summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target
diff options
context:
space:
mode:
authorCraig Topper <craig.topper@intel.com>2018-10-10 21:48:34 +0000
committerCraig Topper <craig.topper@intel.com>2018-10-10 21:48:34 +0000
commitb5421c498d279fdfb5e6a079e7fd05a5fd6cbd7b (patch)
treec88897e027c74e7ac4023083f34e1c729ebafd00 /llvm/lib/Target
parent7329be16c2a3b98cd182bfb4ff682ce4c101d62b (diff)
downloadbcm5719-llvm-b5421c498d279fdfb5e6a079e7fd05a5fd6cbd7b.tar.gz
bcm5719-llvm-b5421c498d279fdfb5e6a079e7fd05a5fd6cbd7b.zip
[X86] Prevent non-temporal loads from folding into instructions by blocking them in X86DAGToDAGISel::IsProfitableToFold rather than with a predicate.
Remove tryFoldVecLoad since tryFoldLoad would call IsProfitableToFold and pick up the new check. This saves about 5K out of ~600K on the generated isel table. llvm-svn: 344189
Diffstat (limited to 'llvm/lib/Target')
-rw-r--r--llvm/lib/Target/X86/X86ISelDAGToDAG.cpp32
-rw-r--r--llvm/lib/Target/X86/X86InstrFragmentsSIMD.td53
2 files changed, 31 insertions, 54 deletions
diff --git a/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp b/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp
index 25a8567a9c1..5eb4dbb1d98 100644
--- a/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp
+++ b/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp
@@ -239,12 +239,6 @@ namespace {
return tryFoldLoad(P, P, N, Base, Scale, Index, Disp, Segment);
}
- // Try to fold a vector load. This makes sure the load isn't non-temporal.
- bool tryFoldVecLoad(SDNode *Root, SDNode *P, SDValue N,
- SDValue &Base, SDValue &Scale,
- SDValue &Index, SDValue &Disp,
- SDValue &Segment);
-
/// Implement addressing mode selection for inline asm expressions.
bool SelectInlineAsmMemoryOperand(const SDValue &Op,
unsigned ConstraintID,
@@ -516,6 +510,10 @@ X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
if (N.getOpcode() != ISD::LOAD)
return true;
+ // Don't fold non-temporal loads if we have an instruction for them.
+ if (useNonTemporalLoad(cast<LoadSDNode>(N)))
+ return false;
+
// If N is a load, do additional profitability checks.
if (U == Root) {
switch (U->getOpcode()) {
@@ -2053,20 +2051,6 @@ bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
N.getOperand(1), Base, Scale, Index, Disp, Segment);
}
-bool X86DAGToDAGISel::tryFoldVecLoad(SDNode *Root, SDNode *P, SDValue N,
- SDValue &Base, SDValue &Scale,
- SDValue &Index, SDValue &Disp,
- SDValue &Segment) {
- if (!ISD::isNON_EXTLoad(N.getNode()) ||
- useNonTemporalLoad(cast<LoadSDNode>(N)) ||
- !IsProfitableToFold(N, P, Root) ||
- !IsLegalToFold(N, P, Root, OptLevel))
- return false;
-
- return selectAddr(N.getNode(),
- N.getOperand(1), Base, Scale, Index, Disp, Segment);
-}
-
/// Return an SDNode that returns the value of the global base register.
/// Output instructions required to initialize the global base register,
/// if necessary.
@@ -2595,8 +2579,8 @@ MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc,
// alignment on this load.
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
if (MayFoldLoad && N1->getOpcode() == ISD::BITCAST && N1->hasOneUse() &&
- tryFoldVecLoad(Node, N1.getNode(), N1.getOperand(0), Tmp0, Tmp1, Tmp2,
- Tmp3, Tmp4)) {
+ tryFoldLoad(Node, N1.getNode(), N1.getOperand(0), Tmp0, Tmp1, Tmp2,
+ Tmp3, Tmp4)) {
SDValue Load = N1.getOperand(0);
SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
Load.getOperand(0) };
@@ -2632,8 +2616,8 @@ MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc,
// alignment on this load.
SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
if (MayFoldLoad && N2->getOpcode() == ISD::BITCAST && N2->hasOneUse() &&
- tryFoldVecLoad(Node, N2.getNode(), N2.getOperand(0), Tmp0, Tmp1, Tmp2,
- Tmp3, Tmp4)) {
+ tryFoldLoad(Node, N2.getNode(), N2.getOperand(0), Tmp0, Tmp1, Tmp2,
+ Tmp3, Tmp4)) {
SDValue Load = N2.getOperand(0);
SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
Load.getOperand(0), InFlag };
diff --git a/llvm/lib/Target/X86/X86InstrFragmentsSIMD.td b/llvm/lib/Target/X86/X86InstrFragmentsSIMD.td
index 3aa825ee84e..f750fe3ee0c 100644
--- a/llvm/lib/Target/X86/X86InstrFragmentsSIMD.td
+++ b/llvm/lib/Target/X86/X86InstrFragmentsSIMD.td
@@ -647,28 +647,22 @@ def sdmem : Operand<v2f64> {
// SSE pattern fragments
//===----------------------------------------------------------------------===//
-// Vector load wrappers to prevent folding of non-temporal aligned loads on
-// supporting targets.
-def vecload : PatFrag<(ops node:$ptr), (load node:$ptr), [{
- return !useNonTemporalLoad(cast<LoadSDNode>(N));
-}]>;
-
// 128-bit load pattern fragments
// NOTE: all 128-bit integer vector loads are promoted to v2i64
-def loadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (vecload node:$ptr))>;
-def loadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (vecload node:$ptr))>;
-def loadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (vecload node:$ptr))>;
+def loadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (load node:$ptr))>;
+def loadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (load node:$ptr))>;
+def loadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (load node:$ptr))>;
// 256-bit load pattern fragments
// NOTE: all 256-bit integer vector loads are promoted to v4i64
-def loadv8f32 : PatFrag<(ops node:$ptr), (v8f32 (vecload node:$ptr))>;
-def loadv4f64 : PatFrag<(ops node:$ptr), (v4f64 (vecload node:$ptr))>;
-def loadv4i64 : PatFrag<(ops node:$ptr), (v4i64 (vecload node:$ptr))>;
+def loadv8f32 : PatFrag<(ops node:$ptr), (v8f32 (load node:$ptr))>;
+def loadv4f64 : PatFrag<(ops node:$ptr), (v4f64 (load node:$ptr))>;
+def loadv4i64 : PatFrag<(ops node:$ptr), (v4i64 (load node:$ptr))>;
// 512-bit load pattern fragments
-def loadv16f32 : PatFrag<(ops node:$ptr), (v16f32 (vecload node:$ptr))>;
-def loadv8f64 : PatFrag<(ops node:$ptr), (v8f64 (vecload node:$ptr))>;
-def loadv8i64 : PatFrag<(ops node:$ptr), (v8i64 (vecload node:$ptr))>;
+def loadv16f32 : PatFrag<(ops node:$ptr), (v16f32 (load node:$ptr))>;
+def loadv8f64 : PatFrag<(ops node:$ptr), (v8f64 (load node:$ptr))>;
+def loadv8i64 : PatFrag<(ops node:$ptr), (v8i64 (load node:$ptr))>;
// 128-/256-/512-bit extload pattern fragments
def extloadv2f32 : PatFrag<(ops node:$ptr), (v2f64 (extloadvf32 node:$ptr))>;
@@ -682,46 +676,45 @@ def alignedstore : PatFrag<(ops node:$val, node:$ptr),
return St->getAlignment() >= St->getMemoryVT().getStoreSize();
}]>;
-// Like 'load', but always requires 128-bit vector alignment.
-def alignedvecload : PatFrag<(ops node:$ptr), (load node:$ptr), [{
+// Like 'load', but always requires vector size alignment.
+def alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{
auto *Ld = cast<LoadSDNode>(N);
- return Ld->getAlignment() >= Ld->getMemoryVT().getStoreSize() &&
- !useNonTemporalLoad(cast<LoadSDNode>(N));
+ return Ld->getAlignment() >= Ld->getMemoryVT().getStoreSize();
}]>;
// 128-bit aligned load pattern fragments
// NOTE: all 128-bit integer vector loads are promoted to v2i64
def alignedloadv4f32 : PatFrag<(ops node:$ptr),
- (v4f32 (alignedvecload node:$ptr))>;
+ (v4f32 (alignedload node:$ptr))>;
def alignedloadv2f64 : PatFrag<(ops node:$ptr),
- (v2f64 (alignedvecload node:$ptr))>;
+ (v2f64 (alignedload node:$ptr))>;
def alignedloadv2i64 : PatFrag<(ops node:$ptr),
- (v2i64 (alignedvecload node:$ptr))>;
+ (v2i64 (alignedload node:$ptr))>;
// 256-bit aligned load pattern fragments
// NOTE: all 256-bit integer vector loads are promoted to v4i64
def alignedloadv8f32 : PatFrag<(ops node:$ptr),
- (v8f32 (alignedvecload node:$ptr))>;
+ (v8f32 (alignedload node:$ptr))>;
def alignedloadv4f64 : PatFrag<(ops node:$ptr),
- (v4f64 (alignedvecload node:$ptr))>;
+ (v4f64 (alignedload node:$ptr))>;
def alignedloadv4i64 : PatFrag<(ops node:$ptr),
- (v4i64 (alignedvecload node:$ptr))>;
+ (v4i64 (alignedload node:$ptr))>;
// 512-bit aligned load pattern fragments
def alignedloadv16f32 : PatFrag<(ops node:$ptr),
- (v16f32 (alignedvecload node:$ptr))>;
+ (v16f32 (alignedload node:$ptr))>;
def alignedloadv8f64 : PatFrag<(ops node:$ptr),
- (v8f64 (alignedvecload node:$ptr))>;
+ (v8f64 (alignedload node:$ptr))>;
def alignedloadv8i64 : PatFrag<(ops node:$ptr),
- (v8i64 (alignedvecload node:$ptr))>;
+ (v8i64 (alignedload node:$ptr))>;
-// Like 'vecload', but uses special alignment checks suitable for use in
+// Like 'load', but uses special alignment checks suitable for use in
// memory operands in most SSE instructions, which are required to
// be naturally aligned on some targets but not on others. If the subtarget
// allows unaligned accesses, match any load, though this may require
// setting a feature bit in the processor (on startup, for example).
// Opteron 10h and later implement such a feature.
-def memop : PatFrag<(ops node:$ptr), (vecload node:$ptr), [{
+def memop : PatFrag<(ops node:$ptr), (load node:$ptr), [{
auto *Ld = cast<LoadSDNode>(N);
return Subtarget->hasSSEUnalignedMem() ||
Ld->getAlignment() >= Ld->getMemoryVT().getStoreSize();
OpenPOWER on IntegriCloud