BUDataStructures() { releaseMemory(); }
+
+ virtual bool run(Module &M);
+
+ bool hasGraph(const Function &F) const {
+ return DSInfo.find(const_cast<Function*>(&F)) != DSInfo.end();
+ }
+
+ /// getDSGraph - Return the data structure graph for the specified function.
+ ///
+ DSGraph &getDSGraph(const Function &F) const {
+ hash_map<Function*, DSGraph*>::const_iterator I =
+ DSInfo.find(const_cast<Function*>(&F));
+ assert(I != DSInfo.end() && "Function not in module!");
+ return *I->second;
+ }
+
+ DSGraph &getGlobalsGraph() const { return *GlobalsGraph; }
+
+ /// print - Print out the analysis results...
+ ///
+ void print(std::ostream &O, const Module *M) const;
+
+ /// releaseMemory - if the pass pipeline is done with this pass, we can
+ /// release our memory...
+ ///
+ virtual void releaseMemory();
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequired<LocalDataStructures>();
+ }
+
+ typedef hash_multimap<Instruction*, Function*> ActualCalleesTy;
+ const ActualCalleesTy &getActualCallees() const {
+ return ActualCallees;
+ }
+
+private:
+ void calculateGraph(DSGraph &G);
+
+ void calculateReachableGraphs(Function *F);
+
+
+ DSGraph &getOrCreateGraph(Function *F);
+
+ unsigned calculateGraphs(Function *F, std::vector<Function*> &Stack,
+ unsigned &NextID,
+ hash_map<Function*, unsigned> &ValMap);
+};
+
+
+/// TDDataStructures - Analysis that computes new data structure graphs
+/// for each function using the closed graphs for the callers computed
+/// by the bottom-up pass.
+///
+class TDDataStructures : public Pass {
+ // DSInfo, one graph for each function
+ hash_map<Function*, DSGraph*> DSInfo;
+ hash_set<Function*> ArgsRemainIncomplete;
+ DSGraph *GlobalsGraph;
+public:
+ ~TDDataStructures() { releaseMyMemory(); }
+
+ virtual bool run(Module &M);
+
+ bool hasGraph(const Function &F) const {
+ return DSInfo.find(const_cast<Function*>(&F)) != DSInfo.end();
+ }
+
+ /// getDSGraph - Return the data structure graph for the specified function.
+ ///
+ DSGraph &getDSGraph(const Function &F) const {
+ hash_map<Function*, DSGraph*>::const_iterator I =
+ DSInfo.find(const_cast<Function*>(&F));
+ assert(I != DSInfo.end() && "Function not in module!");
+ return *I->second;
+ }
+
+ DSGraph &getGlobalsGraph() const { return *GlobalsGraph; }
+
+ /// print - Print out the analysis results...
+ ///
+ void print(std::ostream &O, const Module *M) const;
+
+ /// If the pass pipeline is done with this pass, we can release our memory...
+ ///
+ virtual void releaseMyMemory();
+
+ /// getAnalysisUsage - This obviously provides a data structure graph.
+ ///
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequired<BUDataStructures>();
+ }
+
+private:
+ void markReachableFunctionsExternallyAccessible(DSNode *N,
+ hash_set<DSNode*> &Visited);
+
+ void inlineGraphIntoCallees(DSGraph &G);
+ DSGraph &getOrCreateDSGraph(Function &F);
+ void ComputePostOrder(Function &F, hash_set<DSGraph*> &Visited,
+ std::vector<DSGraph*> &PostOrder,
+ const BUDataStructures::ActualCalleesTy &ActualCallees);
+};
+
+
+/// CompleteBUDataStructures - This is the exact same as the bottom-up graphs,
+/// but we use take a completed call graph and inline all indirect callees into
+/// their callers graphs, making the result more useful for things like pool
+/// allocation.
+///
+struct CompleteBUDataStructures : public BUDataStructures {
+ virtual bool run(Module &M);
+
+ bool hasGraph(const Function &F) const {
+ return DSInfo.find(const_cast<Function*>(&F)) != DSInfo.end();
+ }
+
+ /// getDSGraph - Return the data structure graph for the specified function.
+ ///
+ DSGraph &getDSGraph(const Function &F) const {
+ hash_map<Function*, DSGraph*>::const_iterator I =
+ DSInfo.find(const_cast<Function*>(&F));
+ assert(I != DSInfo.end() && "Function not in module!");
+ return *I->second;
+ }
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesAll();
+ AU.addRequired<BUDataStructures>();
+
+ // FIXME: TEMPORARY (remove once finalization of indirect call sites in the
+ // globals graph has been implemented in the BU pass)
+ AU.addRequired<TDDataStructures>();
+ }
+
+ /// print - Print out the analysis results...
+ ///
+ void print(std::ostream &O, const Module *M) const;
+
+private:
+ unsigned calculateSCCGraphs(DSGraph &FG, std::vector<DSGraph*> &Stack,
+ unsigned &NextID,
+ hash_map<DSGraph*, unsigned> &ValMap);
+ DSGraph &getOrCreateGraph(Function &F);
+ void processGraph(DSGraph &G);
+};
+
+} // End llvm namespace
+
+#endif
OpenPOWER on IntegriCloud