summaryrefslogtreecommitdiffstats
path: root/llvm/lib/Target
diff options
context:
space:
mode:
authorJohnny Chen <johnny.chen@apple.com>2010-03-16 16:36:54 +0000
committerJohnny Chen <johnny.chen@apple.com>2010-03-16 16:36:54 +0000
commit3d9327bd06e88c81174776276eadb7fb41cbb3dd (patch)
treee98deaba25b2089f0b32abb4d3fafa09a3b10de0 /llvm/lib/Target
parent5712ebced0bed58724c257c36d5ef0451254ef8c (diff)
downloadbcm5719-llvm-3d9327bd06e88c81174776276eadb7fb41cbb3dd.tar.gz
bcm5719-llvm-3d9327bd06e88c81174776276eadb7fb41cbb3dd.zip
Initial ARM/Thumb disassembler check-in. It consists of a tablgen backend
(RISCDisassemblerEmitter) which emits the decoder functions for ARM and Thumb, and the disassembler core which invokes the decoder function and builds up the MCInst based on the decoded Opcode. Added sub-formats to the NeonI/NeonXI instructions to further refine the NEONFrm instructions to help disassembly. We also changed the output of the addressing modes to omit the '+' from the assembler syntax #+/-<imm> or +/-<Rm>. See, for example, A8.6.57/58/60. And modified test cases to not expect '+' in +reg or #+num. For example, ; CHECK: ldr.w r9, [r7, #28] llvm-svn: 98637
Diffstat (limited to 'llvm/lib/Target')
-rw-r--r--llvm/lib/Target/ARM/ARMAddressingModes.h20
-rw-r--r--llvm/lib/Target/ARM/ARMInstrFormats.td43
-rw-r--r--llvm/lib/Target/ARM/ARMInstrNEON.td495
-rw-r--r--llvm/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp46
-rw-r--r--llvm/lib/Target/ARM/AsmPrinter/ARMInstPrinter.cpp433
-rw-r--r--llvm/lib/Target/ARM/AsmPrinter/ARMInstPrinter.h40
-rw-r--r--llvm/lib/Target/ARM/Disassembler/ARMDisassembler.cpp513
-rw-r--r--llvm/lib/Target/ARM/Disassembler/ARMDisassembler.h71
-rw-r--r--llvm/lib/Target/ARM/Disassembler/ARMDisassemblerCore.cpp3351
-rw-r--r--llvm/lib/Target/ARM/Disassembler/ARMDisassemblerCore.h301
-rw-r--r--llvm/lib/Target/ARM/Disassembler/Makefile17
-rw-r--r--llvm/lib/Target/ARM/Disassembler/ThumbDisassemblerCore.cpp.inc2158
-rw-r--r--llvm/lib/Target/ARM/Makefile5
-rw-r--r--llvm/lib/Target/ARM/Thumb2ITBlockPass.cpp8
14 files changed, 7355 insertions, 146 deletions
diff --git a/llvm/lib/Target/ARM/ARMAddressingModes.h b/llvm/lib/Target/ARM/ARMAddressingModes.h
index 9e086ca5c54..1798768ea46 100644
--- a/llvm/lib/Target/ARM/ARMAddressingModes.h
+++ b/llvm/lib/Target/ARM/ARMAddressingModes.h
@@ -35,6 +35,10 @@ namespace ARM_AM {
add = '+', sub = '-'
};
+ static inline const char *getAddrOpcStr(AddrOpc Op) {
+ return Op == sub ? "-" : "";
+ }
+
static inline const char *getShiftOpcStr(ShiftOpc Op) {
switch (Op) {
default: assert(0 && "Unknown shift opc!");
@@ -127,6 +131,20 @@ namespace ARM_AM {
return (Imm >> 8) * 2;
}
+ /// getSOImmValOneRotate - Try to handle Imm with an immediate shifter
+ /// operand, computing the rotate amount to use. If this immediate value
+ /// cannot be handled with a single shifter-op, return 0.
+ static inline unsigned getSOImmValOneRotate(unsigned Imm) {
+ // A5.2.4 Constants with multiple encodings
+ // The lowest unsigned value of rotation wins!
+ for (unsigned R = 1; R <= 15; ++R)
+ if ((Imm & rotr32(~255U, 2*R)) == 0)
+ return 2*R;
+
+ // Failed to find a suitable rotate amount.
+ return 0;
+ }
+
/// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
/// computing the rotate amount to use. If this immediate value cannot be
/// handled with a single shifter-op, determine a good rotate amount that will
@@ -179,7 +197,7 @@ namespace ARM_AM {
// of zero.
if ((Arg & ~255U) == 0) return Arg;
- unsigned RotAmt = getSOImmValRotate(Arg);
+ unsigned RotAmt = getSOImmValOneRotate(Arg);
// If this cannot be handled with a single shifter_op, bail out.
if (rotr32(~255U, RotAmt) & Arg)
diff --git a/llvm/lib/Target/ARM/ARMInstrFormats.td b/llvm/lib/Target/ARM/ARMInstrFormats.td
index 258a96b9216..52553f5477d 100644
--- a/llvm/lib/Target/ARM/ARMInstrFormats.td
+++ b/llvm/lib/Target/ARM/ARMInstrFormats.td
@@ -1464,6 +1464,29 @@ class AVConv5I<bits<8> opcod1, bits<4> opcod2, dag oops, dag iops,
// ARM NEON Instruction templates.
//
+// NSFormat specifies further details of a NEON instruction. This is used by
+// the disassembler to classify NEONFrm instructions for disassembly purpose.
+class NSFormat<bits<5> val> {
+ bits<5> Value = val;
+}
+def NSFormatNone : NSFormat<0>;
+def VLDSTLaneFrm : NSFormat<1>;
+def VLDSTLaneDblFrm : NSFormat<2>;
+def VLDSTRQFrm : NSFormat<3>;
+def NVdImmFrm : NSFormat<4>;
+def NVdVmImmFrm : NSFormat<5>;
+def NVdVmImmVCVTFrm : NSFormat<6>;
+def NVdVmImmVDupLaneFrm : NSFormat<7>;
+def NVdVmImmVSHLLFrm : NSFormat<8>;
+def NVectorShuffleFrm : NSFormat<9>;
+def NVectorShiftFrm : NSFormat<10>;
+def NVectorShift2Frm : NSFormat<11>;
+def NVdVnVmImmFrm : NSFormat<12>;
+def NVdVnVmImmVectorShiftFrm : NSFormat<13>;
+def NVdVnVmImmVectorExtractFrm : NSFormat<14>;
+def NVdVnVmImmMulScalarFrm : NSFormat<15>;
+def VTBLFrm : NSFormat<16>;
+
class NeonI<dag oops, dag iops, AddrMode am, IndexMode im, InstrItinClass itin,
string opc, string dt, string asm, string cstr, list<dag> pattern>
: InstARM<am, Size4Bytes, im, NEONFrm, NeonDomain, cstr, itin> {
@@ -1474,6 +1497,8 @@ class NeonI<dag oops, dag iops, AddrMode am, IndexMode im, InstrItinClass itin,
!strconcat("\t", asm));
let Pattern = pattern;
list<Predicate> Predicates = [HasNEON];
+ NSFormat NSF = NSFormatNone; // For disassembly.
+ bits<5> NSForm = NSFormatNone.Value; // For disassembly.
}
// Same as NeonI except it does not have a "data type" specifier.
@@ -1485,6 +1510,8 @@ class NeonXI<dag oops, dag iops, AddrMode am, IndexMode im, InstrItinClass itin,
let AsmString = !strconcat(!strconcat(opc, "${p}"), !strconcat("\t", asm));
let Pattern = pattern;
list<Predicate> Predicates = [HasNEON];
+ NSFormat NSF = NSFormatNone; // For disassembly.
+ bits<5> NSForm = NSFormatNone.Value; // For disassembly.
}
class NI<dag oops, dag iops, InstrItinClass itin, string opc, string asm,
@@ -1497,6 +1524,8 @@ class NI4<dag oops, dag iops, InstrItinClass itin, string opc,
string asm, list<dag> pattern>
: NeonXI<oops, iops, AddrMode4, IndexModeNone, itin, opc, asm, "",
pattern> {
+ let NSF = VLDSTRQFrm; // For disassembly.
+ let NSForm = VLDSTRQFrm.Value; // For disassembly.
}
class NLdSt<bit op23, bits<2> op21_20, bits<4> op11_8, bits<4> op7_4,
@@ -1509,6 +1538,8 @@ class NLdSt<bit op23, bits<2> op21_20, bits<4> op11_8, bits<4> op7_4,
let Inst{21-20} = op21_20;
let Inst{11-8} = op11_8;
let Inst{7-4} = op7_4;
+ let NSF = VLDSTLaneFrm; // For disassembly.
+ let NSForm = VLDSTLaneFrm.Value; // For disassembly.
}
class NDataI<dag oops, dag iops, InstrItinClass itin,
@@ -1538,6 +1569,8 @@ class N1ModImm<bit op23, bits<3> op21_19, bits<4> op11_8, bit op7, bit op6,
let Inst{6} = op6;
let Inst{5} = op5;
let Inst{4} = op4;
+ let NSF = NVdImmFrm; // For disassembly.
+ let NSForm = NVdImmFrm.Value; // For disassembly.
}
// NEON 2 vector register format.
@@ -1553,6 +1586,8 @@ class N2V<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16,
let Inst{11-7} = op11_7;
let Inst{6} = op6;
let Inst{4} = op4;
+ let NSF = NVdVmImmFrm; // For disassembly.
+ let NSForm = NVdVmImmFrm.Value; // For disassembly.
}
// Same as N2V except it doesn't have a datatype suffix.
@@ -1568,6 +1603,8 @@ class N2VX<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18, bits<2> op17_16,
let Inst{11-7} = op11_7;
let Inst{6} = op6;
let Inst{4} = op4;
+ let NSF = NVdVmImmFrm; // For disassembly.
+ let NSForm = NVdVmImmFrm.Value; // For disassembly.
}
// NEON 2 vector register with immediate.
@@ -1581,6 +1618,8 @@ class N2VImm<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6, bit op4,
let Inst{7} = op7;
let Inst{6} = op6;
let Inst{4} = op4;
+ let NSF = NVdVmImmFrm; // For disassembly.
+ let NSForm = NVdVmImmFrm.Value; // For disassembly.
}
// NEON 3 vector register format.
@@ -1594,6 +1633,8 @@ class N3V<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op6, bit op4,
let Inst{11-8} = op11_8;
let Inst{6} = op6;
let Inst{4} = op4;
+ let NSF = NVdVnVmImmFrm; // For disassembly.
+ let NSForm = NVdVnVmImmFrm.Value; // For disassembly.
}
// Same as N3VX except it doesn't have a data type suffix.
@@ -1607,6 +1648,8 @@ class N3VX<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op6, bit op4
let Inst{11-8} = op11_8;
let Inst{6} = op6;
let Inst{4} = op4;
+ let NSF = NVdVnVmImmFrm; // For disassembly.
+ let NSForm = NVdVnVmImmFrm.Value; // For disassembly.
}
// NEON VMOVs between scalar and core registers.
diff --git a/llvm/lib/Target/ARM/ARMInstrNEON.td b/llvm/lib/Target/ARM/ARMInstrNEON.td
index 8fee6fa9527..da2babf05da 100644
--- a/llvm/lib/Target/ARM/ARMInstrNEON.td
+++ b/llvm/lib/Target/ARM/ARMInstrNEON.td
@@ -213,7 +213,10 @@ def VLD2q32 : VLD2Q<0b1000, "vld2", "32">;
class VLD2Ddbl<bits<4> op7_4, string OpcodeStr, string Dt>
: NLdSt<0,0b10,0b1001,op7_4, (outs DPR:$dst1, DPR:$dst2),
(ins addrmode6:$addr), IIC_VLD2,
- OpcodeStr, Dt, "\\{$dst1, $dst2\\}, $addr", "", []>;
+ OpcodeStr, Dt, "\\{$dst1, $dst2\\}, $addr", "", []> {
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
def VLD2d8D : VLD2Ddbl<0b0000, "vld2", "8">;
def VLD2d16D : VLD2Ddbl<0b0100, "vld2", "16">;
@@ -228,7 +231,10 @@ class VLD3WB<bits<4> op7_4, string OpcodeStr, string Dt>
: NLdSt<0,0b10,0b0101,op7_4, (outs DPR:$dst1, DPR:$dst2, DPR:$dst3, GPR:$wb),
(ins addrmode6:$addr), IIC_VLD3,
OpcodeStr, Dt, "\\{$dst1, $dst2, $dst3\\}, $addr",
- "$addr.addr = $wb", []>;
+ "$addr.addr = $wb", []> {
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
def VLD3d8 : VLD3D<0b0000, "vld3", "8">;
def VLD3d16 : VLD3D<0b0100, "vld3", "16">;
@@ -260,7 +266,10 @@ class VLD4WB<bits<4> op7_4, string OpcodeStr, string Dt>
(outs DPR:$dst1, DPR:$dst2, DPR:$dst3, DPR:$dst4, GPR:$wb),
(ins addrmode6:$addr), IIC_VLD4,
OpcodeStr, Dt, "\\{$dst1, $dst2, $dst3, $dst4\\}, $addr",
- "$addr.addr = $wb", []>;
+ "$addr.addr = $wb", []> {
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
def VLD4d8 : VLD4D<0b0000, "vld4", "8">;
def VLD4d16 : VLD4D<0b0100, "vld4", "16">;
@@ -297,12 +306,28 @@ def VLD2LNd16 : VLD2LN<0b0101, "vld2", "16"> { let Inst{5} = 0; }
def VLD2LNd32 : VLD2LN<0b1001, "vld2", "32"> { let Inst{6} = 0; }
// vld2 to double-spaced even registers.
-def VLD2LNq16a: VLD2LN<0b0101, "vld2", "16"> { let Inst{5} = 1; }
-def VLD2LNq32a: VLD2LN<0b1001, "vld2", "32"> { let Inst{6} = 1; }
+def VLD2LNq16a: VLD2LN<0b0101, "vld2", "16"> {
+ let Inst{5} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
+def VLD2LNq32a: VLD2LN<0b1001, "vld2", "32"> {
+ let Inst{6} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
// vld2 to double-spaced odd registers.
-def VLD2LNq16b: VLD2LN<0b0101, "vld2", "16"> { let Inst{5} = 1; }
-def VLD2LNq32b: VLD2LN<0b1001, "vld2", "32"> { let Inst{6} = 1; }
+def VLD2LNq16b: VLD2LN<0b0101, "vld2", "16"> {
+ let Inst{5} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
+def VLD2LNq32b: VLD2LN<0b1001, "vld2", "32"> {
+ let Inst{6} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
// VLD3LN : Vector Load (single 3-element structure to one lane)
class VLD3LN<bits<4> op11_8, string OpcodeStr, string Dt>
@@ -318,7 +343,11 @@ def VLD3LNd16 : VLD3LN<0b0110, "vld3", "16"> { let Inst{5-4} = 0b00; }
def VLD3LNd32 : VLD3LN<0b1010, "vld3", "32"> { let Inst{6-4} = 0b000; }
// vld3 to double-spaced even registers.
-def VLD3LNq16a: VLD3LN<0b0110, "vld3", "16"> { let Inst{5-4} = 0b10; }
+def VLD3LNq16a: VLD3LN<0b0110, "vld3", "16"> {
+ let Inst{5-4} = 0b10;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
def VLD3LNq32a: VLD3LN<0b1010, "vld3", "32"> { let Inst{6-4} = 0b100; }
// vld3 to double-spaced odd registers.
@@ -340,12 +369,28 @@ def VLD4LNd16 : VLD4LN<0b0111, "vld4", "16"> { let Inst{5} = 0; }
def VLD4LNd32 : VLD4LN<0b1011, "vld4", "32"> { let Inst{6} = 0; }
// vld4 to double-spaced even registers.
-def VLD4LNq16a: VLD4LN<0b0111, "vld4", "16"> { let Inst{5} = 1; }
-def VLD4LNq32a: VLD4LN<0b1011, "vld4", "32"> { let Inst{6} = 1; }
+def VLD4LNq16a: VLD4LN<0b0111, "vld4", "16"> {
+ let Inst{5} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
+def VLD4LNq32a: VLD4LN<0b1011, "vld4", "32"> {
+ let Inst{6} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
// vld4 to double-spaced odd registers.
-def VLD4LNq16b: VLD4LN<0b0111, "vld4", "16"> { let Inst{5} = 1; }
-def VLD4LNq32b: VLD4LN<0b1011, "vld4", "32"> { let Inst{6} = 1; }
+def VLD4LNq16b: VLD4LN<0b0111, "vld4", "16"> {
+ let Inst{5} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
+def VLD4LNq32b: VLD4LN<0b1011, "vld4", "32"> {
+ let Inst{6} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
// VLD1DUP : Vector Load (single element to all lanes)
// VLD2DUP : Vector Load (single 2-element structure to all lanes)
@@ -433,7 +478,10 @@ def VST2q32 : VST2Q<0b1000, "vst2", "32">;
class VST2Ddbl<bits<4> op7_4, string OpcodeStr, string Dt>
: NLdSt<0, 0b00, 0b1001, op7_4, (outs),
(ins addrmode6:$addr, DPR:$src1, DPR:$src2), IIC_VST,
- OpcodeStr, Dt, "\\{$src1, $src2\\}, $addr", "", []>;
+ OpcodeStr, Dt, "\\{$src1, $src2\\}, $addr", "", []> {
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
def VST2d8D : VST2Ddbl<0b0000, "vst2", "8">;
def VST2d16D : VST2Ddbl<0b0100, "vst2", "16">;
@@ -448,7 +496,10 @@ class VST3WB<bits<4> op7_4, string OpcodeStr, string Dt>
: NLdSt<0,0b00,0b0101,op7_4, (outs GPR:$wb),
(ins addrmode6:$addr, DPR:$src1, DPR:$src2, DPR:$src3), IIC_VST,
OpcodeStr, Dt, "\\{$src1, $src2, $src3\\}, $addr",
- "$addr.addr = $wb", []>;
+ "$addr.addr = $wb", []> {
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
def VST3d8 : VST3D<0b0000, "vst3", "8">;
def VST3d16 : VST3D<0b0100, "vst3", "16">;
@@ -478,7 +529,10 @@ class VST4WB<bits<4> op7_4, string OpcodeStr, string Dt>
: NLdSt<0,0b00,0b0001,op7_4, (outs GPR:$wb),
(ins addrmode6:$addr, DPR:$src1, DPR:$src2, DPR:$src3, DPR:$src4),
IIC_VST, OpcodeStr, Dt, "\\{$src1, $src2, $src3, $src4\\}, $addr",
- "$addr.addr = $wb", []>;
+ "$addr.addr = $wb", []> {
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
def VST4d8 : VST4D<0b0000, "vst4", "8">;
def VST4d16 : VST4D<0b0100, "vst4", "16">;
@@ -515,12 +569,28 @@ def VST2LNd16 : VST2LN<0b0101, "vst2", "16"> { let Inst{5} = 0; }
def VST2LNd32 : VST2LN<0b1001, "vst2", "32"> { let Inst{6} = 0; }
// vst2 to double-spaced even registers.
-def VST2LNq16a: VST2LN<0b0101, "vst2", "16"> { let Inst{5} = 1; }
-def VST2LNq32a: VST2LN<0b1001, "vst2", "32"> { let Inst{6} = 1; }
+def VST2LNq16a: VST2LN<0b0101, "vst2", "16"> {
+ let Inst{5} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
+def VST2LNq32a: VST2LN<0b1001, "vst2", "32"> {
+ let Inst{6} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
// vst2 to double-spaced odd registers.
-def VST2LNq16b: VST2LN<0b0101, "vst2", "16"> { let Inst{5} = 1; }
-def VST2LNq32b: VST2LN<0b1001, "vst2", "32"> { let Inst{6} = 1; }
+def VST2LNq16b: VST2LN<0b0101, "vst2", "16"> {
+ let Inst{5} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
+def VST2LNq32b: VST2LN<0b1001, "vst2", "32"> {
+ let Inst{6} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
// VST3LN : Vector Store (single 3-element structure from one lane)
class VST3LN<bits<4> op11_8, string OpcodeStr, string Dt>
@@ -535,12 +605,28 @@ def VST3LNd16 : VST3LN<0b0110, "vst3", "16"> { let Inst{5-4} = 0b00; }
def VST3LNd32 : VST3LN<0b1010, "vst3", "32"> { let Inst{6-4} = 0b000; }
// vst3 to double-spaced even registers.
-def VST3LNq16a: VST3LN<0b0110, "vst3", "16"> { let Inst{5-4} = 0b10; }
-def VST3LNq32a: VST3LN<0b1010, "vst3", "32"> { let Inst{6-4} = 0b100; }
+def VST3LNq16a: VST3LN<0b0110, "vst3", "16"> {
+ let Inst{5-4} = 0b10;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
+def VST3LNq32a: VST3LN<0b1010, "vst3", "32"> {
+ let Inst{6-4} = 0b100;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
// vst3 to double-spaced odd registers.
-def VST3LNq16b: VST3LN<0b0110, "vst3", "16"> { let Inst{5-4} = 0b10; }
-def VST3LNq32b: VST3LN<0b1010, "vst3", "32"> { let Inst{6-4} = 0b100; }
+def VST3LNq16b: VST3LN<0b0110, "vst3", "16"> {
+ let Inst{5-4} = 0b10;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
+def VST3LNq32b: VST3LN<0b1010, "vst3", "32"> {
+ let Inst{6-4} = 0b100;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
// VST4LN : Vector Store (single 4-element structure from one lane)
class VST4LN<bits<4> op11_8, string OpcodeStr, string Dt>
@@ -556,12 +642,28 @@ def VST4LNd16 : VST4LN<0b0111, "vst4", "16"> { let Inst{5} = 0; }
def VST4LNd32 : VST4LN<0b1011, "vst4", "32"> { let Inst{6} = 0; }
// vst4 to double-spaced even registers.
-def VST4LNq16a: VST4LN<0b0111, "vst4", "16"> { let Inst{5} = 1; }
-def VST4LNq32a: VST4LN<0b1011, "vst4", "32"> { let Inst{6} = 1; }
+def VST4LNq16a: VST4LN<0b0111, "vst4", "16"> {
+ let Inst{5} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
+def VST4LNq32a: VST4LN<0b1011, "vst4", "32"> {
+ let Inst{6} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
// vst4 to double-spaced odd registers.
-def VST4LNq16b: VST4LN<0b0111, "vst4", "16"> { let Inst{5} = 1; }
-def VST4LNq32b: VST4LN<0b1011, "vst4", "32"> { let Inst{6} = 1; }
+def VST4LNq16b: VST4LN<0b0111, "vst4", "16"> {
+ let Inst{5} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
+def VST4LNq32b: VST4LN<0b1011, "vst4", "32"> {
+ let Inst{6} = 1;
+ let NSF = VLDSTLaneDblFrm; // For disassembly.
+ let NSForm = VLDSTLaneDblFrm.Value; // For disassembly.
+}
} // mayStore = 1, hasExtraSrcRegAllocReq = 1
@@ -668,12 +770,18 @@ class N2VDShuffle<bits<2> op19_18, bits<5> op11_7, string OpcodeStr, string Dt>
: N2V<0b11, 0b11, op19_18, 0b10, op11_7, 0, 0, (outs DPR:$dst1, DPR:$dst2),
(ins DPR:$src1, DPR:$src2), IIC_VPERMD,
OpcodeStr, Dt, "$dst1, $dst2",
- "$src1 = $dst1, $src2 = $dst2", []>;
+ "$src1 = $dst1, $src2 = $dst2", []> {
+ let NSF = NVectorShuffleFrm; // For disassembly.
+ let NSForm = NVectorShuffleFrm.Value; // For disassembly.
+}
class N2VQShuffle<bits<2> op19_18, bits<5> op11_7,
InstrItinClass itin, string OpcodeStr, string Dt>
: N2V<0b11, 0b11, op19_18, 0b10, op11_7, 1, 0, (outs QPR:$dst1, QPR:$dst2),
(ins QPR:$src1, QPR:$src2), itin, OpcodeStr, Dt, "$dst1, $dst2",
- "$src1 = $dst1, $src2 = $dst2", []>;
+ "$src1 = $dst1, $src2 = $dst2", []> {
+ let NSF = NVectorShuffleFrm; // For disassembly.
+ let NSForm = NVectorShuffleFrm.Value; // For disassembly.
+}
// Basic 3-register operations: single-, double- and quad-register.
class N3VS<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
@@ -715,6 +823,8 @@ class N3VDSL<bits<2> op21_20, bits<4> op11_8,
(Ty (ShOp (Ty DPR:$src1),
(Ty (NEONvduplane (Ty DPR_VFP2:$src2), imm:$lane)))))]>{
let isCommutable = 0;
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
}
class N3VDSL16<bits<2> op21_20, bits<4> op11_8,
string OpcodeStr, string Dt, ValueType Ty, SDNode ShOp>
@@ -725,6 +835,8 @@ class N3VDSL16<bits<2> op21_20, bits<4> op11_8,
(Ty (ShOp (Ty DPR:$src1),
(Ty (NEONvduplane (Ty DPR_8:$src2), imm:$lane)))))]> {
let isCommutable = 0;
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
}
class N3VQ<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
@@ -756,6 +868,8 @@ class N3VQSL<bits<2> op21_20, bits<4> op11_8,
(ResTy (NEONvduplane (OpTy DPR_VFP2:$src2),
imm:$lane)))))]> {
let isCommutable = 0;
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
}
class N3VQSL16<bits<2> op21_20, bits<4> op11_8, string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, SDNode ShOp>
@@ -767,6 +881,8 @@ class N3VQSL16<bits<2> op21_20, bits<4> op11_8, string OpcodeStr, string Dt,
(ResTy (NEONvduplane (OpTy DPR_8:$src2),
imm:$lane)))))]> {
let isCommutable = 0;
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
}
// Basic 3-register intrinsics, both double- and quad-register.
@@ -789,6 +905,8 @@ class N3VDIntSL<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
(Ty (NEONvduplane (Ty DPR_VFP2:$src2),
imm:$lane)))))]> {
let isCommutable = 0;
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
}
class N3VDIntSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
string OpcodeStr, string Dt, ValueType Ty, Intrinsic IntOp>
@@ -800,6 +918,8 @@ class N3VDIntSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
(Ty (NEONvduplane (Ty DPR_8:$src2),
imm:$lane)))))]> {
let isCommutable = 0;
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
}
class N3VQInt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
@@ -822,6 +942,8 @@ class N3VQIntSL<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
(ResTy (NEONvduplane (OpTy DPR_VFP2:$src2),
imm:$lane)))))]> {
let isCommutable = 0;
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
}
class N3VQIntSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
string OpcodeStr, string Dt,
@@ -834,6 +956,8 @@ class N3VQIntSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
(ResTy (NEONvduplane (OpTy DPR_8:$src2),
imm:$lane)))))]> {
let isCommutable = 0;
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
}
// Multiply-Add/Sub operations: single-, double- and quad-register.
@@ -864,7 +988,10 @@ class N3VDMulOpSL<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
(Ty (ShOp (Ty DPR:$src1),
(Ty (MulOp DPR:$src2,
(Ty (NEONvduplane (Ty DPR_VFP2:$src3),
- imm:$lane)))))))]>;
+ imm:$lane)))))))]> {
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
+}
class N3VDMulOpSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
string OpcodeStr, string Dt,
ValueType Ty, SDNode MulOp, SDNode ShOp>
@@ -876,7 +1003,10 @@ class N3VDMulOpSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
(Ty (ShOp (Ty DPR:$src1),
(Ty (MulOp DPR:$src2,
(Ty (NEONvduplane (Ty DPR_8:$src3),
- imm:$lane)))))))]>;
+ imm:$lane)))))))]> {
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
+}
class N3VQMulOp<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt, ValueType Ty,
@@ -897,7 +1027,10 @@ class N3VQMulOpSL<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
(ResTy (ShOp (ResTy QPR:$src1),
(ResTy (MulOp QPR:$src2,
(ResTy (NEONvduplane (OpTy DPR_VFP2:$src3),
- imm:$lane)))))))]>;
+ imm:$lane)))))))]> {
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
+}
class N3VQMulOpSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy,
@@ -910,7 +1043,10 @@ class N3VQMulOpSL16<bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
(ResTy (ShOp (ResTy QPR:$src1),
(ResTy (MulOp QPR:$src2,
(ResTy (NEONvduplane (OpTy DPR_8:$src3),
- imm:$lane)))))))]>;
+ imm:$lane)))))))]> {
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
+}
// Neon 3-argument intrinsics, both double- and quad-register.
// The destination register is also used as the first source operand register.
@@ -996,7 +1132,10 @@ class N3VLIntSL<bit op24, bits<2> op21_20, bits<4> op11_8, InstrItinClass itin,
[(set (ResTy QPR:$dst),
(ResTy (IntOp (OpTy DPR:$src1),
(OpTy (NEONvduplane (OpTy DPR_VFP2:$src2),
- imm:$lane)))))]>;
+ imm:$lane)))))]> {
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
+}
class N3VLIntSL16<bit op24, bits<2> op21_20, bits<4> op11_8,
InstrItinClass itin, string OpcodeStr, string Dt,
ValueType ResTy, ValueType OpTy, Intrinsic IntOp>
@@ -1006,7 +1145,10 @@ class N3VLIntSL16<bit op24, bits<2> op21_20, bits<4> op11_8,
[(set (ResTy QPR:$dst),
(ResTy (IntOp (OpTy DPR:$src1),
(OpTy (NEONvduplane (OpTy DPR_8:$src2),
- imm:$lane)))))]>;
+ imm:$lane)))))]> {
+ let NSF = NVdVnVmImmMulScalarFrm; // For disassembly.
+ let NSForm = NVdVnVmImmMulScalarFrm.Value; // For disassembly.
+}
// Wide 3-register intrinsics.
class N3VWInt<bit op24, bit op23, bits<2> op21_20, bits<4> op11_8, bit op4,
@@ -1055,6 +1197,10 @@ class N2VQPLInt2<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
OpcodeStr, Dt, "$dst, $src2", "$src1 = $dst",
[(set QPR:$dst, (ResTy (IntOp (ResTy QPR:$src1), (OpTy QPR:$src2))))]>;
+// This is a big let * in block to mark these instructions NVectorShiftFrm to
+// help the disassembler.
+let NSF = NVectorShiftFrm, NSForm = NVectorShiftFrm.Value in {
+
// Shift by immediate,
// both double- and quad-register.
class N2VDSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
@@ -1072,16 +1218,6 @@ class N2VQSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
OpcodeStr, Dt, "$dst, $src, $SIMM", "",
[(set QPR:$dst, (Ty (OpNode (Ty QPR:$src), (i32 imm:$SIMM))))]>;
-// Long shift by immediate.
-class N2VLSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6, bit op4,
- string OpcodeStr, string Dt,
- ValueType ResTy, ValueType OpTy, SDNode OpNode>
- : N2VImm<op24, op23, op11_8, op7, op6, op4,
- (outs QPR:$dst), (ins DPR:$src, i32imm:$SIMM), IIC_VSHLiD,
- OpcodeStr, Dt, "$dst, $src, $SIMM", "",
- [(set QPR:$dst, (ResTy (OpNode (OpTy DPR:$src),
- (i32 imm:$SIMM))))]>;
-
// Narrow shift by immediate.
class N2VNSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6, bit op4,
InstrItinClass itin, string OpcodeStr, string Dt,
@@ -1124,8 +1260,26 @@ class N2VQShIns<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
OpcodeStr, Dt, "$dst, $src2, $SIMM", "$src1 = $dst",
[(set QPR:$dst, (Ty (ShOp QPR:$src1, QPR:$src2, (i32 imm:$SIMM))))]>;
+} // End of "let NSF = NVectorShiftFrm, ..."
+
+// Long shift by immediate.
+class N2VLSh<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6, bit op4,
+ string OpcodeStr, string Dt,
+ ValueType ResTy, ValueType OpTy, SDNode OpNode>
+ : N2VImm<op24, op23, op11_8, op7, op6, op4,
+ (outs QPR:$dst), (ins DPR:$src, i32imm:$SIMM), IIC_VSHLiD,
+ OpcodeStr, Dt, "$dst, $src, $SIMM", "",
+ [(set QPR:$dst, (ResTy (OpNode (OpTy DPR:$src),
+ (i32 imm:$SIMM))))]> {
+ // This has a different interpretation of the shift amount encoding than
+ // NVectorShiftFrm.
+ let NSF = NVectorShift2Frm; // For disassembly.
+ let NSForm = NVectorShift2Frm.Value; // For disassembly.
+}
+
// Convert, with fractional bits immediate,
// both double- and quad-register.
+let NSF = NVdVmImmVCVTFrm, NSForm = NVdVmImmVCVTFrm.Value in {
class N2VCvtD<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
string OpcodeStr, string Dt, ValueType ResTy, ValueType OpTy,
Intrinsic IntOp>
@@ -1140,6 +1294,7 @@ class N2VCvtQ<bit op24, bit op23, bits<4> op11_8, bit op7, bit op4,
(outs QPR:$dst), (ins QPR:$src, i32imm:$SIMM), IIC_VUNAQ,
OpcodeStr, Dt, "$dst, $src, $SIMM", "",
[(set QPR:$dst, (ResTy (IntOp (OpTy QPR:$src), (i32 imm:$SIMM))))]>;
+}
//===----------------------------------------------------------------------===//
// Multiclasses
@@ -1350,6 +1505,60 @@ multiclass N3VInt_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
v2i64, v2i64, IntOp, Commutable>;
}
+// Same as N3VInt_QHSD, except they're for Vector Shift (Register) Instructions.
+// D:Vd M:Vm N:Vn (notice that M:Vm is the first operand)
+// This helps the disassembler.
+let NSF = NVdVnVmImmVectorShiftFrm, NSForm = NVdVnVmImmVectorShiftFrm.Value in {
+multiclass N3VInt_HS2<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
+ string OpcodeStr, string Dt,
+ Intrinsic IntOp, bit Commutable = 0> {
+ // 64-bit vector types.
+ def v4i16 : N3VDInt<op24, op23, 0b01, op11_8, op4, itinD16,
+ OpcodeStr, !strconcat(Dt, "16"),
+ v4i16, v4i16, IntOp, Commutable>;
+ def v2i32 : N3VDInt<op24, op23, 0b10, op11_8, op4, itinD32,
+ OpcodeStr, !strconcat(Dt, "32"),
+ v2i32, v2i32, IntOp, Commutable>;
+
+ // 128-bit vector types.
+ def v8i16 : N3VQInt<op24, op23, 0b01, op11_8, op4, itinQ16,
+ OpcodeStr, !strconcat(Dt, "16"),
+ v8i16, v8i16, IntOp, Commutable>;
+ def v4i32 : N3VQInt<op24, op23, 0b10, op11_8, op4, itinQ32,
+ OpcodeStr, !strconcat(Dt, "32"),
+ v4i32, v4i32, IntOp, Commutable>;
+}
+multiclass N3VInt_QHS2<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
+ string OpcodeStr, string Dt,
+ Intrinsic IntOp, bit Commutable = 0>
+ : N3VInt_HS2<op24, op23, op11_8, op4, itinD16, itinD32, itinQ16, itinQ32,
+ OpcodeStr, Dt, IntOp, Commutable> {
+ def v8i8 : N3VDInt<op24, op23, 0b00, op11_8, op4, itinD16,
+ OpcodeStr, !strconcat(Dt, "8"),
+ v8i8, v8i8, IntOp, Commutable>;
+ def v16i8 : N3VQInt<op24, op23, 0b00, op11_8, op4, itinQ16,
+ OpcodeStr, !strconcat(Dt, "8"),
+ v16i8, v16i8, IntOp, Commutable>;
+}
+multiclass N3VInt_QHSD2<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itinD16, InstrItinClass itinD32,
+ InstrItinClass itinQ16, InstrItinClass itinQ32,
+ string OpcodeStr, string Dt,
+ Intrinsic IntOp, bit Commutable = 0>
+ : N3VInt_QHS2<op24, op23, op11_8, op4, itinD16, itinD32, itinQ16, itinQ32,
+ OpcodeStr, Dt, IntOp, Commutable> {
+ def v1i64 : N3VDInt<op24, op23, 0b11, op11_8, op4, itinD32,
+ OpcodeStr, !strconcat(Dt, "64"),
+ v1i64, v1i64, IntOp, Commutable>;
+ def v2i64 : N3VQInt<op24, op23, 0b11, op11_8, op4, itinQ32,
+ OpcodeStr, !strconcat(Dt, "64"),
+ v2i64, v2i64, IntOp, Commutable>;
+}
+}
// Neon Narrowing 3-register vector intrinsics,
// source operand element sizes of 16, 32 and 64 bits:
@@ -1619,6 +1828,47 @@ multiclass N2VSh_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
// imm6 = xxxxxx
}
+// Same as N2VSh_QHSD, except the instructions have a differnt interpretation of
+// the shift amount. This helps the disassembler.
+let NSF = NVectorShift2Frm, NSForm = NVectorShift2Frm.Value in {
+multiclass N2VSh_QHSD2<bit op24, bit op23, bits<4> op11_8, bit op4,
+ InstrItinClass itin, string OpcodeStr, string Dt,
+ SDNode OpNode> {
+ // 64-bit vector types.
+ def v8i8 : N2VDSh<op24, op23, op11_8, 0, op4, itin,
+ OpcodeStr, !strconcat(Dt, "8"), v8i8, OpNode> {
+ let Inst{21-19} = 0b001; // imm6 = 001xxx
+ }
+ def v4i16 : N2VDSh<op24, op23, op11_8, 0, op4, itin,
+ OpcodeStr, !strconcat(Dt, "16"), v4i16, OpNode> {
+ let Inst{21-20} = 0b01; // imm6 = 01xxxx
+ }
+ def v2i32 : N2VDSh<op24, op23, op11_8, 0, op4, itin,
+ OpcodeStr, !strconcat(Dt, "32"), v2i32, OpNode> {
+ let Inst{21} = 0b1; // imm6 = 1xxxxx
+ }
+ def v1i64 : N2VDSh<op24, op23, op11_8, 1, op4, itin,
+ OpcodeStr, !strconcat(Dt, "64"), v1i64, OpNode>;
+ // imm6 = xxxxxx
+
+ // 128-bit vector types.
+ def v16i8 : N2VQSh<op24, op23, op11_8, 0, op4, itin,
+ OpcodeStr, !strconcat(Dt, "8"), v16i8, OpNode> {
+ let Inst{21-19} = 0b001; // imm6 = 001xxx
+ }
+ def v8i16 : N2VQSh<op24, op23, op11_8, 0, op4, itin,
+ OpcodeStr, !strconcat(Dt, "16"), v8i16, OpNode> {
+ let Inst{21-20} = 0b01; // imm6 = 01xxxx
+ }
+ def v4i32 : N2VQSh<op24, op23, op11_8, 0, op4, itin,
+ OpcodeStr, !strconcat(Dt, "32"), v4i32, OpNode> {
+ let Inst{21} = 0b1; // imm6 = 1xxxxx
+ }
+ def v2i64 : N2VQSh<op24, op23, op11_8, 1, op4, itin,
+ OpcodeStr, !strconcat(Dt, "64"), v2i64, OpNode>;
+ // imm6 = xxxxxx
+}
+}
// Neon Shift-Accumulate vector operations,
// element sizes of 8, 16, 32 and 64 bits:
@@ -1699,6 +1949,47 @@ multiclass N2VShIns_QHSD<bit op24, bit op23, bits<4> op11_8, bit op4,
// imm6 = xxxxxx
}
+// Same as N2VShIns_QHSD, except the instructions have a differnt interpretation
+// of the shift amount. This helps the disassembler.
+let NSF = NVectorShift2Frm, NSForm = NVectorShift2Frm.Value in {
+multiclass N2VShIns_QHSD2<bit op24, bit op23, bits<4> op11_8, bit op4,
+ string OpcodeStr, SDNode ShOp> {
+ // 64-bit vector types.
+ def v8i8 : N2VDShIns<op24, op23, op11_8, 0, op4,
+ OpcodeStr, "8", v8i8, ShOp> {
+ let Inst{21-19} = 0b001; // imm6 = 001xxx
+ }
+ def v4i16 : N2VDShIns<op24, op23, op11_8, 0, op4,
+ OpcodeStr, "16", v4i16, ShOp> {
+ let Inst{21-20} = 0b01; // imm6 = 01xxxx
+ }
+ def v2i32 : N2VDShIns<op24, op23, op11_8, 0, op4,
+ OpcodeStr, "32", v2i32, ShOp> {
+ let Inst{21} = 0b1; // imm6 = 1xxxxx
+ }
+ def v1i64 : N2VDShIns<op24, op23, op11_8, 1, op4,
+ OpcodeStr, "64", v1i64, ShOp>;
+ // imm6 = xxxxxx
+
+ // 128-bit vector types.
+ def v16i8 : N2VQShIns<op24, op23, op11_8, 0, op4,
+ OpcodeStr, "8", v16i8, ShOp> {
+ let Inst{21-19} = 0b001; // imm6 = 001xxx
+ }
+ def v8i16 : N2VQShIns<op24, op23, op11_8, 0, op4,
+ OpcodeStr, "16", v8i16, ShOp> {
+ let Inst{21-20} = 0b01; // imm6 = 01xxxx
+ }
+ def v4i32 : N2VQShIns<op24, op23, op11_8, 0, op4,
+ OpcodeStr, "32", v4i32, ShOp> {
+ let Inst{21} = 0b1; // imm6 = 1xxxxx
+ }
+ def v2i64 : N2VQShIns<op24, op23, op11_8, 1, op4,
+ OpcodeStr, "64", v2i64, ShOp>;
+ // imm6 = xxxxxx
+}
+}
+
// Neon Shift Long operations,
// element sizes of 8, 16, 32 bits:
multiclass N2VLSh_QHS<bit op24, bit op23, bits<4> op11_8, bit op7, bit op6,
@@ -2329,18 +2620,21 @@ def VRSQRTSfq : N3VQInt<0, 0, 0b10, 0b1111, 1,
// Vector Shifts.
// VSHL : Vector Shift
-defm VSHLs : N3VInt_QHSD<0, 0, 0b0100, 0, IIC_VSHLiD, IIC_VSHLiD, IIC_VSHLiQ,
- IIC_VSHLiQ, "vshl", "s", int_arm_neon_vshifts, 0>;
-defm VSHLu : N3VInt_QHSD<1, 0, 0b0100, 0, IIC_VSHLiD, IIC_VSHLiD, IIC_VSHLiQ,
- IIC_VSHLiQ, "vshl", "u", int_arm_neon_vshiftu, 0>;
+defm VSHLs : N3VInt_QHSD2<0,0, 0b0100, 0, IIC_VSHLiD, IIC_VSHLiD, IIC_VSHLiQ,
+ IIC_VSHLiQ, "vshl", "s", int_arm_neon_vshifts, 0>;
+defm VSHLu : N3VInt_QHSD2<1,0, 0b0100, 0, IIC_VSHLiD, IIC_VSHLiD, IIC_VSHLiQ,
+ IIC_VSHLiQ, "vshl", "u", int_arm_neon_vshiftu, 0>;
// VSHL : Vector Shift Left (Immediate)
-defm VSHLi : N2VSh_QHSD<0, 1, 0b0101, 1, IIC_VSHLiD, "vshl", "i", NEONvshl>;
+// (disassembly note: this has a different interpretation of the shift amont)
+defm VSHLi : N2VSh_QHSD2<0, 1, 0b0101, 1, IIC_VSHLiD, "vshl", "i", NEONvshl>;
// VSHR : Vector Shift Right (Immediate)
defm VSHRs : N2VSh_QHSD<0, 1, 0b0000, 1, IIC_VSHLiD, "vshr", "s", NEONvshrs>;
defm VSHRu : N2VSh_QHSD<1, 1, 0b0000, 1, IIC_VSHLiD, "vshr", "u", NEONvshru>;
// VSHLL : Vector Shift Left Long
+// (disassembly note: this has a different interpretation of the shift amont)
defm VSHLLs : N2VLSh_QHS<0, 1, 0b1010, 0, 0, 1, "vshll", "s", NEONvshlls>;
+// (disassembly note: this has a different interpretation of the shift amont)
defm VSHLLu : N2VLSh_QHS<1, 1, 0b1010, 0, 0, 1, "vshll", "u", NEONvshllu>;
// VSHLL : Vector Shift Left Long (with maximum shift count)
@@ -2350,6 +2644,8 @@ class N2VLShMax<bit op24, bit op23, bits<6> op21_16, bits<4> op11_8, bit op7,
: N2VLSh<op24, op23, op11_8, op7, op6, op4, OpcodeStr, Dt,
ResTy, OpTy, OpNode> {
let Inst{21-16} = op21_16;
+ let NSF = NVdVmImmVSHLLFrm; // For disassembly.
+ let NSForm = NVdVmImmVSHLLFrm.Value; // For disassembly.
}
def VSHLLi8 : N2VLShMax<1, 1, 0b110010, 0b0011, 0, 0, 0, "vshll", "i8",
v8i16, v8i8, NEONvshlli>;
@@ -2363,10 +2659,10 @@ defm VSHRN : N2VNSh_HSD<0,1,0b1000,0,0,1, IIC_VSHLiD, "vshrn", "i",
NEONvshrn>;
// VRSHL : Vector Rounding Shift
-defm VRSHLs : N3VInt_QHSD<0,0,0b0101,0, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
- IIC_VSHLi4Q, "vrshl", "s", int_arm_neon_vrshifts,0>;
-defm VRSHLu : N3VInt_QHSD<1,0,0b0101,0, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
- IIC_VSHLi4Q, "vrshl", "u", int_arm_neon_vrshiftu,0>;
+defm VRSHLs : N3VInt_QHSD2<0,0,0b0101,0,IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
+ IIC_VSHLi4Q,"vrshl", "s", int_arm_neon_vrshifts,0>;
+defm VRSHLu : N3VInt_QHSD2<1,0,0b0101,0,IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
+ IIC_VSHLi4Q,"vrshl", "u", int_arm_neon_vrshiftu,0>;
// VRSHR : Vector Rounding Shift Right
defm VRSHRs : N2VSh_QHSD<0,1,0b0010,1, IIC_VSHLi4D, "vrshr", "s", NEONvrshrs>;
defm VRSHRu : N2VSh_QHSD<1,1,0b0010,1, IIC_VSHLi4D, "vrshr", "u", NEONvrshru>;
@@ -2376,15 +2672,18 @@ defm VRSHRN : N2VNSh_HSD<0, 1, 0b1000, 0, 1, 1, IIC_VSHLi4D, "vrshrn", "i",
NEONvrshrn>;
// VQSHL : Vector Saturating Shift
-defm VQSHLs : N3VInt_QHSD<0,0,0b0100,1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
- IIC_VSHLi4Q, "vqshl", "s", int_arm_neon_vqshifts,0>;
-defm VQSHLu : N3VInt_QHSD<1,0,0b0100,1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
- IIC_VSHLi4Q, "vqshl", "u", int_arm_neon_vqshiftu,0>;
+defm VQSHLs : N3VInt_QHSD2<0,0,0b0100,1,IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
+ IIC_VSHLi4Q, "vqshl", "s", int_arm_neon_vqshifts,0>;
+defm VQSHLu : N3VInt_QHSD2<1,0,0b0100,1,IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
+ IIC_VSHLi4Q, "vqshl", "u", int_arm_neon_vqshiftu,0>;
// VQSHL : Vector Saturating Shift Left (Immediate)
-defm VQSHLsi : N2VSh_QHSD<0,1,0b0111,1, IIC_VSHLi4D, "vqshl", "s", NEONvqshls>;
-defm VQSHLui : N2VSh_QHSD<1,1,0b0111,1, IIC_VSHLi4D, "vqshl", "u", NEONvqshlu>;
+// (disassembly note: this has a different interpretation of the shift amont)
+defm VQSHLsi : N2VSh_QHSD2<0,1,0b0111,1, IIC_VSHLi4D, "vqshl", "s", NEONvqshls>;
+// (disassembly note: this has a different interpretation of the shift amont)
+defm VQSHLui : N2VSh_QHSD2<1,1,0b0111,1, IIC_VSHLi4D, "vqshl", "u", NEONvqshlu>;
// VQSHLU : Vector Saturating Shift Left (Immediate, Unsigned)
-defm VQSHLsu : N2VSh_QHSD<1,1,0b0110,1, IIC_VSHLi4D, "vqshlu","s",NEONvqshlsu>;
+// (disassembly note: this has a different interpretation of the shift amont)
+defm VQSHLsu : N2VSh_QHSD2<1,1,0b0110,1, IIC_VSHLi4D, "vqshlu","s",NEONvqshlsu>;
// VQSHRN : Vector Saturating Shift Right and Narrow
defm VQSHRNs : N2VNSh_HSD<0, 1, 0b1001, 0, 0, 1, IIC_VSHLi4D, "vqshrn", "s",
@@ -2397,12 +2696,12 @@ defm VQSHRUN : N2VNSh_HSD<1, 1, 0b1000, 0, 0, 1, IIC_VSHLi4D, "vqshrun", "s",
NEONvqshrnsu>;
// VQRSHL : Vector Saturating Rounding Shift
-defm VQRSHLs : N3VInt_QHSD<0,0,0b0101,1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
- IIC_VSHLi4Q, "vqrshl", "s",
- int_arm_neon_vqrshifts, 0>;
-defm VQRSHLu : N3VInt_QHSD<1,0,0b0101,1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
- IIC_VSHLi4Q, "vqrshl", "u",
- int_arm_neon_vqrshiftu, 0>;
+defm VQRSHLs : N3VInt_QHSD2<0,0,0b0101,1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
+ IIC_VSHLi4Q, "vqrshl", "s",
+ int_arm_neon_vqrshifts, 0>;
+defm VQRSHLu : N3VInt_QHSD2<1,0,0b0101,1, IIC_VSHLi4D, IIC_VSHLi4D, IIC_VSHLi4Q,
+ IIC_VSHLi4Q, "vqrshl", "u",
+ int_arm_neon_vqrshiftu, 0>;
// VQRSHRN : Vector Saturating Rounding Shift Right and Narrow
defm VQRSHRNs : N2VNSh_HSD<0, 1, 0b1001, 0, 1, 1, IIC_VSHLi4D, "vqrshrn", "s",
@@ -2422,7 +2721,8 @@ defm VRSRAs : N2VShAdd_QHSD<0, 1, 0b0011, 1, "vrsra", "s", NEONvrshrs>;
defm VRSRAu : N2VShAdd_QHSD<1, 1, 0b0011, 1, "vrsra", "u", NEONvrshru>;
// VSLI : Vector Shift Left and Insert
-defm VSLI : N2VShIns_QHSD<1, 1, 0b0101, 1, "vsli", NEONvsli>;
+// (disassembly note: this has a different interpretation of the shift amont)
+defm VSLI : N2VShIns_QHSD2<1, 1, 0b0101, 1, "vsli", NEONvsli>;
// VSRI : Vector Shift Right and Insert
defm VSRI : N2VShIns_QHSD<1, 1, 0b0100, 1, "vsri", NEONvsri>;
@@ -2518,10 +2818,13 @@ def VSWPq : N2VX<0b11, 0b11, 0b00, 0b10, 0b00000, 1, 0,
// VMOV : Vector Move (Register)
+// Mark these instructions as 2-register instructions to help the disassembler.
+let NSF = NVdVmImmFrm, NSForm = NVdVmImmFrm.Value in {
def VMOVDneon: N3VX<0, 0, 0b10, 0b0001, 0, 1, (outs DPR:$dst), (ins DPR:$src),
IIC_VMOVD, "vmov", "$dst, $src", "", []>;
def VMOVQ : N3VX<0, 0, 0b10, 0b0001, 1, 1, (outs QPR:$dst), (ins QPR:$src),
IIC_VMOVD, "vmov", "$dst, $src", "", []>;
+}
// VMOV : Vector Move (Immediate)
@@ -2762,6 +3065,7 @@ def VDUPfq : NVDup<0b11101010, 0b1011, 0b00, (outs QPR:$dst), (ins GPR:$src),
// VDUP : Vector Duplicate Lane (from scalar to all elements)
+let NSF = NVdVmImmVDupLaneFrm, NSForm = NVdVmImmVDupLaneFrm.Value in {
class VDUPLND<bits<2> op19_18, bits<2> op17_16,
string OpcodeStr, string Dt, ValueType Ty>
: N2V<0b11, 0b11, op19_18, op17_16, 0b11000, 0, 0,
@@ -2775,6 +3079,7 @@ class VDUPLNQ<bits<2> op19_18, bits<2> op17_16, string OpcodeStr, string Dt,
(outs QPR:$dst), (ins DPR:$src, nohash_imm:$lane), IIC_VMOVD,
OpcodeStr, Dt, "$dst, $src[$lane]", "",
[(set QPR:$dst, (ResTy (NEONvduplane (OpTy DPR:$src), imm:$lane)))]>;
+}
// Inst{19-16} is partially specified depending on the element size.
@@ -2843,24 +3148,37 @@ defm VMOVLu : N2VLInt_QHS<0b11,0b10100,0,1, "vmovl", "u",
// Vector Conversions.
+let NSF = NVdVmImmVCVTFrm, NSForm = NVdVmImmVCVTFrm.Value in {
+class N2VDX<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
+ bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr,
+ string Dt, ValueType ResTy, ValueType OpTy, SDNode OpNode>
+ : N2VD<op24_23, op21_20, op19_18, op17_16, op11_7, op4, OpcodeStr, Dt,
+ ResTy, OpTy, OpNode>;
+class N2VQX<bits<2> op24_23, bits<2> op21_20, bits<2> op19_18,
+ bits<2> op17_16, bits<5> op11_7, bit op4, string OpcodeStr,
+ string Dt, ValueType ResTy, ValueType OpTy, SDNode OpNode>
+ : N2VQ<op24_23, op21_20, op19_18, op17_16, op11_7, op4, OpcodeStr, Dt,
+ ResTy, OpTy, OpNode>;
+}
+
// VCVT : Vector Convert Between Floating-Point and Integers
-def VCVTf2sd : N2VD<0b11, 0b11, 0b10, 0b11, 0b01110, 0, "vcvt", "s32.f32",
- v2i32, v2f32, fp_to_sint>;
-def VCVTf2ud : N2VD<0b11, 0b11, 0b10, 0b11, 0b01111, 0, "vcvt", "u32.f32",
- v2i32, v2f32, fp_to_uint>;
-def VCVTs2fd : N2VD<0b11, 0b11, 0b10, 0b11, 0b01100, 0, "vcvt", "f32.s32",
- v2f32, v2i32, sint_to_fp>;
-def VCVTu2fd : N2VD<0b11, 0b11, 0b10, 0b11, 0b01101, 0, "vcvt", "f32.u32",
- v2f32, v2i32, uint_to_fp>;
-
-def VCVTf2sq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01110, 0, "vcvt", "s32.f32",
- v4i32, v4f32, fp_to_sint>;
-def VCVTf2uq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01111, 0, "vcvt", "u32.f32",
- v4i32, v4f32, fp_to_uint>;
-def VCVTs2fq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01100, 0, "vcvt", "f32.s32",
- v4f32, v4i32, sint_to_fp>;
-def VCVTu2fq : N2VQ<0b11, 0b11, 0b10, 0b11, 0b01101, 0, "vcvt", "f32.u32",
- v4f32, v4i32, uint_to_fp>;
+def VCVTf2sd : N2VDX<0b11, 0b11, 0b10, 0b11, 0b01110, 0, "vcvt", "s32.f32",
+ v2i32, v2f32, fp_to_sint>;
+def VCVTf2ud : N2VDX<0b11, 0b11, 0b10, 0b11, 0b01111, 0, "vcvt", "u32.f32",
+ v2i32, v2f32, fp_to_uint>;
+def VCVTs2fd : N2VDX<0b11, 0b11, 0b10, 0b11, 0b01100, 0, "vcvt", "f32.s32",
+ v2f32, v2i32, sint_to_fp>;
+def VCVTu2fd : N2VDX<0b11, 0b11, 0b10, 0b11, 0b01101, 0, "vcvt", "f32.u32",
+ v2f32, v2i32, uint_to_fp>;
+
+def VCVTf2sq : N2VQX<0b11, 0b11, 0b10, 0b11, 0b01110, 0, "vcvt", "s32.f32",
+ v4i32, v4f32, fp_to_sint>;
+def VCVTf2uq : N2VQX<0b11, 0b11, 0b10, 0b11, 0b01111, 0, "vcvt", "u32.f32",
+ v4i32, v4f32, fp_to_uint>;
+def VCVTs2fq : N2VQX<0b11, 0b11, 0b10, 0b11, 0b01100, 0, "vcvt", "f32.s32",
+ v4f32, v4i32, sint_to_fp>;
+def VCVTu2fq : N2VQX<0b11, 0b11, 0b10, 0b11, 0b01101, 0, "vcvt", "f32.u32",
+ v4f32, v4i32, uint_to_fp>;
// VCVT : Vector Convert Between Floating-Point and Fixed-Point.
def VCVTf2xsd : N2VCvtD<0, 1, 0b1111, 0, 1, "vcvt", "s32.f32",
@@ -2945,6 +3263,8 @@ def VREV16q8 : VREV16Q<0b00, "vrev16", "8", v16i8>;
// VEXT : Vector Extract
+let NSF = NVdVnVmImmVectorExtractFrm,
+ NSForm = NVdVnVmImmVectorExtractFrm.Value in {
class VEXTd<string OpcodeStr, string Dt, ValueType Ty>
: N3V<0,1,0b11,{?,?,?,?},0,0, (outs DPR:$dst),
(ins DPR:$lhs, DPR:$rhs, i32imm:$index), IIC_VEXTD,
@@ -2958,6 +3278,7 @@ class VEXTq<string OpcodeStr, string Dt, ValueType Ty>
OpcodeStr, Dt, "$dst, $lhs, $rhs, $index", "",
[(set QPR:$dst, (Ty (NEONvext (Ty QPR:$lhs),
(Ty QPR:$rhs), imm:$index)))]>;
+}
def VEXTd8 : VEXTd<"vext", "8", v8i8>;
def VEXTd16 : VEXTd<"vext", "16", v4i16>;
@@ -3001,6 +3322,8 @@ def VZIPq32 : N2VQShuffle<0b10, 0b00011, IIC_VPERMQ3, "vzip", "32">;
// Vector Table Lookup and Table Extension.
+let NSF = VTBLFrm, NSForm = VTBLFrm.Value in {
+
// VTBL : Vector Table Lookup
def VTBL1
: N3V<1,1,0b11,0b1000,0,0, (outs DPR:$dst),
@@ -3057,6 +3380,8 @@ def VTBX4
DPR:$tbl2, DPR:$tbl3, DPR:$tbl4, DPR:$src)))]>;
} // hasExtraSrcRegAllocReq = 1
+} // End of "let NSF = VTBLFrm, ..."
+
//===----------------------------------------------------------------------===//
// NEON instructions for single-precision FP math
//===----------------------------------------------------------------------===//
diff --git a/llvm/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp b/llvm/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
index 4a4437ed213..ea299a06a90 100644
--- a/llvm/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
+++ b/llvm/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
@@ -120,7 +120,7 @@ namespace {
void printT2AddrModeImm8Operand(const MachineInstr *MI, int OpNum);
void printT2AddrModeImm8s4Operand(const MachineInstr *MI, int OpNum);
void printT2AddrModeImm8OffsetOperand(const MachineInstr *MI, int OpNum);
- void printT2AddrModeImm8s4OffsetOperand(const MachineInstr *MI, int OpNum) {}
+ void printT2AddrModeImm8s4OffsetOperand(const MachineInstr *MI, int OpNum);
void printT2AddrModeSoRegOperand(const MachineInstr *MI, int OpNum);
void printCPSOptionOperand(const MachineInstr *MI, int OpNum) {}
@@ -431,16 +431,16 @@ void ARMAsmPrinter::printAddrMode2Operand(const MachineInstr *MI, int Op) {
O << "[" << getRegisterName(MO1.getReg());
if (!MO2.getReg()) {
- if (ARM_AM::getAM2Offset(MO3.getImm())) // Don't print +0.
+ if (ARM_AM::getAM2Offset(MO3.getImm())) // Don't print +0.
O << ", #"
- << (char)ARM_AM::getAM2Op(MO3.getImm())
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm()))
<< ARM_AM::getAM2Offset(MO3.getImm());
O << "]";
return;
}
O << ", "
- << (char)ARM_AM::getAM2Op(MO3.getImm())
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm()))
<< getRegisterName(MO2.getReg());
if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm()))
@@ -458,12 +458,12 @@ void ARMAsmPrinter::printAddrMode2OffsetOperand(const MachineInstr *MI, int Op){
unsigned ImmOffs = ARM_AM::getAM2Offset(MO2.getImm());
assert(ImmOffs && "Malformed indexed load / store!");
O << "#"
- << (char)ARM_AM::getAM2Op(MO2.getImm())
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm()))
<< ImmOffs;
return;
}
- O << (char)ARM_AM::getAM2Op(MO2.getImm())
+ O << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm()))
<< getRegisterName(MO1.getReg());
if (unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm()))
@@ -490,7 +490,7 @@ void ARMAsmPrinter::printAddrMode3Operand(const MachineInstr *MI, int Op) {
if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm()))
O << ", #"
- << (char)ARM_AM::getAM3Op(MO3.getImm())
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO3.getImm()))
<< ImmOffs;
O << "]";
}
@@ -508,7 +508,7 @@ void ARMAsmPrinter::printAddrMode3OffsetOperand(const MachineInstr *MI, int Op){
unsigned ImmOffs = ARM_AM::getAM3Offset(MO2.getImm());
assert(ImmOffs && "Malformed indexed load / store!");
O << "#"
- << (char)ARM_AM::getAM3Op(MO2.getImm())
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO2.getImm()))
<< ImmOffs;
}
@@ -558,7 +558,7 @@ void ARMAsmPrinter::printAddrMode5Operand(const MachineInstr *MI, int Op,
if (unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm())) {
O << ", #"
- << (char)ARM_AM::getAM5Op(MO2.getImm())
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM5Op(MO2.getImm()))
<< ImmOffs*4;
}
O << "]";
@@ -594,7 +594,7 @@ void ARMAsmPrinter::printAddrModePCOperand(const MachineInstr *MI, int Op,
const MachineOperand &MO1 = MI->getOperand(Op);
assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
- O << "[pc, +" << getRegisterName(MO1.getReg()) << "]";
+ O << "[pc, " << getRegisterName(MO1.getReg()) << "]";
}
void
@@ -617,10 +617,11 @@ void
ARMAsmPrinter::printThumbITMask(const MachineInstr *MI, int Op) {
// (3 - the number of trailing zeros) is the number of then / else.
unsigned Mask = MI->getOperand(Op).getImm();
+ unsigned CondBit0 = Mask >> 4 & 1;
unsigned NumTZ = CountTrailingZeros_32(Mask);
assert(NumTZ <= 3 && "Invalid IT mask!");
for (unsigned Pos = 3, e = NumTZ; Pos > e; --Pos) {
- bool T = (Mask & (1 << Pos)) == 0;
+ bool T = ((Mask >> Pos) & 1) == CondBit0;
if (T)
O << 't';
else
@@ -652,7 +653,7 @@ ARMAsmPrinter::printThumbAddrModeRI5Operand(const MachineInstr *MI, int Op,
if (MO3.getReg())
O << ", " << getRegisterName(MO3.getReg());
else if (unsigned ImmOffs = MO2.getImm())
- O << ", #+" << ImmOffs * Scale;
+ O << ", #" << ImmOffs * Scale;
O << "]";
}
@@ -674,7 +675,7 @@ void ARMAsmPrinter::printThumbAddrModeSPOperand(const MachineInstr *MI,int Op) {
const MachineOperand &MO2 = MI->getOperand(Op+1);
O << "[" << getRegisterName(MO1.getReg());
if (unsigned ImmOffs = MO2.getImm())
- O << ", #+" << ImmOffs*4;
+ O << ", #" << ImmOffs*4;
O << "]";
}
@@ -710,7 +711,7 @@ void ARMAsmPrinter::printT2AddrModeImm12Operand(const MachineInstr *MI,
unsigned OffImm = MO2.getImm();
if (OffImm) // Don't print +0.
- O << ", #+" << OffImm;
+ O << ", #" << OffImm;
O << "]";
}
@@ -726,7 +727,7 @@ void ARMAsmPrinter::printT2AddrModeImm8Operand(const MachineInstr *MI,
if (OffImm < 0)
O << ", #-" << -OffImm;
else if (OffImm > 0)
- O << ", #+" << OffImm;
+ O << ", #" << OffImm;
O << "]";
}
@@ -742,7 +743,7 @@ void ARMAsmPrinter::printT2AddrModeImm8s4Operand(const MachineInstr *MI,
if (OffImm < 0)
O << ", #-" << -OffImm * 4;
else if (OffImm > 0)
- O << ", #+" << OffImm * 4;
+ O << ", #" << OffImm * 4;
O << "]";
}
@@ -754,7 +755,18 @@ void ARMAsmPrinter::printT2AddrModeImm8OffsetOperand(const MachineInstr *MI,
if (OffImm < 0)
O << "#-" << -OffImm;
else if (OffImm > 0)
- O << "#+" << OffImm;
+ O << "#" << OffImm;
+}
+
+void ARMAsmPrinter::printT2AddrModeImm8s4OffsetOperand(const MachineInstr *MI,
+ int OpNum) {
+ const MachineOperand &MO1 = MI->getOperand(OpNum);
+ int32_t OffImm = (int32_t)MO1.getImm() / 4;
+ // Don't print +0.
+ if (OffImm < 0)
+ O << "#-" << -OffImm * 4;
+ else if (OffImm > 0)
+ O << "#" << OffImm * 4;
}
void ARMAsmPrinter::printT2AddrModeSoRegOperand(const MachineInstr *MI,
diff --git a/llvm/lib/Target/ARM/AsmPrinter/ARMInstPrinter.cpp b/llvm/lib/Target/ARM/AsmPrinter/ARMInstPrinter.cpp
index d4b213a21d1..f8235c95b83 100644
--- a/llvm/lib/Target/ARM/AsmPrinter/ARMInstPrinter.cpp
+++ b/llvm/lib/Target/ARM/AsmPrinter/ARMInstPrinter.cpp
@@ -28,7 +28,165 @@ using namespace llvm;
#undef MachineInstr
#undef ARMAsmPrinter
-void ARMInstPrinter::printInst(const MCInst *MI) { printInstruction(MI); }
+static unsigned NextReg(unsigned Reg) {
+ switch (Reg) {
+ case ARM::D0:
+ return ARM::D1;
+ case ARM::D1:
+ return ARM::D2;
+ case ARM::D2:
+ return ARM::D3;
+ case ARM::D3:
+ return ARM::D4;
+ case ARM::D4:
+ return ARM::D5;
+ case ARM::D5:
+ return ARM::D6;
+ case ARM::D6:
+ return ARM::D7;
+ case ARM::D7:
+ return ARM::D8;
+ case ARM::D8:
+ return ARM::D9;
+ case ARM::D9:
+ return ARM::D10;
+ case ARM::D10:
+ return ARM::D11;
+ case ARM::D11:
+ return ARM::D12;
+ case ARM::D12:
+ return ARM::D13;
+ case ARM::D13:
+ return ARM::D14;
+ case ARM::D14:
+ return ARM::D15;
+ case ARM::D15:
+ return ARM::D16;
+ case ARM::D16:
+ return ARM::D17;
+ case ARM::D17:
+ return ARM::D18;
+ case ARM::D18:
+ return ARM::D19;
+ case ARM::D19:
+ return ARM::D20;
+ case ARM::D20:
+ return ARM::D21;
+ case ARM::D21:
+ return ARM::D22;
+ case ARM::D22:
+ return ARM::D23;
+ case ARM::D23:
+ return ARM::D24;
+ case ARM::D24:
+ return ARM::D25;
+ case ARM::D25:
+ return ARM::D26;
+ case ARM::D26:
+ return ARM::D27;
+ case ARM::D27:
+ return ARM::D28;
+ case ARM::D28:
+ return ARM::D29;
+ case ARM::D29:
+ return ARM::D30;
+ case ARM::D30:
+ return ARM::D31;
+
+ default:
+ assert(0 && "Unexpected register enum");
+ }
+}
+
+void ARMInstPrinter::printInst(const MCInst *MI) {
+ // Check for MOVs and print canonical forms, instead.
+ if (MI->getOpcode() == ARM::MOVs) {
+ const MCOperand &Dst = MI->getOperand(0);
+ const MCOperand &MO1 = MI->getOperand(1);
+ const MCOperand &MO2 = MI->getOperand(2);
+ const MCOperand &MO3 = MI->getOperand(3);
+
+ O << '\t' << ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO3.getImm()));
+ printSBitModifierOperand(MI, 6);
+ printPredicateOperand(MI, 4);
+
+ O << '\t' << getRegisterName(Dst.getReg())
+ << ", " << getRegisterName(MO1.getReg());
+
+ if (ARM_AM::getSORegShOp(MO3.getImm()) == ARM_AM::rrx)
+ return;
+
+ O << ", ";
+
+ if (MO2.getReg()) {
+ O << getRegisterName(MO2.getReg());
+ assert(ARM_AM::getSORegOffset(MO3.getImm()) == 0);
+ } else {
+ O << "#" << ARM_AM::getSORegOffset(MO3.getImm());
+ }
+ return;
+ }
+
+ // A8.6.123 PUSH
+ if ((MI->getOpcode() == ARM::STM || MI->getOpcode() == ARM::t2STM_UPD) &&
+ MI->getOperand(0).getReg() == ARM::SP) {
+ const unsigned IdxOffset = MI->getOpcode() == ARM::STM ? 0 : 1;
+ const MCOperand &MO1 = MI->getOperand(IdxOffset + 1);
+ if (ARM_AM::getAM4WBFlag(MO1.getImm()) &&
+ ARM_AM::getAM4SubMode(MO1.getImm()) == ARM_AM::db) {
+ O << '\t' << "push";
+ printPredicateOperand(MI, IdxOffset + 2);
+ O << '\t';
+ printRegisterList(MI, IdxOffset + 4);
+ return;
+ }
+ }
+
+ // A8.6.122 POP
+ if ((MI->getOpcode() == ARM::LDM || MI->getOpcode() == ARM::t2LDM_UPD) &&
+ MI->getOperand(0).getReg() == ARM::SP) {
+ const unsigned IdxOffset = MI->getOpcode() == ARM::LDM ? 0 : 1;
+ const MCOperand &MO1 = MI->getOperand(IdxOffset + 1);
+ if (ARM_AM::getAM4WBFlag(MO1.getImm()) &&
+ ARM_AM::getAM4SubMode(MO1.getImm()) == ARM_AM::ia) {
+ O << '\t' << "pop";
+ printPredicateOperand(MI, IdxOffset + 2);
+ O << '\t';
+ printRegisterList(MI, IdxOffset + 4);
+ return;
+ }
+ }
+
+ // A8.6.355 VPUSH
+ if ((MI->getOpcode() == ARM::VSTMS || MI->getOpcode() == ARM::VSTMD) &&
+ MI->getOperand(0).getReg() == ARM::SP) {
+ const MCOperand &MO1 = MI->getOperand(1);
+ if (ARM_AM::getAM5WBFlag(MO1.getImm()) &&
+ ARM_AM::getAM5SubMode(MO1.getImm()) == ARM_AM::db) {
+ O << '\t' << "vpush";
+ printPredicateOperand(MI, 2);
+ O << '\t';
+ printRegisterList(MI, 4);
+ return;
+ }
+ }
+
+ // A8.6.354 VPOP
+ if ((MI->getOpcode() == ARM::VLDMS || MI->getOpcode() == ARM::VLDMD) &&
+ MI->getOperand(0).getReg() == ARM::SP) {
+ const MCOperand &MO1 = MI->getOperand(1);
+ if (ARM_AM::getAM5WBFlag(MO1.getImm()) &&
+ ARM_AM::getAM5SubMode(MO1.getImm()) == ARM_AM::ia) {
+ O << '\t' << "vpop";
+ printPredicateOperand(MI, 2);
+ O << '\t';
+ printRegisterList(MI, 4);
+ return;
+ }
+ }
+
+ printInstruction(MI);
+ }
void ARMInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
const char *Modifier) {
@@ -36,6 +194,9 @@ void ARMInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
if (Op.isReg()) {
unsigned Reg = Op.getReg();
if (Modifier && strcmp(Modifier, "dregpair") == 0) {
+ O << '{' << getRegisterName(Reg) << ", "
+ << getRegisterName(NextReg(Reg)) << '}';
+#if 0
// FIXME: Breaks e.g. ARM/vmul.ll.
assert(0);
/*
@@ -44,6 +205,7 @@ void ARMInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
O << '{'
<< getRegisterName(DRegLo) << ',' << getRegisterName(DRegHi)
<< '}';*/
+#endif
} else if (Modifier && strcmp(Modifier, "lane") == 0) {
assert(0);
/*
@@ -56,7 +218,9 @@ void ARMInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
O << getRegisterName(Reg);
}
} else if (Op.isImm()) {
- assert((Modifier == 0 || Modifier[0] == 0) && "No modifiers supported");
+ bool isCallOp = Modifier && !strcmp(Modifier, "call");
+ assert(isCallOp ||
+ ((Modifier == 0 || Modifier[0] == 0) && "No modifiers supported"));
O << '#' << Op.getImm();
} else {
assert((Modifier == 0 || Modifier[0] == 0) && "No modifiers supported");
@@ -142,17 +306,17 @@ void ARMInstPrinter::printAddrMode2Operand(const MCInst *MI, unsigned Op) {
O << "[" << getRegisterName(MO1.getReg());
if (!MO2.getReg()) {
- if (ARM_AM::getAM2Offset(MO3.getImm())) // Don't print +0.
+ if (ARM_AM::getAM2Offset(MO3.getImm())) // Don't print +0.
O << ", #"
- << (char)ARM_AM::getAM2Op(MO3.getImm())
- << ARM_AM::getAM2Offset(MO3.getImm());
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm()))
+ << ARM_AM::getAM2Offset(MO3.getImm());
O << "]";
return;
}
O << ", "
- << (char)ARM_AM::getAM2Op(MO3.getImm())
- << getRegisterName(MO2.getReg());
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO3.getImm()))
+ << getRegisterName(MO2.getReg());
if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm()))
O << ", "
@@ -169,11 +333,14 @@ void ARMInstPrinter::printAddrMode2OffsetOperand(const MCInst *MI,
if (!MO1.getReg()) {
unsigned ImmOffs = ARM_AM::getAM2Offset(MO2.getImm());
assert(ImmOffs && "Malformed indexed load / store!");
- O << '#' << (char)ARM_AM::getAM2Op(MO2.getImm()) << ImmOffs;
+ O << '#'
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm()))
+ << ImmOffs;
return;
}
- O << (char)ARM_AM::getAM2Op(MO2.getImm()) << getRegisterName(MO1.getReg());
+ O << ARM_AM::getAddrOpcStr(ARM_AM::getAM2Op(MO2.getImm()))
+ << getRegisterName(MO1.getReg());
if (unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm()))
O << ", "
@@ -196,8 +363,8 @@ void ARMInstPrinter::printAddrMode3Operand(const MCInst *MI, unsigned OpNum) {
if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm()))
O << ", #"
- << (char)ARM_AM::getAM3Op(MO3.getImm())
- << ImmOffs;
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO3.getImm()))
+ << ImmOffs;
O << ']';
}
@@ -214,9 +381,9 @@ void ARMInstPrinter::printAddrMode3OffsetOperand(const MCInst *MI,
unsigned ImmOffs = ARM_AM::getAM3Offset(MO2.getImm());
assert(ImmOffs && "Malformed indexed load / store!");
- O << "#"
- << (char)ARM_AM::getAM3Op(MO2.getImm())
- << ImmOffs;
+ O << '#'
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM3Op(MO2.getImm()))
+ << ImmOffs;
}
@@ -264,7 +431,7 @@ void ARMInstPrinter::printAddrMode5Operand(const MCInst *MI, unsigned OpNum,
if (unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm())) {
O << ", #"
- << (char)ARM_AM::getAM5Op(MO2.getImm())
+ << ARM_AM::getAddrOpcStr(ARM_AM::getAM5Op(MO2.getImm()))
<< ImmOffs*4;
}
O << "]";
@@ -303,14 +470,56 @@ void ARMInstPrinter::printBitfieldInvMaskImmOperand (const MCInst *MI,
void ARMInstPrinter::printRegisterList(const MCInst *MI, unsigned OpNum) {
O << "{";
- // Always skip the first operand, it's the optional (and implicit writeback).
- for (unsigned i = OpNum+1, e = MI->getNumOperands(); i != e; ++i) {
- if (i != OpNum+1) O << ", ";
+ for (unsigned i = OpNum, e = MI->getNumOperands(); i != e; ++i) {
+ if (i != OpNum) O << ", ";
O << getRegisterName(MI->getOperand(i).getReg());
}
O << "}";
}
+void ARMInstPrinter::printCPSOptionOperand(const MCInst *MI, unsigned OpNum) {
+ const MCOperand &Op = MI->getOperand(OpNum);
+ unsigned option = Op.getImm();
+ unsigned mode = option & 31;
+ bool changemode = option >> 5 & 1;
+ unsigned AIF = option >> 6 & 7;
+ unsigned imod = option >> 9 & 3;
+ if (imod == 2)
+ O << "ie";
+ else if (imod == 3)
+ O << "id";
+ O << '\t';
+ if (imod > 1) {
+ if (AIF & 4) O << 'a';
+ if (AIF & 2) O << 'i';
+ if (AIF & 1) O << 'f';
+ if (AIF > 0 && changemode) O << ", ";
+ }
+ if (changemode)
+ O << '#' << mode;
+}
+
+void ARMInstPrinter::printMSRMaskOperand(const MCInst *MI, unsigned OpNum) {
+ const MCOperand &Op = MI->getOperand(OpNum);
+ unsigned Mask = Op.getImm();
+ if (Mask) {
+ O << '_';
+ if (Mask & 8) O << 'f';
+ if (Mask & 4) O << 's';
+ if (Mask & 2) O << 'x';
+ if (Mask & 1) O << 'c';
+ }
+}
+
+void ARMInstPrinter::printNegZeroOperand(const MCInst *MI, unsigned OpNum){
+ const MCOperand &Op = MI->getOperand(OpNum);
+ O << '#';
+ if (Op.getImm() < 0)
+ O << '-' << (-Op.getImm() - 1);
+ else
+ O << Op.getImm();
+}
+
void ARMInstPrinter::printPredicateOperand(const MCInst *MI, unsigned OpNum) {
ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(OpNum).getImm();
if (CC != ARMCC::AL)
@@ -352,3 +561,191 @@ void ARMInstPrinter::printPCLabel(const MCInst *MI, unsigned OpNum) {
void ARMInstPrinter::printThumbS4ImmOperand(const MCInst *MI, unsigned OpNum) {
O << "#" << MI->getOperand(OpNum).getImm() * 4;
}
+
+void ARMInstPrinter::printThumbITMask(const MCInst *MI, unsigned OpNum) {
+ // (3 - the number of trailing zeros) is the number of then / else.
+ unsigned Mask = MI->getOperand(OpNum).getImm();
+ unsigned CondBit0 = Mask >> 4 & 1;
+ unsigned NumTZ = CountTrailingZeros_32(Mask);
+ assert(NumTZ <= 3 && "Invalid IT mask!");
+ for (unsigned Pos = 3, e = NumTZ; Pos > e; --Pos) {
+ bool T = ((Mask >> Pos) & 1) == CondBit0;
+ if (T)
+ O << 't';
+ else
+ O << 'e';
+ }
+}
+
+void ARMInstPrinter::printThumbAddrModeRROperand(const MCInst *MI, unsigned Op)
+{
+ const MCOperand &MO1 = MI->getOperand(Op);
+ const MCOperand &MO2 = MI->getOperand(Op+1);
+ O << "[" << getRegisterName(MO1.getReg());
+ O << ", " << getRegisterName(MO2.getReg()) << "]";
+}
+
+void ARMInstPrinter::printThumbAddrModeRI5Operand(const MCInst *MI, unsigned Op,
+ unsigned Scale) {
+ const MCOperand &MO1 = MI->getOperand(Op);
+ const MCOperand &MO2 = MI->getOperand(Op+1);
+ const MCOperand &MO3 = MI->getOperand(Op+2);
+
+ if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
+ printOperand(MI, Op);
+ return;
+ }
+
+ O << "[" << getRegisterName(MO1.getReg());
+ if (MO3.getReg())
+ O << ", " << getRegisterName(MO3.getReg());
+ else if (unsigned ImmOffs = MO2.getImm())
+ O << ", #" << ImmOffs * Scale;
+ O << "]";
+}
+
+void ARMInstPrinter::printThumbAddrModeS1Operand(const MCInst *MI, unsigned Op)
+{
+ printThumbAddrModeRI5Operand(MI, Op, 1);
+}
+
+void ARMInstPrinter::printThumbAddrModeS2Operand(const MCInst *MI, unsigned Op)
+{
+ printThumbAddrModeRI5Operand(MI, Op, 2);
+}
+
+void ARMInstPrinter::printThumbAddrModeS4Operand(const MCInst *MI, unsigned Op)
+{
+ printThumbAddrModeRI5Operand(MI, Op, 4);
+}
+
+void ARMInstPrinter::printThumbAddrModeSPOperand(const MCInst *MI,unsigned Op) {
+ const MCOperand &MO1 = MI->getOperand(Op);
+ const MCOperand &MO2 = MI->getOperand(Op+1);
+ O << "[" << getRegisterName(MO1.getReg());
+ if (unsigned ImmOffs = MO2.getImm())
+ O << ", #" << ImmOffs*4;
+ O << "]";
+}
+
+void ARMInstPrinter::printTBAddrMode(const MCInst *MI, unsigned OpNum) {
+ O << "[pc, " << getRegisterName(MI->getOperand(OpNum).getReg());
+ if (MI->getOpcode() == ARM::t2TBH)
+ O << ", lsl #1";
+ O << ']';
+}
+
+// Constant shifts t2_so_reg is a 2-operand unit corresponding to the Thumb2
+// register with shift forms.
+// REG 0 0 - e.g. R5
+// REG IMM, SH_OPC - e.g. R5, LSL #3
+void ARMInstPrinter::printT2SOOperand(const MCInst *MI, unsigned OpNum) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+
+ unsigned Reg = MO1.getReg();
+ O << getRegisterName(Reg);
+
+ // Print the shift opc.
+ O << ", "
+ << ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO2.getImm()))
+ << " ";
+
+ assert(MO2.isImm() && "Not a valid t2_so_reg value!");
+ O << "#" << ARM_AM::getSORegOffset(MO2.getImm());
+}
+
+void ARMInstPrinter::printT2AddrModeImm12Operand(const MCInst *MI,
+ unsigned OpNum) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+
+ O << "[" << getRegisterName(MO1.getReg());
+
+ unsigned OffImm = MO2.getImm();
+ if (OffImm) // Don't print +0.
+ O << ", #" << OffImm;
+ O << "]";
+}
+
+void ARMInstPrinter::printT2AddrModeImm8Operand(const MCInst *MI,
+ unsigned OpNum) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+
+ O << "[" << getRegisterName(MO1.getReg());
+
+ int32_t OffImm = (int32_t)MO2.getImm();
+ // Don't print +0.
+ if (OffImm < 0)
+ O << ", #-" << -OffImm;
+ else if (OffImm > 0)
+ O << ", #" << OffImm;
+ O << "]";
+}
+
+void ARMInstPrinter::printT2AddrModeImm8s4Operand(const MCInst *MI,
+ unsigned OpNum) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+
+ O << "[" << getRegisterName(MO1.getReg());
+
+ int32_t OffImm = (int32_t)MO2.getImm() / 4;
+ // Don't print +0.
+ if (OffImm < 0)
+ O << ", #-" << -OffImm * 4;
+ else if (OffImm > 0)
+ O << ", #" << OffImm * 4;
+ O << "]";
+}
+
+void ARMInstPrinter::printT2AddrModeImm8OffsetOperand(const MCInst *MI,
+ unsigned OpNum) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ int32_t OffImm = (int32_t)MO1.getImm();
+ // Don't print +0.
+ if (OffImm < 0)
+ O << "#-" << -OffImm;
+ else if (OffImm > 0)
+ O << "#" << OffImm;
+}
+
+void ARMInstPrinter::printT2AddrModeImm8s4OffsetOperand(const MCInst *MI,
+ unsigned OpNum) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ int32_t OffImm = (int32_t)MO1.getImm() / 4;
+ // Don't print +0.
+ if (OffImm < 0)
+ O << "#-" << -OffImm * 4;
+ else if (OffImm > 0)
+ O << "#" << OffImm * 4;
+}
+
+void ARMInstPrinter::printT2AddrModeSoRegOperand(const MCInst *MI,
+ unsigned OpNum) {
+ const MCOperand &MO1 = MI->getOperand(OpNum);
+ const MCOperand &MO2 = MI->getOperand(OpNum+1);
+ const MCOperand &MO3 = MI->getOperand(OpNum+2);
+
+ O << "[" << getRegisterName(MO1.getReg());
+
+ assert(MO2.getReg() && "Invalid so_reg load / store address!");
+ O << ", " << getRegisterName(MO2.getReg());
+
+ unsigned ShAmt = MO3.getImm();
+ if (ShAmt) {
+ assert(ShAmt <= 3 && "Not a valid Thumb2 addressing mode!");
+ O << ", lsl #" << ShAmt;
+ }
+ O << "]";
+}
+
+void ARMInstPrinter::printVFPf32ImmOperand(const MCInst *MI, unsigned OpNum) {
+ O << '#' << MI->getOperand(OpNum).getImm();
+}
+
+void ARMInstPrinter::printVFPf64ImmOperand(const MCInst *MI, unsigned OpNum) {
+ O << '#' << MI->getOperand(OpNum).getImm();
+}
+
diff --git a/llvm/lib/Target/ARM/AsmPrinter/ARMInstPrinter.h b/llvm/lib/Target/ARM/AsmPrinter/ARMInstPrinter.h
index 9a3cbc3f5d0..ceb641d95bb 100644
--- a/llvm/lib/Target/ARM/AsmPrinter/ARMInstPrinter.h
+++ b/llvm/lib/Target/ARM/AsmPrinter/ARMInstPrinter.h
@@ -54,26 +54,26 @@ public:
void printBitfieldInvMaskImmOperand(const MCInst *MI, unsigned OpNum);
void printThumbS4ImmOperand(const MCInst *MI, unsigned OpNum);
- void printThumbITMask(const MCInst *MI, unsigned OpNum) {}
- void printThumbAddrModeRROperand(const MCInst *MI, unsigned OpNum) {}
+ void printThumbITMask(const MCInst *MI, unsigned OpNum);
+ void printThumbAddrModeRROperand(const MCInst *MI, unsigned OpNum);
void printThumbAddrModeRI5Operand(const MCInst *MI, unsigned OpNum,
- unsigned Scale) {}
- void printThumbAddrModeS1Operand(const MCInst *MI, unsigned OpNum) {}
- void printThumbAddrModeS2Operand(const MCInst *MI, unsigned OpNum) {}
- void printThumbAddrModeS4Operand(const MCInst *MI, unsigned OpNum) {}
- void printThumbAddrModeSPOperand(const MCInst *MI, unsigned OpNum) {}
+ unsigned Scale);
+ void printThumbAddrModeS1Operand(const MCInst *MI, unsigned OpNum);
+ void printThumbAddrModeS2Operand(const MCInst *MI, unsigned OpNum);
+ void printThumbAddrModeS4Operand(const MCInst *MI, unsigned OpNum);
+ void printThumbAddrModeSPOperand(const MCInst *MI, unsigned OpNum);
- void printT2SOOperand(const MCInst *MI, unsigned OpNum) {}
- void printT2AddrModeImm12Operand(const MCInst *MI, unsigned OpNum) {}
- void printT2AddrModeImm8Operand(const MCInst *MI, unsigned OpNum) {}
- void printT2AddrModeImm8s4Operand(const MCInst *MI, unsigned OpNum) {}
- void printT2AddrModeImm8OffsetOperand(const MCInst *MI, unsigned OpNum) {}
- void printT2AddrModeImm8s4OffsetOperand(const MCInst *MI, unsigned OpNum) {}
- void printT2AddrModeSoRegOperand(const MCInst *MI, unsigned OpNum) {}
+ void printT2SOOperand(const MCInst *MI, unsigned OpNum);
+ void printT2AddrModeImm12Operand(const MCInst *MI, unsigned OpNum);
+ void printT2AddrModeImm8Operand(const MCInst *MI, unsigned OpNum);
+ void printT2AddrModeImm8s4Operand(const MCInst *MI, unsigned OpNum);
+ void printT2AddrModeImm8OffsetOperand(const MCInst *MI, unsigned OpNum);
+ void printT2AddrModeImm8s4OffsetOperand(const MCInst *MI, unsigned OpNum);
+ void printT2AddrModeSoRegOperand(const MCInst *MI, unsigned OpNum);
- void printCPSOptionOperand(const MCInst *MI, unsigned OpNum) {}
- void printMSRMaskOperand(const MCInst *MI, unsigned OpNum) {}
- void printNegZeroOperand(const MCInst *MI, unsigned OpNum) {}
+ void printCPSOptionOperand(const MCInst *MI, unsigned OpNum);
+ void printMSRMaskOperand(const MCInst *MI, unsigned OpNum);
+ void printNegZeroOperand(const MCInst *MI, unsigned OpNum);
void printPredicateOperand(const MCInst *MI, unsigned OpNum);
void printMandatoryPredicateOperand(const MCInst *MI, unsigned OpNum);
void printSBitModifierOperand(const MCInst *MI, unsigned OpNum);
@@ -82,10 +82,10 @@ public:
const char *Modifier);
void printJTBlockOperand(const MCInst *MI, unsigned OpNum) {}
void printJT2BlockOperand(const MCInst *MI, unsigned OpNum) {}
- void printTBAddrMode(const MCInst *MI, unsigned OpNum) {}
+ void printTBAddrMode(const MCInst *MI, unsigned OpNum);
void printNoHashImmediate(const MCInst *MI, unsigned OpNum);
- void printVFPf32ImmOperand(const MCInst *MI, int OpNum) {}
- void printVFPf64ImmOperand(const MCInst *MI, int OpNum) {}
+ void printVFPf32ImmOperand(const MCInst *MI, unsigned OpNum);
+ void printVFPf64ImmOperand(const MCInst *MI, unsigned OpNum);
void printHex8ImmOperand(const MCInst *MI, int OpNum) {}
void printHex16ImmOperand(const MCInst *MI, int OpNum) {}
void printHex32ImmOperand(const MCInst *MI, int OpNum) {}
diff --git a/llvm/lib/Target/ARM/Disassembler/ARMDisassembler.cpp b/llvm/lib/Target/ARM/Disassembler/ARMDisassembler.cpp
new file mode 100644
index 00000000000..52010cd057f
--- /dev/null
+++ b/llvm/lib/Target/ARM/Disassembler/ARMDisassembler.cpp
@@ -0,0 +1,513 @@
+//===- ARMDisassembler.cpp - Disassembler for ARM/Thumb ISA ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is part of the ARM Disassembler.
+// It contains code to translate the data produced by the decoder into MCInsts.
+// Documentation for the disassembler can be found in ARMDisassembler.h.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "arm-disassembler"
+
+#include "ARMDisassembler.h"
+#include "ARMDisassemblerCore.h"
+
+#include "llvm/MC/MCInst.h"
+#include "llvm/Target/TargetRegistry.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MemoryObject.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+/// ARMDisassemblerTables.inc - ARMDisassemblerTables.inc is tblgen'ed from
+/// RISCDisassemblerEmitter.cpp TableGen backend. It contains:
+///
+/// o Mappings from opcode to ARM/Thumb instruction format
+///
+/// o static uint16_t decodeInstruction(uint32_t insn) - the decoding function
+/// for an ARM instruction.
+///
+/// o static uint16_t decodeThumbInstruction(field_t insn) - the decoding
+/// function for a Thumb instruction.
+///
+#include "../ARMGenDisassemblerTables.inc"
+
+namespace llvm {
+
+namespace ARMDisassembler {
+
+/// showBitVector - Use the raw_ostream to log a diagnostic message describing
+/// the inidividual bits of the instruction. This is a sample output:
+///
+/// 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+/// -------------------------------------------------------------------------------------------------
+/// | 1: 0: 1: 0| 1: 0: 1: 0| 1: 0: 1: 0| 1: 0: 1: 0| 1: 0: 1: 0| 1: 0: 1: 0| 1: 0: 1: 0| 1: 0: 1: 0|
+/// -------------------------------------------------------------------------------------------------
+///
+static inline void showBitVector(raw_ostream &os, const uint32_t &insn) {
+ os << " 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 \n";
+ os << "-------------------------------------------------------------------------------------------------\n";
+ os << '|';
+ for (unsigned i = 32; i != 0; --i) {
+ if (insn >> (i - 1) & 0x01)
+ os << " 1";
+ else
+ os << " 0";
+ os << (i%4 == 1 ? '|' : ':');
+ }
+ os << '\n';
+ os << "-------------------------------------------------------------------------------------------------\n";
+ os << '\n';
+}
+
+/// decodeARMInstruction is a decorator function which tries special cases of
+/// instruction matching before calling the auto-generated decoder function.
+static unsigned decodeARMInstruction(uint32_t &insn) {
+ if (slice(insn, 31, 28) == 15)
+ goto AutoGenedDecoder;
+
+ // Special case processing, if any, goes here....
+
+ // LLVM combines the offset mode of A8.6.197 & A8.6.198 into STRB.
+ // The insufficient encoding information of the combined instruction confuses
+ // the decoder wrt BFC/BFI. Therefore, we try to recover here.
+ // For BFC, Inst{27-21} = 0b0111110 & Inst{6-0} = 0b0011111.
+ // For BFI, Inst{27-21} = 0b0111110 & Inst{6-4} = 0b001 & Inst{3-0} =! 0b1111.
+ if (slice(insn, 27, 21) == 0x3e && slice(insn, 6, 4) == 1) {
+ if (slice(insn, 3, 0) == 15)
+ return ARM::BFC;
+ else
+ return ARM::BFI;
+ }
+
+ // Ditto for ADDSrs, which is a super-instruction for A8.6.7 & A8.6.8.
+ // As a result, the decoder fails to decode UMULL properly.
+ if (slice(insn, 27, 21) == 0x04 && slice(insn, 7, 4) == 9) {
+ return ARM::UMULL;
+ }
+
+ // Ditto for STR_PRE, which is a super-instruction for A8.6.194 & A8.6.195.
+ // As a result, the decoder fails to decode SBFX properly.
+ if (slice(insn, 27, 21) == 0x3d && slice(insn, 6, 4) == 5)
+ return ARM::SBFX;
+
+ // And STRB_PRE, which is a super-instruction for A8.6.197 & A8.6.198.
+ // As a result, the decoder fails to decode UBFX properly.
+ if (slice(insn, 27, 21) == 0x3f && slice(insn, 6, 4) == 5)
+ return ARM::UBFX;
+
+ // Ditto for STRT, which is a super-instruction for A8.6.210 Encoding A1 & A2.
+ // As a result, the decoder fails to deocode SSAT properly.
+ if (slice(insn, 27, 21) == 0x35 && slice(insn, 5, 4) == 1)
+ return slice(insn, 6, 6) == 0 ? ARM::SSATlsl : ARM::SSATasr;
+
+ // Ditto for RSCrs, which is a super-instruction for A8.6.146 & A8.6.147.
+ // As a result, the decoder fails to decode STRHT/LDRHT/LDRSHT/LDRSBT.
+ if (slice(insn, 27, 24) == 0) {
+ switch (slice(insn, 21, 20)) {
+ case 2:
+ switch (slice(insn, 7, 4)) {
+ case 11:
+ return ARM::STRHT;
+ default:
+ break; // fallthrough
+ }
+ break;
+ case 3:
+ switch (slice(insn, 7, 4)) {
+ case 11:
+ return ARM::LDRHT;
+ case 13:
+ return ARM::LDRSBT;
+ case 15:
+ return ARM::LDRSHT;
+ default:
+ break; // fallthrough
+ }
+ break;
+ default:
+ break; // fallthrough
+ }
+ }
+
+ // Ditto for SBCrs, which is a super-instruction for A8.6.152 & A8.6.153.
+ // As a result, the decoder fails to decode STRH_Post/LDRD_POST/STRD_POST
+ // properly.
+ if (slice(insn, 27, 25) == 0 && slice(insn, 20, 20) == 0) {
+ unsigned PW = slice(insn, 24, 24) << 1 | slice(insn, 21, 21);
+ switch (slice(insn, 7, 4)) {
+ case 11:
+ switch (PW) {
+ case 2: // Offset
+ return ARM::STRH;
+ case 3: // Pre-indexed
+ return ARM::STRH_PRE;
+ case 0: // Post-indexed
+ return ARM::STRH_POST;
+ default:
+ break; // fallthrough
+ }
+ break;
+ case 13:
+ switch (PW) {
+ case 2: // Offset
+ return ARM::LDRD;
+ case 3: // Pre-indexed
+ return ARM::LDRD_PRE;
+ case 0: // Post-indexed
+ return ARM::LDRD_POST;
+ default:
+ break; // fallthrough
+ }
+ break;
+ case 15:
+ switch (PW) {
+ case 2: // Offset
+ return ARM::STRD;
+ case 3: // Pre-indexed
+ return ARM::STRD_PRE;
+ case 0: // Post-indexed
+ return ARM::STRD_POST;
+ default:
+ break; // fallthrough
+ }
+ break;
+ default:
+ break; // fallthrough
+ }
+ }
+
+ // Ditto for SBCSSrs, which is a super-instruction for A8.6.152 & A8.6.153.
+ // As a result, the decoder fails to decode LDRH_POST/LDRSB_POST/LDRSH_POST
+ // properly.
+ if (slice(insn, 27, 25) == 0 && slice(insn, 20, 20) == 1) {
+ unsigned PW = slice(insn, 24, 24) << 1 | slice(insn, 21, 21);
+ switch (slice(insn, 7, 4)) {
+ case 11:
+ switch (PW) {
+ case 2: // Offset
+ return ARM::LDRH;
+ case 3: // Pre-indexed
+ return ARM::LDRH_PRE;
+ case 0: // Post-indexed
+ return ARM::LDRH_POST;
+ default:
+ break; // fallthrough
+ }
+ break;
+ case 13:
+ switch (PW) {
+ case 2: // Offset
+ return ARM::LDRSB;
+ case 3: // Pre-indexed
+ return ARM::LDRSB_PRE;
+ case 0: // Post-indexed
+ return ARM::LDRSB_POST;
+ default:
+ break; // fallthrough
+ }
+ break;
+ case 15:
+ switch (PW) {
+ case 2: // Offset
+ return ARM::LDRSH;
+ case 3: // Pre-indexed
+ return ARM::LDRSH_PRE;
+ case 0: // Post-indexed
+ return ARM::LDRSH_POST;
+ default:
+ break; // fallthrough
+ }
+ break;
+ default:
+ break; // fallthrough
+ }
+ }
+
+AutoGenedDecoder:
+ // Calling the auto-generated decoder function.
+ return decodeInstruction(insn);
+}
+
+// Helper function for special case handling of LDR (literal) and friends.
+// See, for example, A6.3.7 Load word: Table A6-18 Load word.
+// See A8.6.57 T3, T4 & A8.6.60 T2 and friends for why we morphed the opcode
+// before passing it on.
+static unsigned T2Morph2LoadLiteral(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ return Opcode; // Return unmorphed opcode.
+
+ case ARM::t2LDRDi8:
+ return ARM::t2LDRDpci;
+
+ case ARM::t2LDR_POST: case ARM::t2LDR_PRE:
+ case ARM::t2LDRi12: case ARM::t2LDRi8:
+ case ARM::t2LDRs:
+ return ARM::t2LDRpci;
+
+ case ARM::t2LDRB_POST: case ARM::t2LDRB_PRE:
+ case ARM::t2LDRBi12: case ARM::t2LDRBi8:
+ case ARM::t2LDRBs:
+ return ARM::t2LDRBpci;
+
+ case ARM::t2LDRH_POST: case ARM::t2LDRH_PRE:
+ case ARM::t2LDRHi12: case ARM::t2LDRHi8:
+ case ARM::t2LDRHs:
+ return ARM::t2LDRHpci;
+
+ case ARM::t2LDRSB_POST: case ARM::t2LDRSB_PRE:
+ case ARM::t2LDRSBi12: case ARM::t2LDRSBi8:
+ case ARM::t2LDRSBs:
+ return ARM::t2LDRSBpci;
+
+ case ARM::t2LDRSH_POST: case ARM::t2LDRSH_PRE:
+ case ARM::t2LDRSHi12: case ARM::t2LDRSHi8:
+ case ARM::t2LDRSHs:
+ return ARM::t2LDRSHpci;
+ }
+}
+
+/// decodeThumbSideEffect is a decorator function which can potentially twiddle
+/// the instruction or morph the returned opcode under Thumb2.
+///
+/// First it checks whether the insn is a NEON or VFP instr; if true, bit
+/// twiddling could be performed on insn to turn it into an ARM NEON/VFP
+/// equivalent instruction and decodeInstruction is called with the transformed
+/// insn.
+///
+/// Next, there is special handling for Load byte/halfword/word instruction by
+/// checking whether Rn=0b1111 and call T2Morph2LoadLiteral() on the decoded
+/// Thumb2 instruction. See comments below for further details.
+///
+/// Finally, one last check is made to see whether the insn is a NEON/VFP and
+/// decodeInstruction(insn) is invoked on the original insn.
+///
+/// Otherwise, decodeThumbInstruction is called with the original insn.
+static unsigned decodeThumbSideEffect(bool IsThumb2, uint32_t &insn) {
+ if (IsThumb2) {
+ uint16_t op1 = slice(insn, 28, 27);
+ uint16_t op2 = slice(insn, 26, 20);
+
+ // A6.3 32-bit Thumb instruction encoding
+ // Table A6-9 32-bit Thumb instruction encoding
+
+ // The coprocessor instructions of interest are transformed to their ARM
+ // equivalents.
+
+ // --------- Transform Begin Marker ---------
+ if ((op1 == 1 || op1 == 3) && slice(op2, 6, 4) == 7) {
+ // A7.4 Advanced SIMD data-processing instructions
+ // U bit of Thumb corresponds to Inst{24} of ARM.
+ uint16_t U = slice(op1, 1, 1);
+
+ // Inst{28-24} of ARM = {1,0,0,1,U};
+ uint16_t bits28_24 = 9 << 1 | U;
+ DEBUG(showBitVector(errs(), insn));
+ setSlice(insn, 28, 24, bits28_24);
+ return decodeInstruction(insn);
+ }
+
+ if (op1 == 3 && slice(op2, 6, 4) == 1 && slice(op2, 0, 0) == 0) {
+ // A7.7 Advanced SIMD element or structure load/store instructions
+ // Inst{27-24} of Thumb = 0b1001
+ // Inst{27-24} of ARM = 0b0100
+ DEBUG(showBitVector(errs(), insn));
+ setSlice(insn, 27, 24, 4);
+ return decodeInstruction(insn);
+ }
+ // --------- Transform End Marker ---------
+
+ // See, for example, A6.3.7 Load word: Table A6-18 Load word.
+ // See A8.6.57 T3, T4 & A8.6.60 T2 and friends for why we morphed the opcode
+ // before passing it on to our delegate.
+ if (op1 == 3 && slice(op2, 6, 5) == 0 && slice(op2, 0, 0) == 1
+ && slice(insn, 19, 16) == 15)
+ return T2Morph2LoadLiteral(decodeThumbInstruction(insn));
+
+ // One last check for NEON/VFP instructions.
+ if ((op1 == 1 || op1 == 3) && slice(op2, 6, 6) == 1)
+ return decodeInstruction(insn);
+
+ // Fall through.
+ }
+
+ return decodeThumbInstruction(insn);
+}
+
+static inline bool Thumb2PreloadOpcodeNoPCI(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ return false;
+ case ARM::t2PLDi12: case ARM::t2PLDi8:
+ case ARM::t2PLDr: case ARM::t2PLDs:
+ case ARM::t2PLDWi12: case ARM::t2PLDWi8:
+ case ARM::t2PLDWr: case ARM::t2PLDWs:
+ case ARM::t2PLIi12: case ARM::t2PLIi8:
+ case ARM::t2PLIr: case ARM::t2PLIs:
+ return true;
+ }
+}
+
+static inline unsigned T2Morph2Preload2PCI(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ return 0;
+ case ARM::t2PLDi12: case ARM::t2PLDi8:
+ case ARM::t2PLDr: case ARM::t2PLDs:
+ return ARM::t2PLDpci;
+ case ARM::t2PLDWi12: case ARM::t2PLDWi8:
+ case ARM::t2PLDWr: case ARM::t2PLDWs:
+ return ARM::t2PLDWpci;
+ case ARM::t2PLIi12: case ARM::t2PLIi8:
+ case ARM::t2PLIr: case ARM::t2PLIs:
+ return ARM::t2PLIpci;
+ }
+}
+
+//
+// Public interface for the disassembler
+//
+
+bool ARMDisassembler::getInstruction(MCInst &MI,
+ uint64_t &Size,
+ const MemoryObject &Region,
+ uint64_t Address,
+ raw_ostream &os) const {
+ // The machine instruction.
+ uint32_t insn;
+
+ // We want to read exactly 4 bytes of data.
+ if (Region.readBytes(Address, 4, (uint8_t*)&insn, NULL) == -1)
+ return false;
+
+ unsigned Opcode = decodeARMInstruction(insn);
+ ARMFormat Format = ARMFormats[Opcode];
+ NSFormat NSF = NSFormats[Opcode];
+ Size = 4;
+
+ DEBUG({
+ errs() << "Opcode=" << Opcode << " Name=" << ARMUtils::OpcodeName(Opcode)
+ << " Format=" << stringForARMFormat(Format) << " NSFormat="
+ << stringForNSFormat(NSF) << '\n';
+ showBitVector(errs(), insn);
+ });
+
+ AbstractARMMCBuilder *Builder =
+ ARMMCBuilderFactory::CreateMCBuilder(Opcode, Format, NSF);
+
+ if (!Builder)
+ return false;
+
+ if (!Builder->Build(MI, insn))
+ return false;
+
+ delete Builder;
+
+ return true;
+}
+
+bool ThumbDisassembler::getInstruction(MCInst &MI,
+ uint64_t &Size,
+ const MemoryObject &Region,
+ uint64_t Address,
+ raw_ostream &os) const {
+ // The machine instruction.
+ uint32_t insn = 0;
+ uint32_t insn1 = 0;
+
+ // A6.1 Thumb instruction set encoding
+ //
+ // If bits [15:11] of the halfword being decoded take any of the following
+ // values, the halfword is the first halfword of a 32-bit instruction:
+ // o 0b11101
+ // o 0b11110
+ // o 0b11111.
+ //
+ // Otherwise, the halfword is a 16-bit instruction.
+
+ // Read 2 bytes of data first.
+ if (Region.readBytes(Address, 2, (uint8_t*)&insn, NULL) == -1)
+ return false;
+
+ unsigned bits15_11 = slice(insn, 15, 11);
+ bool IsThumb2 = false;
+
+ // 32-bit instructions if the bits [15:11] of the halfword matches
+ // { 0b11101 /* 0x1D */, 0b11110 /* 0x1E */, ob11111 /* 0x1F */ }.
+ if (bits15_11 == 0x1D || bits15_11 == 0x1E || bits15_11 == 0x1F) {
+ IsThumb2 = true;
+ if (Region.readBytes(Address + 2, 2, (uint8_t*)&insn1, NULL) == -1)
+ return false;
+ insn = (insn << 16 | insn1);
+ }
+
+ // The insn could potentially be bit-twiddled in order to be decoded as an ARM
+ // NEON/VFP opcode. In such case, the modified insn is later disassembled as
+ // an ARM NEON/VFP instruction.
+ //
+ // This is a short term solution for lack of encoding bits specified for the
+ // Thumb2 NEON/VFP instructions. The long term solution could be adding some
+ // infrastructure to have each instruction support more than one encodings.
+ // Which encoding is used would be based on which subtarget the compiler/
+ // disassembler is working with at the time. This would allow the sharing of
+ // the NEON patterns between ARM and Thumb2, as well as potential greater
+ // sharing between the regular ARM instructions and the 32-bit wide Thumb2
+ // instructions as well.
+ unsigned Opcode = decodeThumbSideEffect(IsThumb2, insn);
+
+ // A8.6.117/119/120/121.
+ // PLD/PLDW/PLI instructions with Rn==15 is transformed to the pci variant.
+ if (Thumb2PreloadOpcodeNoPCI(Opcode) && slice(insn, 19, 16) == 15)
+ Opcode = T2Morph2Preload2PCI(Opcode);
+
+ ARMFormat Format = ARMFormats[Opcode];
+ NSFormat NSF = NSFormats[Opcode];
+ Size = IsThumb2 ? 4 : 2;
+
+ DEBUG({
+ errs() << "Opcode=" << Opcode << " Name=" << ARMUtils::OpcodeName(Opcode)
+ << " Format=" << stringForARMFormat(Format) << " NSFormat="
+ << stringForNSFormat(NSF) << '\n';
+ showBitVector(errs(), insn);
+ });
+
+ AbstractARMMCBuilder *Builder =
+ ARMMCBuilderFactory::CreateMCBuilder(Opcode, Format, NSF);
+
+ if (!Builder)
+ return false;
+
+ if (!Builder->Build(MI, insn))
+ return false;
+
+ delete Builder;
+
+ return true;
+}
+
+} // namespace ARM Disassembler
+
+static const MCDisassembler *createARMDisassembler(const Target &T) {
+ return new ARMDisassembler::ARMDisassembler;
+}
+
+static const MCDisassembler *createThumbDisassembler(const Target &T) {
+ return new ARMDisassembler::ThumbDisassembler;
+}
+
+extern "C" void LLVMInitializeARMDisassembler() {
+ // Register the disassembler.
+ TargetRegistry::RegisterMCDisassembler(TheARMTarget,
+ createARMDisassembler);
+ TargetRegistry::RegisterMCDisassembler(TheThumbTarget,
+ createThumbDisassembler);
+}
+
+} // namespace llvm
diff --git a/llvm/lib/Target/ARM/Disassembler/ARMDisassembler.h b/llvm/lib/Target/ARM/Disassembler/ARMDisassembler.h
new file mode 100644
index 00000000000..85bc8b3d2c0
--- /dev/null
+++ b/llvm/lib/Target/ARM/Disassembler/ARMDisassembler.h
@@ -0,0 +1,71 @@
+//===- X86Disassembler.h - Disassembler for x86 and x86_64 ------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMDISASSEMBLER_H
+#define ARMDISASSEMBLER_H
+
+#include "llvm/MC/MCDisassembler.h"
+
+namespace llvm {
+
+class MCInst;
+class MemoryObject;
+class raw_ostream;
+
+namespace ARMDisassembler {
+
+/// ARMDisassembler - ARM disassembler for all ARM platforms.
+class ARMDisassembler : public MCDisassembler {
+public:
+ /// Constructor - Initializes the disassembler.
+ ///
+ ARMDisassembler() :
+ MCDisassembler() {
+ }
+
+ ~ARMDisassembler() {
+ }
+
+ /// getInstruction - See MCDisassembler.
+ bool getInstruction(MCInst &instr,
+ uint64_t &size,
+ const MemoryObject &region,
+ uint64_t address,
+ raw_ostream &vStream) const;
+private:
+};
+
+/// ThumbDisassembler - Thumb disassembler for all ARM platforms.
+class ThumbDisassembler : public MCDisassembler {
+public:
+ /// Constructor - Initializes the disassembler.
+ ///
+ ThumbDisassembler() :
+ MCDisassembler() {
+ }
+
+ ~ThumbDisassembler() {
+ }
+
+ /// getInstruction - See MCDisassembler.
+ bool getInstruction(MCInst &instr,
+ uint64_t &size,
+ const MemoryObject &region,
+ uint64_t address,
+ raw_ostream &vStream) const;
+private:
+};
+
+} // namespace ARMDisassembler
+
+} // namespace llvm
+
+#endif
diff --git a/llvm/lib/Target/ARM/Disassembler/ARMDisassemblerCore.cpp b/llvm/lib/Target/ARM/Disassembler/ARMDisassemblerCore.cpp
new file mode 100644
index 00000000000..c38a606c0a9
--- /dev/null
+++ b/llvm/lib/Target/ARM/Disassembler/ARMDisassemblerCore.cpp
@@ -0,0 +1,3351 @@
+//===- ARMDisassemblerCore.cpp - ARM disassembler helpers ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is part of the ARM Disassembler.
+// It contains code to represent the core concepts of Builder, Builder Factory,
+// as well as the Algorithm to solve the problem of disassembling an ARM instr.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMAddressingModes.h"
+#include "ARMDisassemblerCore.h"
+#include <map>
+
+/// ARMGenInstrInfo.inc - ARMGenInstrInfo.inc contains the static const
+/// TargetInstrDesc ARMInsts[] definition and the TargetOperandInfo[]'s
+/// describing the operand info for each ARMInsts[i].
+///
+/// Together with an instruction's encoding format, we can take advantage of the
+/// NumOperands and the OpInfo fields of the target instruction description in
+/// the quest to build out the MCOperand list for an MCInst.
+///
+/// The general guideline is that with a known format, the number of dst and src
+/// operands are well-known. The dst is built first, followed by the src
+/// operand(s). The operands not yet used at this point are for the Implicit
+/// Uses and Defs by this instr. For the Uses part, the pred:$p operand is
+/// defined with two components:
+///
+/// def pred { // Operand PredicateOperand
+/// ValueType Type = OtherVT;
+/// string PrintMethod = "printPredicateOperand";
+/// string AsmOperandLowerMethod = ?;
+/// dag MIOperandInfo = (ops i32imm, CCR);
+/// AsmOperandClass ParserMatchClass = ImmAsmOperand;
+/// dag DefaultOps = (ops (i32 14), (i32 zero_reg));
+/// }
+///
+/// which is manifested by the TargetOperandInfo[] of:
+///
+/// { 0, 0|(1<<TOI::Predicate), 0 },
+/// { ARM::CCRRegClassID, 0|(1<<TOI::Predicate), 0 }
+///
+/// So the first predicate MCOperand corresponds to the immediate part of the
+/// ARM condition field (Inst{31-28}), and the second predicate MCOperand
+/// corresponds to a register kind of ARM::CPSR.
+///
+/// For the Defs part, in the simple case of only cc_out:$s, we have:
+///
+/// def cc_out { // Operand OptionalDefOperand
+/// ValueType Type = OtherVT;
+/// string PrintMethod = "printSBitModifierOperand";
+/// string AsmOperandLowerMethod = ?;
+/// dag MIOperandInfo = (ops CCR);
+/// AsmOperandClass ParserMatchClass = ImmAsmOperand;
+/// dag DefaultOps = (ops (i32 zero_reg));
+/// }
+///
+/// which is manifested by the one TargetOperandInfo of:
+///
+/// { ARM::CCRRegClassID, 0|(1<<TOI::OptionalDef), 0 }
+///
+/// And this maps to one MCOperand with the regsiter kind of ARM::CPSR.
+#include "ARMGenInstrInfo.inc"
+
+using namespace llvm;
+
+const char *ARMUtils::OpcodeName(unsigned Opcode) {
+ return ARMInsts[Opcode].Name;
+}
+
+// There is a more efficient way than the following. It is fragile, though.
+// See the code snippet after this function.
+static unsigned getRegisterEnum(unsigned RegClassID, unsigned RawRegister,
+ bool DRegPair = false) {
+
+ if (DRegPair && RegClassID == ARM::QPRRegClassID) {
+ // LLVM expects { Dd, Dd+1 } to form a super register; this is not specified
+ // in the ARM Architecture Manual as far as I understand it (A8.6.307).
+ // Therefore, we morph the RegClassID to be the sub register class and don't
+ // subsequently transform the RawRegister encoding when calculating RegNum.
+ //
+ // See also ARMinstPrinter::printOperand() wrt "dregpair" modifier part
+ // where this workaround is meant for.
+ RegClassID = ARM::DPRRegClassID;
+ }
+
+ // See also decodeNEONRd(), decodeNEONRn(), decodeNEONRm().
+ unsigned RegNum =
+ RegClassID == ARM::QPRRegClassID ? RawRegister >> 1 : RawRegister;
+
+ switch (RegNum) {
+ default:
+ break;
+ case 0:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R0;
+ case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
+ case ARM::DPR_VFP2RegClassID:
+ return ARM::D0;
+ case ARM::QPRRegClassID: case ARM::QPR_8RegClassID:
+ case ARM::QPR_VFP2RegClassID:
+ return ARM::Q0;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S0;
+ }
+ break;
+ case 1:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R1;
+ case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
+ case ARM::DPR_VFP2RegClassID:
+ return ARM::D1;
+ case ARM::QPRRegClassID: case ARM::QPR_8RegClassID:
+ case ARM::QPR_VFP2RegClassID:
+ return ARM::Q1;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S1;
+ }
+ break;
+ case 2:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R2;
+ case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
+ case ARM::DPR_VFP2RegClassID:
+ return ARM::D2;
+ case ARM::QPRRegClassID: case ARM::QPR_8RegClassID:
+ case ARM::QPR_VFP2RegClassID:
+ return ARM::Q2;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S2;
+ }
+ break;
+ case 3:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R3;
+ case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
+ case ARM::DPR_VFP2RegClassID:
+ return ARM::D3;
+ case ARM::QPRRegClassID: case ARM::QPR_8RegClassID:
+ case ARM::QPR_VFP2RegClassID:
+ return ARM::Q3;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S3;
+ }
+ break;
+ case 4:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R4;
+ case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
+ case ARM::DPR_VFP2RegClassID:
+ return ARM::D4;
+ case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q4;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S4;
+ }
+ break;
+ case 5:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R5;
+ case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
+ case ARM::DPR_VFP2RegClassID:
+ return ARM::D5;
+ case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q5;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S5;
+ }
+ break;
+ case 6:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R6;
+ case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
+ case ARM::DPR_VFP2RegClassID:
+ return ARM::D6;
+ case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q6;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S6;
+ }
+ break;
+ case 7:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: case ARM::tGPRRegClassID: return ARM::R7;
+ case ARM::DPRRegClassID: case ARM::DPR_8RegClassID:
+ case ARM::DPR_VFP2RegClassID:
+ return ARM::D7;
+ case ARM::QPRRegClassID: case ARM::QPR_VFP2RegClassID: return ARM::Q7;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S7;
+ }
+ break;
+ case 8:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: return ARM::R8;
+ case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D8;
+ case ARM::QPRRegClassID: return ARM::Q8;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S8;
+ }
+ break;
+ case 9:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: return ARM::R9;
+ case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D9;
+ case ARM::QPRRegClassID: return ARM::Q9;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S9;
+ }
+ break;
+ case 10:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: return ARM::R10;
+ case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D10;
+ case ARM::QPRRegClassID: return ARM::Q10;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S10;
+ }
+ break;
+ case 11:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: return ARM::R11;
+ case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D11;
+ case ARM::QPRRegClassID: return ARM::Q11;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S11;
+ }
+ break;
+ case 12:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: return ARM::R12;
+ case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D12;
+ case ARM::QPRRegClassID: return ARM::Q12;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S12;
+ }
+ break;
+ case 13:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: return ARM::SP;
+ case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D13;
+ case ARM::QPRRegClassID: return ARM::Q13;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S13;
+ }
+ break;
+ case 14:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: return ARM::LR;
+ case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D14;
+ case ARM::QPRRegClassID: return ARM::Q14;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S14;
+ }
+ break;
+ case 15:
+ switch (RegClassID) {
+ case ARM::GPRRegClassID: return ARM::PC;
+ case ARM::DPRRegClassID: case ARM::DPR_VFP2RegClassID: return ARM::D15;
+ case ARM::QPRRegClassID: return ARM::Q15;
+ case ARM::SPRRegClassID: case ARM::SPR_8RegClassID: return ARM::S15;
+ }
+ break;
+ case 16:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D16;
+ case ARM::SPRRegClassID: return ARM::S16;
+ }
+ break;
+ case 17:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D17;
+ case ARM::SPRRegClassID: return ARM::S17;
+ }
+ break;
+ case 18:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D18;
+ case ARM::SPRRegClassID: return ARM::S18;
+ }
+ break;
+ case 19:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D19;
+ case ARM::SPRRegClassID: return ARM::S19;
+ }
+ break;
+ case 20:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D20;
+ case ARM::SPRRegClassID: return ARM::S20;
+ }
+ break;
+ case 21:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D21;
+ case ARM::SPRRegClassID: return ARM::S21;
+ }
+ break;
+ case 22:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D22;
+ case ARM::SPRRegClassID: return ARM::S22;
+ }
+ break;
+ case 23:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D23;
+ case ARM::SPRRegClassID: return ARM::S23;
+ }
+ break;
+ case 24:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D24;
+ case ARM::SPRRegClassID: return ARM::S24;
+ }
+ break;
+ case 25:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D25;
+ case ARM::SPRRegClassID: return ARM::S25;
+ }
+ break;
+ case 26:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D26;
+ case ARM::SPRRegClassID: return ARM::S26;
+ }
+ break;
+ case 27:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D27;
+ case ARM::SPRRegClassID: return ARM::S27;
+ }
+ break;
+ case 28:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D28;
+ case ARM::SPRRegClassID: return ARM::S28;
+ }
+ break;
+ case 29:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D29;
+ case ARM::SPRRegClassID: return ARM::S29;
+ }
+ break;
+ case 30:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D30;
+ case ARM::SPRRegClassID: return ARM::S30;
+ }
+ break;
+ case 31:
+ switch (RegClassID) {
+ case ARM::DPRRegClassID: return ARM::D31;
+ case ARM::SPRRegClassID: return ARM::S31;
+ }
+ break;
+ }
+ llvm_unreachable("Invalid (RegClassID, RawRegister) combination");
+}
+
+// This is efficient but fragile.
+/*
+// See ARMGenRegisterInfo.h.inc for more info.
+static const TargetRegisterClass* const ARMRegisterClasses[] = {
+ NULL,
+ &ARM::CCRRegClass, // CCRRegClassID = 1,
+ &ARM::DPRRegClass, // DPRRegClassID = 2,
+ &ARM::DPR_8RegClass, // DPR_8RegClassID = 3,
+ &ARM::DPR_VFP2RegClass, // DPR_VFP2RegClassID = 4,
+ &ARM::GPRRegClass, // GPRRegClassID = 5,
+ &ARM::QPRRegClass, // QPRRegClassID = 6,
+ &ARM::QPR_8RegClass, // QPR_8RegClassID = 7,
+ &ARM::QPR_VFP2RegClass, // QPR_VFP2RegClassID = 8,
+ &ARM::SPRRegClass, // SPRRegClassID = 9,
+ &ARM::SPR_8RegClass, // SPR_8RegClassID = 10,
+ &ARM::SPR_INVALIDRegClass, // SPR_INVALIDRegClassID = 11,
+ &ARM::tGPRRegClass, // tGPRRegClassID = 12
+};
+
+// Return the register enum given register class id and raw register value.
+static unsigned getRegisterEnum(unsigned RegClassID, unsigned RawRegister) {
+ assert(RegClassID < array_lengthof(ARMRegisterClasses) &&
+ "Register Class ID out of range");
+ return ARMRegisterClasses[RegClassID]->getRegister(RawRegister);
+}
+*/
+
+/// DisassembleFP - DisassembleFP points to a function that disassembles an insn
+/// and builds the MCOperand list upon disassembly. It returns false on failure
+/// or true on success. The number of operands added is updated upon success.
+typedef bool (*DisassembleFP)(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded);
+
+///////////////////////////////
+// //
+// Utility Functions //
+// //
+///////////////////////////////
+
+// Extract/Decode Rd: Inst{15-12}.
+static inline unsigned decodeRd(uint32_t insn) {
+ return (insn >> ARMII::RegRdShift) & ARMII::GPRRegMask;
+}
+
+// Extract/Decode Rn: Inst{19-16}.
+static inline unsigned decodeRn(uint32_t insn) {
+ return (insn >> ARMII::RegRnShift) & ARMII::GPRRegMask;
+}
+
+// Extract/Decode Rm: Inst{3-0}.
+static inline unsigned decodeRm(uint32_t insn) {
+ return (insn & ARMII::GPRRegMask);
+}
+
+// Extract/Decode Rs: Inst{11-8}.
+static inline unsigned decodeRs(uint32_t insn) {
+ return (insn >> ARMII::RegRsShift) & ARMII::GPRRegMask;
+}
+
+static inline unsigned getCondField(uint32_t insn) {
+ return (insn >> ARMII::CondShift);
+}
+
+static inline unsigned getIBit(uint32_t insn) {
+ return (insn >> ARMII::I_BitShift) & 1;
+}
+
+static inline unsigned getAM3IBit(uint32_t insn) {
+ return (insn >> ARMII::AM3_I_BitShift) & 1;
+}
+
+static inline unsigned getPBit(uint32_t insn) {
+ return (insn >> ARMII::P_BitShift) & 1;
+}
+
+static inline unsigned getUBit(uint32_t insn) {
+ return (insn >> ARMII::U_BitShift) & 1;
+}
+
+static inline unsigned getPUBits(uint32_t insn) {
+ return (insn >> ARMII::U_BitShift) & 3;
+}
+
+static inline unsigned getSBit(uint32_t insn) {
+ return (insn >> ARMII::S_BitShift) & 1;
+}
+
+static inline unsigned getWBit(uint32_t insn) {
+ return (insn >> ARMII::W_BitShift) & 1;
+}
+
+static inline unsigned getDBit(uint32_t insn) {
+ return (insn >> ARMII::D_BitShift) & 1;
+}
+
+static inline unsigned getNBit(uint32_t insn) {
+ return (insn >> ARMII::N_BitShift) & 1;
+}
+
+static inline unsigned getMBit(uint32_t insn) {
+ return (insn >> ARMII::M_BitShift) & 1;
+}
+
+namespace {
+// Sign extend 5 bit number x to r.
+// Usage: int r = signextend<signed int, 5>(x);
+template <typename T, unsigned B> inline T signextend(const T x) {
+ struct {T x:B;} s;
+ return s.x = x;
+}
+}
+
+// See A8.4 Shifts applied to a register.
+// A8.4.2 Register controlled shifts.
+//
+// getShiftOpcForBits - getShiftOpcForBits translates from the ARM encoding bits
+// into llvm enums for shift opcode.
+//
+// A8-12: DecodeRegShift()
+static inline ARM_AM::ShiftOpc getShiftOpcForBits(unsigned bits) {
+ switch (bits) {
+ default: assert(0 && "No such value");
+ case 0: return ARM_AM::lsl;
+ case 1: return ARM_AM::lsr;
+ case 2: return ARM_AM::asr;
+ case 3: return ARM_AM::ror;
+ }
+}
+
+// See A8.4 Shifts applied to a register.
+// A8.4.1 Constant shifts.
+//
+// getImmShiftSE - getImmShiftSE translates from the raw ShiftOpc and raw Imm5
+// encodings into the intended ShiftOpc and shift amount.
+//
+// A8-11: DecodeImmShift()
+static inline void getImmShiftSE(ARM_AM::ShiftOpc &ShOp, unsigned &ShImm) {
+ // If type == 0b11 and imm5 == 0, we have an rrx, instead.
+ if (ShOp == ARM_AM::ror && ShImm == 0)
+ ShOp = ARM_AM::rrx;
+ // If (lsr or asr) and imm5 == 0, shift amount is 32.
+ if ((ShOp == ARM_AM::lsr || ShOp == ARM_AM::asr) && ShImm == 0)
+ ShImm = 32;
+}
+
+// getAMSubModeForBits - getAMSubModeForBits translates from the ARM encoding
+// bits Inst{24-23} (P(24) and U(23)) into llvm enums for AMSubMode.
+static inline ARM_AM::AMSubMode getAMSubModeForBits(unsigned bits) {
+ switch (bits) {
+ default: assert(0 && "No such value");
+ case 1: return ARM_AM::ia; // P=0 U=1
+ case 3: return ARM_AM::ib; // P=1 U=1
+ case 0: return ARM_AM::da; // P=0 U=0
+ case 2: return ARM_AM::db; // P=1 U=0
+ }
+}
+
+////////////////////////////////////////////
+// //
+// Disassemble function definitions //
+// //
+////////////////////////////////////////////
+
+/// There is a separate Disassemble*Frm function entry for disassembly of an ARM
+/// instr into a list of MCOperands in the appropriate order, with possible dst,
+/// followed by possible src(s).
+///
+/// The processing of the predicate, and the 'S' modifier bit, if MI modifies
+/// the CPSR, is factored into ARMBasicMCBuilder's class method named
+/// TryPredicateAndSBitModifier.
+
+static bool DisassemblePseudo(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ if (Opcode == ARM::Int_MemBarrierV7 || Opcode == ARM::Int_SyncBarrierV7)
+ return true;
+
+ assert(0 && "Unexpected pseudo instruction!");
+ return false;
+}
+
+// Multiply Instructions.
+// MLA, MLS, SMLABB, SMLABT, SMLATB, SMLATT, SMLAWB, SMLAWT, SMMLA, SMMLS:
+// Rd{19-16} Rn{3-0} Rm{11-8} Ra{15-12}
+//
+// MUL, SMMUL, SMULBB, SMULBT, SMULTB, SMULTT, SMULWB, SMULWT:
+// Rd{19-16} Rn{3-0} Rm{11-8}
+//
+// SMLAL, SMULL, UMAAL, UMLAL, UMULL, SMLALBB, SMLALBT, SMLALTB, SMLALTT:
+// RdLo{15-12} RdHi{19-16} Rn{3-0} Rm{11-8}
+//
+// The mapping of the multiply registers to the "regular" ARM registers, where
+// there are convenience decoder functions, is:
+//
+// Inst{15-12} => Rd
+// Inst{19-16} => Rn
+// Inst{3-0} => Rm
+// Inst{11-8} => Rs
+static bool DisassembleMulFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ unsigned short NumDefs = TID.getNumDefs();
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumDefs > 0 && "NumDefs should be greater than 0 for MulFrm");
+ assert(NumOps >= 3
+ && OpInfo[0].RegClass == ARM::GPRRegClassID
+ && OpInfo[1].RegClass == ARM::GPRRegClassID
+ && OpInfo[2].RegClass == ARM::GPRRegClassID);
+
+ // Instructions with two destination registers have RdLo{15-12} first.
+ if (NumDefs == 2) {
+ assert(NumOps >= 4 && OpInfo[3].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ ++OpIdx;
+ }
+
+ // The destination register: RdHi{19-16} or Rd{19-16}.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+
+ // The two src regsiters: Rn{3-0}, then Rm{11-8}.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRs(insn))));
+ OpIdx += 3;
+
+ // Many multiply instructions (e.g., MLA) have three src registers.
+ // The third register operand is Ra{15-12}.
+ if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+// Helper routines for disassembly of coprocessor instructions.
+
+static bool LdStCopOpcode(unsigned Opcode) {
+ if ((Opcode >= ARM::LDC2L_OFFSET && Opcode <= ARM::LDC_PRE) ||
+ (Opcode >= ARM::STC2L_OFFSET && Opcode <= ARM::STC_PRE))
+ return true;
+ return false;
+}
+static bool CoprocessorOpcode(unsigned Opcode) {
+ if (LdStCopOpcode(Opcode))
+ return true;
+
+ switch (Opcode) {
+ default:
+ return false;
+ case ARM::CDP: case ARM::CDP2:
+ case ARM::MCR: case ARM::MCR2: case ARM::MRC: case ARM::MRC2:
+ case ARM::MCRR: case ARM::MCRR2: case ARM::MRRC: case ARM::MRRC2:
+ return true;
+ }
+}
+static inline unsigned GetCoprocessor(uint32_t insn) {
+ return slice(insn, 11, 8);
+}
+static inline unsigned GetCopOpc1(uint32_t insn, bool CDP) {
+ return CDP ? slice(insn, 23, 20) : slice(insn, 23, 21);
+}
+static inline unsigned GetCopOpc2(uint32_t insn) {
+ return slice(insn, 7, 5);
+}
+static inline unsigned GetCopOpc(uint32_t insn) {
+ return slice(insn, 7, 4);
+}
+// Most of the operands are in immediate forms, except Rd and Rn, which are ARM
+// core registers.
+//
+// CDP, CDP2: cop opc1 CRd CRn CRm opc2
+//
+// MCR, MCR2, MRC, MRC2: cop opc1 Rd CRn CRm opc2
+//
+// MCRR, MCRR2, MRRC, MRRc2: cop opc Rd Rn CRm
+//
+// LDC_OFFSET, LDC_PRE, LDC_POST: cop CRd Rn R0 [+/-]imm8:00
+// and friends
+// STC_OFFSET, STC_PRE, STC_POST: cop CRd Rn R0 [+/-]imm8:00
+// and friends
+// <-- addrmode2 -->
+//
+// LDC_OPTION: cop CRd Rn imm8
+// and friends
+// STC_OPTION: cop CRd Rn imm8
+// and friends
+//
+static bool DisassembleCoprocessor(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps >= 5);
+
+ unsigned &OpIdx = NumOpsAdded;
+ bool OneCopOpc = (Opcode == ARM::MCRR || Opcode == ARM::MCRR2 ||
+ Opcode == ARM::MRRC || Opcode == ARM::MRRC2);
+ // CDP/CDP2 has no GPR operand; the opc1 operand is also wider (Inst{23-20}).
+ bool NoGPR = (Opcode == ARM::CDP || Opcode == ARM::CDP2);
+ bool LdStCop = LdStCopOpcode(Opcode);
+
+ OpIdx = 0;
+
+ MI.addOperand(MCOperand::CreateImm(GetCoprocessor(insn)));
+
+ if (LdStCop) {
+ // Unindex if P:W = 0b00 --> _OPTION variant
+ unsigned PW = getPBit(insn) << 1 | getWBit(insn);
+
+ MI.addOperand(MCOperand::CreateImm(decodeRd(insn)));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+
+ if (PW) {
+ MI.addOperand(MCOperand::CreateReg(0));
+ ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
+ unsigned Offset = ARM_AM::getAM2Opc(AddrOpcode, slice(insn, 7, 0) << 2,
+ ARM_AM::no_shift);
+ MI.addOperand(MCOperand::CreateImm(Offset));
+ OpIdx = 5;
+ } else {
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 7, 0)));
+ OpIdx = 4;
+ }
+ } else {
+ MI.addOperand(MCOperand::CreateImm(OneCopOpc ? GetCopOpc(insn)
+ : GetCopOpc1(insn, NoGPR)));
+
+ MI.addOperand(NoGPR ? MCOperand::CreateImm(decodeRd(insn))
+ : MCOperand::CreateReg(
+ getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+
+ MI.addOperand(OneCopOpc ? MCOperand::CreateReg(
+ getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn)))
+ : MCOperand::CreateImm(decodeRn(insn)));
+
+ MI.addOperand(MCOperand::CreateImm(decodeRm(insn)));
+
+ OpIdx = 5;
+
+ if (!OneCopOpc) {
+ MI.addOperand(MCOperand::CreateImm(GetCopOpc2(insn)));
+ ++OpIdx;
+ }
+ }
+
+ return true;
+}
+
+// Branch Instructions.
+// BLr9: SignExtend(Imm24:'00', 32)
+// Bcc, BLr9_pred: SignExtend(Imm24:'00', 32) Pred0 Pred1
+// SMC: ZeroExtend(imm4, 32)
+// SVC: ZeroExtend(Imm24, 32)
+//
+// Various coprocessor instructions are assigned BrFrm arbitrarily.
+// Delegates to DisassembleCoprocessor() helper function.
+//
+// MRS/MRSsys: Rd
+// MSR/MSRsys: Rm mask=Inst{19-16}
+// BXJ: Rm
+// MSRi/MSRsysi: so_imm
+// SRSW/SRS: addrmode4:$addr mode_imm
+// RFEW/RFE: addrmode4:$addr Rn
+static bool DisassembleBrFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ if (CoprocessorOpcode(Opcode))
+ return DisassembleCoprocessor(MI, Opcode, insn, NumOps, NumOpsAdded);
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ // MRS and MRSsys take one GPR reg Rd.
+ if (Opcode == ARM::MRS || Opcode == ARM::MRSsys) {
+ assert(NumOps >= 1 && OpInfo[0].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ NumOpsAdded = 1;
+ return true;
+ }
+ // BXJ takes one GPR reg Rm.
+ if (Opcode == ARM::BXJ) {
+ assert(NumOps >= 1 && OpInfo[0].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ NumOpsAdded = 1;
+ return true;
+ }
+ // MSR and MSRsys take one GPR reg Rm, followed by the mask.
+ if (Opcode == ARM::MSR || Opcode == ARM::MSRsys) {
+ assert(NumOps >= 1 && OpInfo[0].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 16)));
+ NumOpsAdded = 2;
+ return true;
+ }
+ // MSRi and MSRsysi take one so_imm operand, followed by the mask.
+ if (Opcode == ARM::MSRi || Opcode == ARM::MSRsysi) {
+ // SOImm is 4-bit rotate amount in bits 11-8 with 8-bit imm in bits 7-0.
+ // A5.2.4 Rotate amount is twice the numeric value of Inst{11-8}.
+ // See also ARMAddressingModes.h: getSOImmValImm() and getSOImmValRot().
+ unsigned Rot = (insn >> ARMII::SoRotImmShift) & 0xF;
+ unsigned Imm = insn & 0xFF;
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::rotr32(Imm, 2*Rot)));
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 16)));
+ NumOpsAdded = 2;
+ return true;
+ }
+ // SRSW and SRS requires addrmode4:$addr for ${addr:submode}, followed by the
+ // mode immediate (Inst{4-0}).
+ if (Opcode == ARM::SRSW || Opcode == ARM::SRS ||
+ Opcode == ARM::RFEW || Opcode == ARM::RFE) {
+ // ARMInstPrinter::printAddrMode4Operand() prints special mode string
+ // if the base register is SP; so don't set ARM::SP.
+ MI.addOperand(MCOperand::CreateReg(0));
+ bool WB = (Opcode == ARM::SRSW);
+ ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(SubMode, WB)));
+
+ if (Opcode == ARM::SRSW || Opcode == ARM::SRS)
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 4, 0)));
+ else
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ NumOpsAdded = 3;
+ return true;
+ }
+
+ assert(Opcode == ARM::Bcc || Opcode == ARM::BLr9 || Opcode == ARM::BLr9_pred
+ || Opcode == ARM::SMC || Opcode == ARM::SVC);
+
+ assert(NumOps >= 1 && OpInfo[0].RegClass == 0);
+
+ int Imm32 = 0;
+ if (Opcode == ARM::SMC) {
+ // ZeroExtend(imm4, 32) where imm24 = Inst{3-0}.
+ Imm32 = slice(insn, 3, 0);
+ } else if (Opcode == ARM::SVC) {
+ // ZeroExtend(imm24, 32) where imm24 = Inst{23-0}.
+ Imm32 = slice(insn, 23, 0);
+ } else {
+ // SignExtend(imm24:'00', 32) where imm24 = Inst{23-0}.
+ unsigned Imm26 = slice(insn, 23, 0) << 2;
+ Imm32 = signextend<signed int, 26>(Imm26);
+
+ // When executing an ARM instruction, PC reads as the address of the current
+ // instruction plus 8. The assembler subtracts 8 from the difference
+ // between the branch instruction and the target address, disassembler has
+ // to add 8 to compensate.
+ Imm32 += 8;
+ }
+
+ MI.addOperand(MCOperand::CreateImm(Imm32));
+ NumOpsAdded = 1;
+
+ return true;
+}
+
+// Misc. Branch Instructions.
+// BR_JTadd, BR_JTr, BR_JTm
+// BLXr9, BXr9
+// BRIND, BX_RET
+static bool DisassembleBrMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ // BX_RET has only two predicate operands, do an early return.
+ if (Opcode == ARM::BX_RET)
+ return true;
+
+ // BLXr9 and BRIND take one GPR reg.
+ if (Opcode == ARM::BLXr9 || Opcode == ARM::BRIND) {
+ assert(NumOps >= 1 && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ OpIdx = 1;
+ return true;
+ }
+
+ // BR_JTadd is an ADD with Rd = PC, (Rn, Rm) as the target and index regs.
+ if (Opcode == ARM::BR_JTadd) {
+ // InOperandList with GPR:$target and GPR:$idx regs.
+
+ assert(NumOps == 4);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+
+ // Fill in the two remaining imm operands to signify build completion.
+ MI.addOperand(MCOperand::CreateImm(0));
+ MI.addOperand(MCOperand::CreateImm(0));
+
+ OpIdx = 4;
+ return true;
+ }
+
+ // BR_JTr is a MOV with Rd = PC, and Rm as the source register.
+ if (Opcode == ARM::BR_JTr) {
+ // InOperandList with GPR::$target reg.
+
+ assert(NumOps == 3);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+
+ // Fill in the two remaining imm operands to signify build completion.
+ MI.addOperand(MCOperand::CreateImm(0));
+ MI.addOperand(MCOperand::CreateImm(0));
+
+ OpIdx = 3;
+ return true;
+ }
+
+ // BR_JTm is an LDR with Rt = PC.
+ if (Opcode == ARM::BR_JTm) {
+ // This is the reg/reg form, with base reg followed by +/- reg shop imm.
+ // See also ARMAddressingModes.h (Addressing Mode #2).
+
+ assert(NumOps == 5 && getIBit(insn) == 1);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+
+ ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
+
+ // Disassemble the offset reg (Rm), shift type, and immediate shift length.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ // Inst{6-5} encodes the shift opcode.
+ ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
+ // Inst{11-7} encodes the imm5 shift amount.
+ unsigned ShImm = slice(insn, 11, 7);
+
+ // A8.4.1. Possible rrx or shift amount of 32...
+ getImmShiftSE(ShOp, ShImm);
+ MI.addOperand(MCOperand::CreateImm(
+ ARM_AM::getAM2Opc(AddrOpcode, ShImm, ShOp)));
+
+ // Fill in the two remaining imm operands to signify build completion.
+ MI.addOperand(MCOperand::CreateImm(0));
+ MI.addOperand(MCOperand::CreateImm(0));
+
+ OpIdx = 5;
+ return true;
+ }
+
+ assert(0 && "Unexpected BrMiscFrm Opcode");
+ return false;
+}
+
+static inline uint32_t getBFCInvMask(uint32_t insn) {
+ uint32_t lsb = slice(insn, 11, 7);
+ uint32_t msb = slice(insn, 20, 16);
+ uint32_t Val = 0;
+ assert(lsb <= msb && "Encoding error: lsb > msb");
+ for (uint32_t i = lsb; i <= msb; ++i)
+ Val |= (1 << i);
+ return ~Val;
+}
+
+static inline bool SaturateOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ case ARM::SSATlsl: case ARM::SSATasr: case ARM::SSAT16:
+ case ARM::USATlsl: case ARM::USATasr: case ARM::USAT16:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static inline unsigned decodeSaturatePos(unsigned Opcode, uint32_t insn) {
+ switch (Opcode) {
+ case ARM::SSATlsl:
+ case ARM::SSATasr:
+ return slice(insn, 20, 16) + 1;
+ case ARM::SSAT16:
+ return slice(insn, 19, 16) + 1;
+ case ARM::USATlsl:
+ case ARM::USATasr:
+ return slice(insn, 20, 16);
+ case ARM::USAT16:
+ return slice(insn, 19, 16);
+ default:
+ llvm_unreachable("Invalid opcode passed in");
+ return 0;
+ }
+}
+
+// A major complication is the fact that some of the saturating add/subtract
+// operations have Rd Rm Rn, instead of the "normal" Rd Rn Rm.
+// They are QADD, QDADD, QDSUB, and QSUB.
+static bool DisassembleDPFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ unsigned short NumDefs = TID.getNumDefs();
+ bool isUnary = isUnaryDP(TID.TSFlags);
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ // Disassemble register def if there is one.
+ if (NumDefs && (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID)) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ ++OpIdx;
+ }
+
+ // Now disassemble the src operands.
+ if (OpIdx >= NumOps)
+ return false;
+
+ // SSAT/SSAT16/USAT/USAT16 has imm operand after Rd.
+ if (SaturateOpcode(Opcode)) {
+ MI.addOperand(MCOperand::CreateImm(decodeSaturatePos(Opcode, insn)));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+
+ if (Opcode == ARM::SSAT16 || Opcode == ARM::USAT16) {
+ OpIdx += 2;
+ return true;
+ }
+
+ // For SSAT operand reg (Rm) has been disassembled above.
+ // Now disassemble the shift amount.
+
+ // Inst{11-7} encodes the imm5 shift amount.
+ unsigned ShAmt = slice(insn, 11, 7);
+
+ // A8.6.183. Possible ASR shift amount of 32...
+ if (Opcode == ARM::SSATasr && ShAmt == 0)
+ ShAmt = 32;
+
+ MI.addOperand(MCOperand::CreateImm(ShAmt));
+
+ OpIdx += 3;
+ return true;
+ }
+
+ // Special-case handling of BFC/BFI/SBFX/UBFX.
+ if (Opcode == ARM::BFC || Opcode == ARM::BFI) {
+ // TIED_TO operand skipped for BFC and Inst{3-0} (Reg) for BFI.
+ MI.addOperand(MCOperand::CreateReg(Opcode == ARM::BFC ? 0
+ : getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ MI.addOperand(MCOperand::CreateImm(getBFCInvMask(insn)));
+ OpIdx += 2;
+ return true;
+ }
+ if (Opcode == ARM::SBFX || Opcode == ARM::UBFX) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 11, 7)));
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 20, 16) + 1));
+ OpIdx += 3;
+ return true;
+ }
+
+ bool RmRn = (Opcode == ARM::QADD || Opcode == ARM::QDADD ||
+ Opcode == ARM::QDSUB || Opcode == ARM::QSUB);
+
+ // BinaryDP has an Rn operand.
+ if (!isUnary) {
+ assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::GPRRegClassID,
+ RmRn ? decodeRm(insn) : decodeRn(insn))));
+ ++OpIdx;
+ }
+
+ // If this is a two-address operand, skip it, e.g., MOVCCr operand 1.
+ if (isUnary && (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)) {
+ MI.addOperand(MCOperand::CreateReg(0));
+ ++OpIdx;
+ }
+
+ // Now disassemble operand 2.
+ if (OpIdx >= NumOps)
+ return false;
+
+ if (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) {
+ // We have a reg/reg form.
+ // Assert disabled because saturating operations, e.g., A8.6.127 QASX, are
+ // routed here as well.
+ // assert(getIBit(insn) == 0 && "I_Bit != '0' reg/reg form");
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::GPRRegClassID,
+ RmRn? decodeRn(insn) : decodeRm(insn))));
+ ++OpIdx;
+ } else if (Opcode == ARM::MOVi16 || Opcode == ARM::MOVTi16) {
+ // We have an imm16 = imm4:imm12 (imm4=Inst{19:16}, imm12 = Inst{11:0}).
+ assert(getIBit(insn) == 1 && "I_Bit != '1' reg/imm form");
+ unsigned Imm16 = slice(insn, 19, 16) << 12 | slice(insn, 11, 0);
+ MI.addOperand(MCOperand::CreateImm(Imm16));
+ ++OpIdx;
+ } else {
+ // We have a reg/imm form.
+ // SOImm is 4-bit rotate amount in bits 11-8 with 8-bit imm in bits 7-0.
+ // A5.2.4 Rotate amount is twice the numeric value of Inst{11-8}.
+ // See also ARMAddressingModes.h: getSOImmValImm() and getSOImmValRot().
+ assert(getIBit(insn) == 1 && "I_Bit != '1' reg/imm form");
+ unsigned Rot = (insn >> ARMII::SoRotImmShift) & 0xF;
+ unsigned Imm = insn & 0xFF;
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::rotr32(Imm, 2*Rot)));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+static bool DisassembleDPSoRegFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ unsigned short NumDefs = TID.getNumDefs();
+ bool isUnary = isUnaryDP(TID.TSFlags);
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ // Disassemble register def if there is one.
+ if (NumDefs && (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID)) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ ++OpIdx;
+ }
+
+ // Disassemble the src operands.
+ if (OpIdx >= NumOps)
+ return false;
+
+ // BinaryDP has an Rn operand.
+ if (!isUnary) {
+ assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+ }
+
+ // If this is a two-address operand, skip it, e.g., MOVCCs operand 1.
+ if (isUnary && (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1)) {
+ MI.addOperand(MCOperand::CreateReg(0));
+ ++OpIdx;
+ }
+
+ // Disassemble operand 2, which consists of three components.
+ if (OpIdx + 2 >= NumOps)
+ return false;
+
+ assert((OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) &&
+ (OpInfo[OpIdx+1].RegClass == ARM::GPRRegClassID) &&
+ (OpInfo[OpIdx+2].RegClass == 0));
+
+ // Register-controlled shifts have Inst{7} = 0 and Inst{4} = 1.
+ unsigned Rs = slice(insn, 4, 4);
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ if (Rs) {
+ // Register-controlled shifts: [Rm, Rs, shift].
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRs(insn))));
+ // Inst{6-5} encodes the shift opcode.
+ ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getSORegOpc(ShOp, 0)));
+ } else {
+ // Constant shifts: [Rm, reg0, shift_imm].
+ MI.addOperand(MCOperand::CreateReg(0)); // NoRegister
+ // Inst{6-5} encodes the shift opcode.
+ ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
+ // Inst{11-7} encodes the imm5 shift amount.
+ unsigned ShImm = slice(insn, 11, 7);
+
+ // A8.4.1. Possible rrx or shift amount of 32...
+ getImmShiftSE(ShOp, ShImm);
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getSORegOpc(ShOp, ShImm)));
+ }
+ OpIdx += 3;
+
+ return true;
+}
+
+static bool DisassembleLdStFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded, bool isStore) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ unsigned short NumDefs = TID.getNumDefs();
+ bool isPrePost = isPrePostLdSt(TID.TSFlags);
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert((!isStore && NumDefs > 0) || (isStore && (NumDefs == 0 || isPrePost)));
+
+ // Operand 0 of a pre- and post-indexed store is the address base writeback.
+ if (isPrePost && isStore) {
+ assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+ }
+
+ // Disassemble the dst/src operand.
+ if (OpIdx >= NumOps)
+ return false;
+
+ assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ ++OpIdx;
+
+ // After dst of a pre- and post-indexed load is the address base writeback.
+ if (isPrePost && !isStore) {
+ assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+ }
+
+ // Disassemble the base operand.
+ if (OpIdx >= NumOps)
+ return false;
+
+ assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ assert(!isPrePost || (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+
+ // For reg/reg form, base reg is followed by +/- reg shop imm.
+ // For immediate form, it is followed by +/- imm12.
+ // See also ARMAddressingModes.h (Addressing Mode #2).
+ if (OpIdx + 1 >= NumOps)
+ return false;
+
+ assert((OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) &&
+ (OpInfo[OpIdx+1].RegClass == 0));
+
+ ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
+ if (getIBit(insn) == 0) {
+ MI.addOperand(MCOperand::CreateReg(0));
+
+ // Disassemble the 12-bit immediate offset.
+ unsigned Imm12 = slice(insn, 11, 0);
+ unsigned Offset = ARM_AM::getAM2Opc(AddrOpcode, Imm12, ARM_AM::no_shift);
+ MI.addOperand(MCOperand::CreateImm(Offset));
+ } else {
+ // Disassemble the offset reg (Rm), shift type, and immediate shift length.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ // Inst{6-5} encodes the shift opcode.
+ ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
+ // Inst{11-7} encodes the imm5 shift amount.
+ unsigned ShImm = slice(insn, 11, 7);
+
+ // A8.4.1. Possible rrx or shift amount of 32...
+ getImmShiftSE(ShOp, ShImm);
+ MI.addOperand(MCOperand::CreateImm(
+ ARM_AM::getAM2Opc(AddrOpcode, ShImm, ShOp)));
+ }
+ OpIdx += 2;
+
+ return true;
+}
+
+static bool DisassembleLdFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+ return DisassembleLdStFrm(MI, Opcode, insn, NumOps, NumOpsAdded, false);
+}
+
+static bool DisassembleStFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+ return DisassembleLdStFrm(MI, Opcode, insn, NumOps, NumOpsAdded, true);
+}
+
+static bool HasDualReg(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ return false;
+ case ARM::LDRD: case ARM::LDRD_PRE: case ARM::LDRD_POST:
+ case ARM::STRD: case ARM::STRD_PRE: case ARM::STRD_POST:
+ return true;
+ }
+}
+
+static bool DisassembleLdStMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded, bool isStore) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ unsigned short NumDefs = TID.getNumDefs();
+ bool isPrePost = isPrePostLdSt(TID.TSFlags);
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert((!isStore && NumDefs > 0) || (isStore && (NumDefs == 0 || isPrePost)));
+
+ // Operand 0 of a pre- and post-indexed store is the address base writeback.
+ if (isPrePost && isStore) {
+ assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+ }
+
+ bool DualReg = HasDualReg(Opcode);
+
+ // Disassemble the dst/src operand.
+ if (OpIdx >= NumOps)
+ return false;
+
+ assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ ++OpIdx;
+
+ // Fill in LDRD and STRD's second operand.
+ if (DualReg) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn) + 1)));
+ ++OpIdx;
+ }
+
+ // After dst of a pre- and post-indexed load is the address base writeback.
+ if (isPrePost && !isStore) {
+ assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+ }
+
+ // Disassemble the base operand.
+ if (OpIdx >= NumOps)
+ return false;
+
+ assert(OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ assert(!isPrePost || (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+
+ // For reg/reg form, base reg is followed by +/- reg.
+ // For immediate form, it is followed by +/- imm8.
+ // See also ARMAddressingModes.h (Addressing Mode #3).
+ if (OpIdx + 1 >= NumOps)
+ return false;
+
+ assert((OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) &&
+ (OpInfo[OpIdx+1].RegClass == 0));
+
+ ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
+ if (getAM3IBit(insn) == 1) {
+ MI.addOperand(MCOperand::CreateReg(0));
+
+ // Disassemble the 8-bit immediate offset.
+ unsigned Imm4H = (insn >> ARMII::ImmHiShift) & 0xF;
+ unsigned Imm4L = insn & 0xF;
+ unsigned Offset = ARM_AM::getAM3Opc(AddrOpcode, (Imm4H << 4) | Imm4L);
+ MI.addOperand(MCOperand::CreateImm(Offset));
+ } else {
+ // Disassemble the offset reg (Rm).
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ unsigned Offset = ARM_AM::getAM3Opc(AddrOpcode, 0);
+ MI.addOperand(MCOperand::CreateImm(Offset));
+ }
+ OpIdx += 2;
+
+ return true;
+}
+
+static bool DisassembleLdMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+ return DisassembleLdStMiscFrm(MI, Opcode, insn, NumOps, NumOpsAdded, false);
+}
+
+static bool DisassembleStMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+ return DisassembleLdStMiscFrm(MI, Opcode, insn, NumOps, NumOpsAdded, true);
+}
+
+// The algorithm for disassembly of LdStMulFrm is different from others because
+// it explicitly populates the two predicate operands after operand 0 (the base)
+// and operand 1 (the AM4 mode imm). After operand 3, we need to populate the
+// reglist with each affected register encoded as an MCOperand.
+static bool DisassembleLdStMulFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps == 5 && "LdStMulFrm expects NumOps of 5");
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ unsigned Base = getRegisterEnum(ARM::GPRRegClassID, decodeRn(insn));
+ MI.addOperand(MCOperand::CreateReg(Base));
+
+ ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
+ bool WB = getWBit(insn) == 1;
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(SubMode, WB)));
+
+ // Handling the two predicate operands before the reglist.
+ int64_t CondVal = insn >> ARMII::CondShift;
+ MI.addOperand(MCOperand::CreateImm(CondVal == 0xF ? 0xE : CondVal));
+ MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
+
+ OpIdx = 4;
+
+ // Fill the variadic part of reglist.
+ unsigned RegListBits = insn & ((1 << 16) - 1);
+ for (unsigned i = 0; i < 16; ++i) {
+ if ((RegListBits >> i) & 1) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ i)));
+ ++OpIdx;
+ }
+ }
+
+ return true;
+}
+
+// LDREX, LDREXB, LDREXH: Rd Rn
+// LDREXD: Rd Rd+1 Rn
+// STREX, STREXB, STREXH: Rd Rm Rn
+// STREXD: Rd Rm Rm+1 Rn
+//
+// SWP, SWPB: Rd Rm Rn
+static bool DisassembleLdStExFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2
+ && OpInfo[0].RegClass == ARM::GPRRegClassID
+ && OpInfo[1].RegClass == ARM::GPRRegClassID);
+
+ bool isStore = slice(insn, 20, 20) == 0;
+ bool isDW = (Opcode == ARM::LDREXD || Opcode == ARM::STREXD);
+
+ // Add the destination operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ ++OpIdx;
+
+ // Store register Exclusive needs a source operand.
+ if (isStore) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ ++OpIdx;
+
+ if (isDW) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn)+1)));
+ ++OpIdx;
+ }
+ } else if (isDW) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn)+1)));
+ ++OpIdx;
+ }
+
+ // Finally add the pointer operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+
+ return true;
+}
+
+// Misc. Arithmetic Instructions.
+// CLZ: Rd Rm
+// PKHBT, PKHTB: Rd Rn Rm , LSL/ASR #imm5
+// RBIT, REV, REV16, REVSH: Rd Rm
+static bool DisassembleArithMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2
+ && OpInfo[0].RegClass == ARM::GPRRegClassID
+ && OpInfo[1].RegClass == ARM::GPRRegClassID);
+
+ bool ThreeReg = NumOps > 2 && OpInfo[2].RegClass == ARM::GPRRegClassID;
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ ++OpIdx;
+
+ if (ThreeReg) {
+ assert(NumOps >= 4);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+ }
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ ++OpIdx;
+
+ // If there is still an operand info left which is an immediate operand, add
+ // an additional imm5 LSL/ASR operand.
+ if (ThreeReg && OpInfo[OpIdx].RegClass == 0
+ && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
+ // Extract the 5-bit immediate field Inst{11-7}.
+ unsigned ShiftAmt = (insn >> ARMII::ShiftShift) & 0x1F;
+ MI.addOperand(MCOperand::CreateImm(ShiftAmt));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+// Extend instructions.
+// SXT* and UXT*: Rd [Rn] Rm [rot_imm].
+// The 2nd operand register is Rn and the 3rd operand regsiter is Rm for the
+// three register operand form. Otherwise, Rn=0b1111 and only Rm is used.
+static bool DisassembleExtFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2
+ && OpInfo[0].RegClass == ARM::GPRRegClassID
+ && OpInfo[1].RegClass == ARM::GPRRegClassID);
+
+ bool ThreeReg = NumOps > 2 && OpInfo[2].RegClass == ARM::GPRRegClassID;
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ ++OpIdx;
+
+ if (ThreeReg) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+ }
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ ++OpIdx;
+
+ // If there is still an operand info left which is an immediate operand, add
+ // an additional rotate immediate operand.
+ if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
+ && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
+ // Extract the 2-bit rotate field Inst{11-10}.
+ unsigned rot = (insn >> ARMII::ExtRotImmShift) & 3;
+ // Rotation by 8, 16, or 24 bits.
+ MI.addOperand(MCOperand::CreateImm(rot << 3));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+/////////////////////////////////////
+// //
+// Utility Functions For VFP //
+// //
+/////////////////////////////////////
+
+// Extract/Decode Dd/Sd:
+//
+// SP => d = UInt(Vd:D)
+// DP => d = UInt(D:Vd)
+static unsigned decodeVFPRd(uint32_t insn, bool isSPVFP) {
+ return isSPVFP ? (decodeRd(insn) << 1 | getDBit(insn))
+ : (decodeRd(insn) | getDBit(insn) << 4);
+}
+
+// Extract/Decode Dn/Sn:
+//
+// SP => n = UInt(Vn:N)
+// DP => n = UInt(N:Vn)
+static unsigned decodeVFPRn(uint32_t insn, bool isSPVFP) {
+ return isSPVFP ? (decodeRn(insn) << 1 | getNBit(insn))
+ : (decodeRn(insn) | getNBit(insn) << 4);
+}
+
+// Extract/Decode Dm/Sm:
+//
+// SP => m = UInt(Vm:M)
+// DP => m = UInt(M:Vm)
+static unsigned decodeVFPRm(uint32_t insn, bool isSPVFP) {
+ return isSPVFP ? (decodeRm(insn) << 1 | getMBit(insn))
+ : (decodeRm(insn) | getMBit(insn) << 4);
+}
+
+// A7.5.1
+#if 0
+static uint64_t VFPExpandImm(unsigned char byte, unsigned N) {
+ assert(N == 32 || N == 64);
+
+ uint64_t Result;
+ unsigned bit6 = slice(byte, 6, 6);
+ if (N == 32) {
+ Result = slice(byte, 7, 7) << 31 | slice(byte, 5, 0) << 19;
+ if (bit6)
+ Result |= 0x1f << 25;
+ else
+ Result |= 0x1 << 30;
+ } else {
+ Result = (uint64_t)slice(byte, 7, 7) << 63 |
+ (uint64_t)slice(byte, 5, 0) << 48;
+ if (bit6)
+ Result |= 0xffL << 54;
+ else
+ Result |= 0x1L << 62;
+ }
+ return Result;
+}
+#endif
+
+// VFP Unary Format Instructions:
+//
+// VCMP[E]ZD, VCMP[E]ZS: compares one floating-point register with zero
+// VCVTDS, VCVTSD: converts between double-precision and single-precision
+// The rest of the instructions have homogeneous [VFP]Rd and [VFP]Rm registers.
+static bool DisassembleVFPUnaryFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps >= 1 && "VFPUnaryFrm expects NumOps >= 1");
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ unsigned RegClass = OpInfo[OpIdx].RegClass;
+ assert(RegClass == ARM::SPRRegClassID || RegClass == ARM::DPRRegClassID);
+ bool isSP = (RegClass == ARM::SPRRegClassID);
+
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(RegClass, decodeVFPRd(insn, isSP))));
+ ++OpIdx;
+
+ // Early return for compare with zero instructions.
+ if (Opcode == ARM::VCMPEZD || Opcode == ARM::VCMPEZS
+ || Opcode == ARM::VCMPZD || Opcode == ARM::VCMPZS)
+ return true;
+
+ RegClass = OpInfo[OpIdx].RegClass;
+ assert(RegClass == ARM::SPRRegClassID || RegClass == ARM::DPRRegClassID);
+ isSP = (RegClass == ARM::SPRRegClassID);
+
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(RegClass, decodeVFPRm(insn, isSP))));
+ ++OpIdx;
+
+ return true;
+}
+
+// All the instructions have homogeneous [VFP]Rd, [VFP]Rn, and [VFP]Rm regs.
+// Some of them have operand constraints which tie the first operand in the
+// InOperandList to that of the dst. As far as asm printing is concerned, this
+// tied_to operand is simply skipped.
+static bool DisassembleVFPBinaryFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps >= 3 && "VFPBinaryFrm expects NumOps >= 3");
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ unsigned RegClass = OpInfo[OpIdx].RegClass;
+ assert(RegClass == ARM::SPRRegClassID || RegClass == ARM::DPRRegClassID);
+ bool isSP = (RegClass == ARM::SPRRegClassID);
+
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(RegClass, decodeVFPRd(insn, isSP))));
+ ++OpIdx;
+
+ // Skip tied_to operand constraint.
+ if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
+ assert(NumOps >= 4);
+ MI.addOperand(MCOperand::CreateReg(0));
+ ++OpIdx;
+ }
+
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(RegClass, decodeVFPRn(insn, isSP))));
+ ++OpIdx;
+
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(RegClass, decodeVFPRm(insn, isSP))));
+ ++OpIdx;
+
+ return true;
+}
+
+// A8.6.295 vcvt (floating-point <-> integer)
+// Int to FP: VSITOD, VSITOS, VUITOD, VUITOS
+// FP to Int: VTOSI[Z|R]D, VTOSI[Z|R]S, VTOUI[Z|R]D, VTOUI[Z|R]S
+//
+// A8.6.297 vcvt (floating-point and fixed-point)
+// Dd|Sd Dd|Sd(TIED_TO) #fbits(= 16|32 - UInt(imm4:i))
+static bool DisassembleVFPConv1Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps >= 2 && "VFPConv1Frm expects NumOps >= 2");
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+
+ bool SP = slice(insn, 8, 8) == 0; // A8.6.295 & A8.6.297
+ bool fixed_point = slice(insn, 17, 17) == 1; // A8.6.297
+ unsigned RegClassID = SP ? ARM::SPRRegClassID : ARM::DPRRegClassID;
+
+ if (fixed_point) {
+ // A8.6.297
+ assert(NumOps >= 3);
+ int size = slice(insn, 7, 7) == 0 ? 16 : 32;
+ int fbits = size - (slice(insn,3,0) << 1 | slice(insn,5,5));
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(RegClassID,
+ decodeVFPRd(insn, SP))));
+
+ assert(TID.getOperandConstraint(1, TOI::TIED_TO) != -1);
+ MI.addOperand(MI.getOperand(0));
+
+ assert(OpInfo[2].RegClass == 0 && !OpInfo[2].isPredicate() &&
+ !OpInfo[2].isOptionalDef());
+ MI.addOperand(MCOperand::CreateImm(fbits));
+
+ NumOpsAdded = 3;
+ } else {
+ // A8.6.295
+ // The Rd (destination) and Rm (source) bits have different interpretations
+ // depending on their single-precisonness.
+ unsigned d, m;
+ if (slice(insn, 18, 18) == 1) { // to_integer operation
+ d = decodeVFPRd(insn, true /* Is Single Precision */);
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::SPRRegClassID, d)));
+ m = decodeVFPRm(insn, SP);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClassID, m)));
+ } else {
+ d = decodeVFPRd(insn, SP);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClassID, d)));
+ m = decodeVFPRm(insn, true /* Is Single Precision */);
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::SPRRegClassID, m)));
+ }
+ NumOpsAdded = 2;
+ }
+
+ return true;
+}
+
+// VMOVRS - A8.6.330
+// Rt => Rd; Sn => UInt(Vn:N)
+static bool DisassembleVFPConv2Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps >= 2 && "VFPConv2Frm expects NumOps >= 2");
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::SPRRegClassID,
+ decodeVFPRn(insn, true))));
+ NumOpsAdded = 2;
+ return true;
+}
+
+// VMOVRRD - A8.6.332
+// Rt => Rd; Rt2 => Rn; Dm => UInt(M:Vm)
+//
+// VMOVRRS - A8.6.331
+// Rt => Rd; Rt2 => Rn; Sm => UInt(Vm:M); Sm1 = Sm+1
+static bool DisassembleVFPConv3Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps >= 3 && "VFPConv3Frm expects NumOps >= 3");
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ OpIdx = 2;
+
+ if (OpInfo[OpIdx].RegClass == ARM::SPRRegClassID) {
+ unsigned Sm = decodeVFPRm(insn, true);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::SPRRegClassID,
+ Sm)));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::SPRRegClassID,
+ Sm+1)));
+ OpIdx += 2;
+ } else {
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::DPRRegClassID,
+ decodeVFPRm(insn, false))));
+ ++OpIdx;
+ }
+ return true;
+}
+
+// VMOVSR - A8.6.330
+// Rt => Rd; Sn => UInt(Vn:N)
+static bool DisassembleVFPConv4Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps >= 2 && "VFPConv4Frm expects NumOps >= 2");
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::SPRRegClassID,
+ decodeVFPRn(insn, true))));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ NumOpsAdded = 2;
+ return true;
+}
+
+// VMOVDRR - A8.6.332
+// Rt => Rd; Rt2 => Rn; Dm => UInt(M:Vm)
+//
+// VMOVRRS - A8.6.331
+// Rt => Rd; Rt2 => Rn; Sm => UInt(Vm:M); Sm1 = Sm+1
+static bool DisassembleVFPConv5Frm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps >= 3 && "VFPConv5Frm expects NumOps >= 3");
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ if (OpInfo[OpIdx].RegClass == ARM::SPRRegClassID) {
+ unsigned Sm = decodeVFPRm(insn, true);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::SPRRegClassID,
+ Sm)));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::SPRRegClassID,
+ Sm+1)));
+ OpIdx += 2;
+ } else {
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::DPRRegClassID,
+ decodeVFPRm(insn, false))));
+ ++OpIdx;
+ }
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ OpIdx += 2;
+ return true;
+}
+
+// VFP Load/Store Instructions.
+// VLDRD, VLDRS, VSTRD, VSTRS
+static bool DisassembleVFPLdStFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps >= 3 && "VFPLdStFrm expects NumOps >= 3");
+
+ bool isSPVFP = (Opcode == ARM::VLDRS || Opcode == ARM::VSTRS) ? true : false;
+ unsigned RegClassID = isSPVFP ? ARM::SPRRegClassID : ARM::DPRRegClassID;
+
+ // Extract Dd/Sd for operand 0.
+ unsigned RegD = decodeVFPRd(insn, isSPVFP);
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClassID, RegD)));
+
+ unsigned Base = getRegisterEnum(ARM::GPRRegClassID, decodeRn(insn));
+ MI.addOperand(MCOperand::CreateReg(Base));
+
+ // Next comes the AM5 Opcode.
+ ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
+ unsigned char Imm8 = insn & 0xFF;
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(AddrOpcode, Imm8)));
+
+ NumOpsAdded = 3;
+
+ return true;
+}
+
+// VFP Load/Store Multiple Instructions.
+// This is similar to the algorithm for LDM/STM in that operand 0 (the base) and
+// operand 1 (the AM5 mode imm) is followed by two predicate operands. It is
+// followed by a reglist of either DPR(s) or SPR(s).
+//
+// VLDMD, VLDMS, VSTMD, VSTMS
+static bool DisassembleVFPLdStMulFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps == 5 && "VFPLdStMulFrm expects NumOps of 5");
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ unsigned Base = getRegisterEnum(ARM::GPRRegClassID, decodeRn(insn));
+ MI.addOperand(MCOperand::CreateReg(Base));
+
+ // Next comes the AM5 Opcode.
+ ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
+ bool WB = getWBit(insn) == 1;
+ unsigned char Imm8 = insn & 0xFF;
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM5Opc(SubMode, WB, Imm8)));
+
+ // Handling the two predicate operands before the reglist.
+ int64_t CondVal = insn >> ARMII::CondShift;
+ MI.addOperand(MCOperand::CreateImm(CondVal == 0xF ? 0xE : CondVal));
+ MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
+
+ OpIdx = 4;
+
+ bool isSPVFP = (Opcode == ARM::VLDMS || Opcode == ARM::VSTMS) ? true : false;
+ unsigned RegClassID = isSPVFP ? ARM::SPRRegClassID : ARM::DPRRegClassID;
+
+ // Extract Dd/Sd.
+ unsigned RegD = decodeVFPRd(insn, isSPVFP);
+
+ // Fill the variadic part of reglist.
+ unsigned Regs = isSPVFP ? Imm8 : Imm8/2;
+ for (unsigned i = 0; i < Regs; ++i) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClassID,
+ RegD + i)));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+// Misc. VFP Instructions.
+// FMSTAT (vmrs with Rt=0b1111, i.e., to apsr_nzcv and no register operand)
+// FCONSTD (DPR and a VFPf64Imm operand)
+// FCONSTS (SPR and a VFPf32Imm operand)
+// VMRS/VMSR (GPR operand)
+static bool DisassembleVFPMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ if (Opcode == ARM::FMSTAT)
+ return true;
+
+ assert(NumOps >= 2);
+
+ unsigned RegEnum = 0;
+ switch (OpInfo[0].RegClass) {
+ case ARM::DPRRegClassID:
+ RegEnum = getRegisterEnum(ARM::DPRRegClassID, decodeVFPRd(insn, false));
+ break;
+ case ARM::SPRRegClassID:
+ RegEnum = getRegisterEnum(ARM::SPRRegClassID, decodeVFPRd(insn, true));
+ break;
+ case ARM::GPRRegClassID:
+ RegEnum = getRegisterEnum(ARM::GPRRegClassID, decodeRd(insn));
+ break;
+ default:
+ llvm_unreachable("Invalid reg class id");
+ }
+
+ MI.addOperand(MCOperand::CreateReg(RegEnum));
+ ++OpIdx;
+
+ // Extract/decode the f64/f32 immediate.
+ if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
+ && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
+ // The asm syntax specifies the before-expanded <imm>.
+ // Not VFPExpandImm(slice(insn,19,16) << 4 | slice(insn, 3, 0),
+ // Opcode == ARM::FCONSTD ? 64 : 32)
+ MI.addOperand(MCOperand::CreateImm(slice(insn,19,16)<<4 | slice(insn,3,0)));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+// DisassembleThumbFrm() is defined in ThumbDisassemblerCore.cpp.inc file.
+#include "ThumbDisassemblerCore.cpp.inc"
+
+/////////////////////////////////////////////////////
+// //
+// Utility Functions For ARM Advanced SIMD //
+// //
+/////////////////////////////////////////////////////
+
+// The following NEON namings are based on A8.6.266 VABA, VABAL. Notice that
+// A8.6.303 VDUP (ARM core register)'s D/Vd pair is the N/Vn pair of VABA/VABAL.
+
+// A7.3 Register encoding
+
+// Extract/Decode NEON D/Vd:
+//
+// Note that for quadword, Qd = UInt(D:Vd<3:1>) = Inst{22:15-13}, whereas for
+// doubleword, Dd = UInt(D:Vd). We compensate for this difference by
+// handling it in the getRegisterEnum() utility function.
+// D = Inst{22}, Vd = Inst{15-12}
+static unsigned decodeNEONRd(uint32_t insn) {
+ return ((insn >> ARMII::NEON_D_BitShift) & 1) << 4
+ | (insn >> ARMII::NEON_RegRdShift) & ARMII::NEONRegMask;
+}
+
+// Extract/Decode NEON N/Vn:
+//
+// Note that for quadword, Qn = UInt(N:Vn<3:1>) = Inst{7:19-17}, whereas for
+// doubleword, Dn = UInt(N:Vn). We compensate for this difference by
+// handling it in the getRegisterEnum() utility function.
+// N = Inst{7}, Vn = Inst{19-16}
+static unsigned decodeNEONRn(uint32_t insn) {
+ return ((insn >> ARMII::NEON_N_BitShift) & 1) << 4
+ | (insn >> ARMII::NEON_RegRnShift) & ARMII::NEONRegMask;
+}
+
+// Extract/Decode NEON M/Vm:
+//
+// Note that for quadword, Qm = UInt(M:Vm<3:1>) = Inst{5:3-1}, whereas for
+// doubleword, Dm = UInt(M:Vm). We compensate for this difference by
+// handling it in the getRegisterEnum() utility function.
+// M = Inst{5}, Vm = Inst{3-0}
+static unsigned decodeNEONRm(uint32_t insn) {
+ return ((insn >> ARMII::NEON_M_BitShift) & 1) << 4
+ | (insn >> ARMII::NEON_RegRmShift) & ARMII::NEONRegMask;
+}
+
+namespace {
+enum ElemSize {
+ ESizeNA = 0,
+ ESize8 = 8,
+ ESize16 = 16,
+ ESize32 = 32,
+ ESize64 = 64
+};
+} // End of unnamed namespace
+
+// size field -> Inst{11-10}
+// index_align field -> Inst{7-4}
+//
+// The Lane Index interpretation depends on the Data Size:
+// 8 (encoded as size = 0b00) -> Index = index_align[3:1]
+// 16 (encoded as size = 0b01) -> Index = index_align[3:2]
+// 32 (encoded as size = 0b10) -> Index = index_align[3]
+//
+// Ref: A8.6.317 VLD4 (single 4-element structure to one lane).
+static unsigned decodeLaneIndex(uint32_t insn) {
+ unsigned size = insn >> 10 & 3;
+ assert(size == 0 || size == 1 || size == 2);
+
+ unsigned index_align = insn >> 4 & 0xF;
+ return (index_align >> 1) >> size;
+}
+
+// imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4)
+// op = Inst{5}, cmode = Inst{11-8}
+// i = Inst{24} (ARM architecture)
+// imm3 = Inst{18-16}, imm4 = Inst{3-0}
+// Ref: Table A7-15 Modified immediate values for Advanced SIMD instructions.
+static uint64_t decodeN1VImm(uint32_t insn, ElemSize esize) {
+ unsigned char cmode = (insn >> 8) & 0xF;
+ unsigned char Imm8 = ((insn >> 24) & 1) << 7 |
+ ((insn >> 16) & 7) << 4 |
+ (insn & 0xF);
+ uint64_t Imm64 = 0;
+
+ switch (esize) {
+ case ESize8:
+ Imm64 = Imm8;
+ break;
+ case ESize16:
+ Imm64 = Imm8 << 8*(cmode >> 1 & 1);
+ break;
+ case ESize32: {
+ if (cmode == 12)
+ Imm64 = (Imm8 << 8) | 0xFF;
+ else if (cmode == 13)
+ Imm64 = (Imm8 << 16) | 0xFFFF;
+ else {
+ // Imm8 to be shifted left by how many bytes...
+ Imm64 = Imm8 << 8*(cmode >> 1 & 3);
+ }
+ break;
+ }
+ case ESize64: {
+ for (unsigned i = 0; i < 8; ++i)
+ if ((Imm8 >> i) & 1)
+ Imm64 |= 0xFF << 8*i;
+ break;
+ }
+ default:
+ assert(0 && "Unreachable code!");
+ return 0;
+ }
+
+ return Imm64;
+}
+
+// A8.6.339 VMUL, VMULL (by scalar)
+// ESize16 => m = Inst{2-0} (Vm<2:0>) D0-D7
+// ESize32 => m = Inst{3-0} (Vm<3:0>) D0-D15
+static unsigned decodeRestrictedDm(uint32_t insn, ElemSize esize) {
+ switch (esize) {
+ case ESize16:
+ return insn & 7;
+ case ESize32:
+ return insn & 0xF;
+ default:
+ assert(0 && "Unreachable code!");
+ return 0;
+ }
+}
+
+// A8.6.339 VMUL, VMULL (by scalar)
+// ESize16 => index = Inst{5:3} (M:Vm<3>) D0-D7
+// ESize32 => index = Inst{5} (M) D0-D15
+static unsigned decodeRestrictedDmIndex(uint32_t insn, ElemSize esize) {
+ switch (esize) {
+ case ESize16:
+ return (((insn >> 5) & 1) << 1) | ((insn >> 3) & 1);
+ case ESize32:
+ return (insn >> 5) & 1;
+ default:
+ assert(0 && "Unreachable code!");
+ return 0;
+ }
+}
+
+// A8.6.296 VCVT (between floating-point and fixed-point, Advanced SIMD)
+// (64 - <fbits>) is encoded as imm6, i.e., Inst{21-16}.
+static unsigned decodeVCVTFractionBits(uint32_t insn) {
+ return 64 - ((insn >> 16) & 0x3F);
+}
+
+// A8.6.302 VDUP (scalar)
+// ESize8 => index = Inst{19-17}
+// ESize16 => index = Inst{19-18}
+// ESize32 => index = Inst{19}
+static unsigned decodeNVLaneDupIndex(uint32_t insn, ElemSize esize) {
+ switch (esize) {
+ case ESize8:
+ return (insn >> 17) & 7;
+ case ESize16:
+ return (insn >> 18) & 3;
+ case ESize32:
+ return (insn >> 19) & 1;
+ default:
+ assert(0 && "Unspecified element size!");
+ return 0;
+ }
+}
+
+// A8.6.328 VMOV (ARM core register to scalar)
+// A8.6.329 VMOV (scalar to ARM core register)
+// ESize8 => index = Inst{21:6-5}
+// ESize16 => index = Inst{21:6}
+// ESize32 => index = Inst{21}
+static unsigned decodeNVLaneOpIndex(uint32_t insn, ElemSize esize) {
+ switch (esize) {
+ case ESize8:
+ return ((insn >> 21) & 1) << 2 | ((insn >> 5) & 3);
+ case ESize16:
+ return ((insn >> 21) & 1) << 1 | ((insn >> 6) & 1);
+ case ESize32:
+ return ((insn >> 21) & 1);
+ default:
+ assert(0 && "Unspecified element size!");
+ return 0;
+ }
+}
+
+// Imm6 = Inst{21-16}, L = Inst{7}
+//
+// NormalShift == true (A8.6.376 VRSHR, A8.6.368 VQSHRN):
+// case L:imm6 of
+// '0001xxx' => esize = 8; shift_amount = 16 - imm6
+// '001xxxx' => esize = 16; shift_amount = 32 - imm6
+// '01xxxxx' => esize = 32; shift_amount = 64 - imm6
+// '1xxxxxx' => esize = 64; shift_amount = 64 - imm6
+//
+// NormalShift == false (A8.6.367 VQSHL, A8.6.387 VSLI):
+// case L:imm6 of
+// '0001xxx' => esize = 8; shift_amount = imm6 - 8
+// '001xxxx' => esize = 16; shift_amount = imm6 - 16
+// '01xxxxx' => esize = 32; shift_amount = imm6 - 32
+// '1xxxxxx' => esize = 64; shift_amount = imm6
+//
+static unsigned decodeNVSAmt(uint32_t insn, bool NormalShift) {
+ ElemSize esize = ESizeNA;
+ unsigned L = (insn >> 7) & 1;
+ unsigned imm6 = (insn >> 16) & 0x3F;
+ if (L == 0) {
+ if (imm6 >> 3 == 1)
+ esize = ESize8;
+ else if (imm6 >> 4 == 1)
+ esize = ESize16;
+ else if (imm6 >> 5 == 1)
+ esize = ESize32;
+ else
+ assert(0 && "Wrong encoding of Inst{7:21-16}!");
+ } else
+ esize = ESize64;
+
+ if (NormalShift)
+ return esize == ESize64 ? (esize - imm6) : (2*esize - imm6);
+ else
+ return esize == ESize64 ? imm6 : (imm6 - esize);
+}
+
+// A8.6.305 VEXT
+// Imm4 = Inst{11-8}
+static unsigned decodeN3VImm(uint32_t insn) {
+ return (insn >> 8) & 0xF;
+}
+
+static bool DisassembleNSFormatNone(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+ assert(0 && "Unexpected NEON Sub-Format of NSFormatNone");
+ return false;
+}
+
+// VLD*
+// D[d] D[d2] ... R[addr] [TIED_TO] R[update] AM6 align(ignored)
+// VLD*LN*
+// D[d] D[d2] ... R[addr] R[update] AM6 align(ignored) TIED_TO ... imm(idx)
+// VST*
+// R[addr] [TIED_TO] R[update] AM6 align(ignored) D[d] D[d2] ...
+// VST*LN*
+// R[addr] R[update] AM6 align(ignored) D[d] D[d2] ... [imm(idx)]
+//
+// Correctly set VLD*/VST*'s TIED_TO GPR, as the asm printer needs it.
+static bool DisassembleVLDSTLane0(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded, bool Store, bool DblSpaced) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+
+ // At least one DPR register plus addressing mode #6.
+ assert(NumOps >= 5);
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ // We have homogeneous NEON registers for Load/Store.
+ unsigned RegClass = 0;
+
+ // Double-spaced registers have increments of 2.
+ unsigned Inc = DblSpaced ? 2 : 1;
+
+ unsigned Rn = decodeRn(insn);
+ unsigned Rm = decodeRm(insn);
+ unsigned Rd = decodeNEONRd(insn);
+
+ // A7.7.1 Advanced SIMD addressing mode.
+ bool WB = Rm != 15;
+
+ // LLVM Addressing Mode #6.
+ unsigned RmEnum = 0;
+ if (WB && Rm != 13)
+ RmEnum = getRegisterEnum(ARM::GPRRegClassID, Rm);
+
+ if (Store) {
+ // Consume AddrMode6 (possible TIED_TO Rn), the DPR/QPR's, then possible
+ // lane index.
+ assert(OpIdx < NumOps && OpInfo[0].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ Rn)));
+ ++OpIdx;
+ if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
+ // TIED_TO operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ Rn)));
+ ++OpIdx;
+ }
+
+ assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(RmEnum));
+ ++OpIdx;
+ assert(OpIdx < NumOps &&
+ OpInfo[OpIdx].RegClass == 0 && OpInfo[OpIdx+1].RegClass == 0);
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM6Opc(WB)));
+ MI.addOperand(MCOperand::CreateImm(0)); // Alignment ignored?
+ OpIdx += 2;
+
+ assert(OpIdx < NumOps &&
+ (OpInfo[OpIdx].RegClass == ARM::DPRRegClassID ||
+ OpInfo[OpIdx].RegClass == ARM::QPRRegClassID));
+
+ RegClass = OpInfo[OpIdx].RegClass;
+ while (OpIdx < NumOps && OpInfo[OpIdx].RegClass == RegClass) {
+ if (Opcode >= ARM::VST1q16 && Opcode <= ARM::VST1q8)
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClass,Rd,true)));
+ else
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClass,Rd)));
+ Rd += Inc;
+ ++OpIdx;
+ }
+
+ // Handle possible lane index.
+ if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
+ && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
+ MI.addOperand(MCOperand::CreateImm(decodeLaneIndex(insn)));
+ ++OpIdx;
+ }
+
+ } else {
+ // Consume the DPR/QPR's, AddrMode6 (possible TIED_TO Rn), possible TIED_TO
+ // DPR/QPR's (ignored), then possible lane index.
+ RegClass = OpInfo[0].RegClass;
+
+ while (OpIdx < NumOps && OpInfo[OpIdx].RegClass == RegClass) {
+ if (Opcode >= ARM::VLD1q16 && Opcode <= ARM::VLD1q8)
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClass,Rd,true)));
+ else
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClass,Rd)));
+ Rd += Inc;
+ ++OpIdx;
+ }
+
+ assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ Rn)));
+ ++OpIdx;
+ if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
+ // TIED_TO operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ Rn)));
+ ++OpIdx;
+ }
+
+ assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::GPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(RmEnum));
+ ++OpIdx;
+ assert(OpIdx < NumOps &&
+ OpInfo[OpIdx].RegClass == 0 && OpInfo[OpIdx+1].RegClass == 0);
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM6Opc(WB)));
+ MI.addOperand(MCOperand::CreateImm(0)); // Alignment ignored?
+ OpIdx += 2;
+
+ while (OpIdx < NumOps && OpInfo[OpIdx].RegClass == RegClass) {
+ assert(TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1);
+ MI.addOperand(MCOperand::CreateReg(0));
+ ++OpIdx;
+ }
+
+ // Handle possible lane index.
+ if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
+ && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
+ MI.addOperand(MCOperand::CreateImm(decodeLaneIndex(insn)));
+ ++OpIdx;
+ }
+ }
+
+ return true;
+}
+
+// A7.7
+// If L (Inst{21}) == 0, store instructions.
+// DblSpaced = false.
+static bool DisassembleVLDSTLane(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleVLDSTLane0(MI, Opcode, insn, NumOps, NumOpsAdded,
+ slice(insn, 21, 21) == 0, false);
+}
+// A7.7
+// If L (Inst{21}) == 0, store instructions.
+// DblSpaced = true.
+static bool DisassembleVLDSTLaneDbl(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleVLDSTLane0(MI, Opcode, insn, NumOps, NumOpsAdded,
+ slice(insn, 21, 21) == 0, true);
+}
+
+// VLDRQ (vldmia), VSTRQ (vstmia)
+// Qd Rn imm (AM4)
+static bool DisassembleVLDSTRQ(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ assert(NumOps >= 3 &&
+ OpInfo[0].RegClass == ARM::QPRRegClassID &&
+ OpInfo[1].RegClass == ARM::GPRRegClassID &&
+ OpInfo[2].RegClass == 0);
+
+ // Qd = Inst{22:15-12} => NEON Rd
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::QPRRegClassID,
+ decodeNEONRd(insn), true)));
+
+ // Rn = Inst{19-16} => ARM Rn
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+
+ // Next comes the AM4 Opcode.
+ assert(Opcode == ARM::VLDRQ || Opcode == ARM::VSTRQ);
+ ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
+ bool WB = getWBit(insn) == 1;
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(SubMode, WB)));
+
+ NumOpsAdded = 3;
+ return true;
+}
+
+// VMOV (immediate)
+// Qd/Dd imm
+static bool DisassembleNVdImm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+
+ assert(NumOps >= 2 &&
+ (OpInfo[0].RegClass == ARM::DPRRegClassID ||
+ OpInfo[0].RegClass == ARM::QPRRegClassID) &&
+ (OpInfo[1].RegClass == 0));
+
+ // Qd/Dd = Inst{22:15-12} => NEON Rd
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[0].RegClass,
+ decodeNEONRd(insn))));
+
+ ElemSize esize = ESizeNA;
+ switch (Opcode) {
+ case ARM::VMOVv8i8:
+ case ARM::VMOVv16i8:
+ esize = ESize8;
+ break;
+ case ARM::VMOVv4i16:
+ case ARM::VMOVv8i16:
+ esize = ESize16;
+ break;
+ case ARM::VMOVv2i32:
+ case ARM::VMOVv4i32:
+ esize = ESize32;
+ break;
+ case ARM::VMOVv1i64:
+ case ARM::VMOVv2i64:
+ esize = ESize64;
+ default:
+ assert(0 && "Unreachable code!");
+ return false;
+ }
+
+ // One register and a modified immediate value.
+ // Add the imm operand.
+ MI.addOperand(MCOperand::CreateImm(decodeN1VImm(insn, esize)));
+
+ NumOpsAdded = 2;
+ return true;
+}
+
+namespace {
+enum N2VFlag {
+ N2V_None,
+ N2V_VectorDupLane,
+ N2V_VectorShiftLeftLong,
+ N2V_VectorConvert_Between_Float_Fixed
+};
+} // End of unnamed namespace
+
+// Vector Convert [between floating-point and fixed-point]
+// Qd/Dd Qm/Dm [fbits]
+//
+// Vector Duplicate Lane (from scalar to all elements) Instructions.
+// VDUPLN16d, VDUPLN16q, VDUPLN32d, VDUPLN32q, VDUPLN8d, VDUPLN8q:
+// Qd/Dd Dm index
+//
+// Vector Shift Left Long (with maximum shift count) Instructions.
+// VSHLLi16, VSHLLi32, VSHLLi8: Qd Dm imm (== size)
+//
+// Vector Move Long:
+// Qd Dm
+//
+// Vector Move Narrow:
+// Dd Qm
+//
+// Others
+static bool DisassembleNVdVmImm0(MCInst &MI, unsigned Opc, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded, N2VFlag Flag = N2V_None) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opc];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+
+ assert(NumOps >= 2 &&
+ (OpInfo[0].RegClass == ARM::DPRRegClassID ||
+ OpInfo[0].RegClass == ARM::QPRRegClassID) &&
+ (OpInfo[1].RegClass == ARM::DPRRegClassID ||
+ OpInfo[1].RegClass == ARM::QPRRegClassID));
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ ElemSize esize = ESizeNA;
+ if (Flag == N2V_VectorShiftLeftLong) {
+ // VSHLL has maximum shift count as the imm, inferred from its size.
+ assert(Opc == ARM::VSHLLi16 || Opc == ARM::VSHLLi32 || Opc == ARM::VSHLLi8);
+ esize = Opc == ARM::VSHLLi8 ? ESize8
+ : (Opc == ARM::VSHLLi16 ? ESize16
+ : ESize32);
+ }
+ if (Flag == N2V_VectorDupLane) {
+ // VDUPLN has its index embedded. Its size can be inferred from the Opcode.
+ assert(Opc >= ARM::VDUPLN16d && Opc <= ARM::VDUPLN8q);
+ esize = (Opc == ARM::VDUPLN8d || Opc == ARM::VDUPLN8q) ? ESize8
+ : ((Opc == ARM::VDUPLN16d || Opc == ARM::VDUPLN16q) ? ESize16
+ : ESize32);
+ }
+
+ // Qd/Dd = Inst{22:15-12} => NEON Rd
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
+ decodeNEONRd(insn))));
+ ++OpIdx;
+
+ // VPADAL...
+ if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
+ // TIED_TO operand.
+ MI.addOperand(MCOperand::CreateReg(0));
+ ++OpIdx;
+ }
+
+ // Dm = Inst{5:3-0} => NEON Rm
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
+ decodeNEONRm(insn))));
+ ++OpIdx;
+
+ // Add the imm operand, if required.
+ if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
+ && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
+
+ unsigned imm = 0xFFFFFFFF;
+
+ if (Flag == N2V_VectorShiftLeftLong)
+ imm = static_cast<unsigned>(esize);
+ if (Flag == N2V_VectorDupLane)
+ imm = decodeNVLaneDupIndex(insn, esize);
+ if (Flag == N2V_VectorConvert_Between_Float_Fixed)
+ imm = decodeVCVTFractionBits(insn);
+
+ assert(imm != 0xFFFFFFFF);
+ MI.addOperand(MCOperand::CreateImm(imm));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+static bool DisassembleNVdVmImm(MCInst &MI, unsigned Opc, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleNVdVmImm0(MI, Opc, insn, NumOps, NumOpsAdded);
+}
+static bool DisassembleNVdVmImmVCVT(MCInst &MI, unsigned Opc, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleNVdVmImm0(MI, Opc, insn, NumOps, NumOpsAdded,
+ N2V_VectorConvert_Between_Float_Fixed);
+}
+static bool DisassembleNVdVmImmVDupLane(MCInst &MI, unsigned Opc, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleNVdVmImm0(MI, Opc, insn, NumOps, NumOpsAdded,
+ N2V_VectorDupLane);
+}
+static bool DisassembleNVdVmImmVSHLL(MCInst &MI, unsigned Opc, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleNVdVmImm0(MI, Opc, insn, NumOps, NumOpsAdded,
+ N2V_VectorShiftLeftLong);
+}
+
+// Vector Transpose/Unzip/Zip Instructions
+// Qd/Dd Qm/Dm [Qd/Dd (TIED_TO)] [Qm/Dm (TIED_TO)]
+static bool DisassembleNVectorShuffle(MCInst &MI,unsigned Opcode,uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+
+ assert(NumOps >= 4 &&
+ (OpInfo[0].RegClass == ARM::DPRRegClassID ||
+ OpInfo[0].RegClass == ARM::QPRRegClassID) &&
+ (OpInfo[1].RegClass == ARM::DPRRegClassID ||
+ OpInfo[1].RegClass == ARM::QPRRegClassID) &&
+ (OpInfo[2].RegClass == ARM::DPRRegClassID ||
+ OpInfo[2].RegClass == ARM::QPRRegClassID) &&
+ (OpInfo[3].RegClass == ARM::DPRRegClassID ||
+ OpInfo[3].RegClass == ARM::QPRRegClassID));
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ // Qd/Dd = Inst{22:15-12} => NEON Rd
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
+ decodeNEONRd(insn))));
+ ++OpIdx;
+
+ // Dm = Inst{5:3-0} => NEON Rm
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
+ decodeNEONRm(insn))));
+ ++OpIdx;
+
+ assert(TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1 &&
+ TID.getOperandConstraint(OpIdx+1, TOI::TIED_TO) != -1);
+
+ MI.addOperand(MCOperand::CreateReg(0)); ++OpIdx;
+ MI.addOperand(MCOperand::CreateReg(0)); ++OpIdx;
+
+ return true;
+}
+
+// Vector Shift [Accumulate] Instructions.
+// Qd/Dd [Qd/Dd (TIED_TO)] Qm/Dm ShiftAmt
+static bool DisassembleNVectorShift0(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded, bool NormalShift = true) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+
+ assert(NumOps >= 3 &&
+ (OpInfo[0].RegClass == ARM::DPRRegClassID ||
+ OpInfo[0].RegClass == ARM::QPRRegClassID) &&
+ (OpInfo[1].RegClass == ARM::DPRRegClassID ||
+ OpInfo[1].RegClass == ARM::QPRRegClassID));
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ // Qd/Dd = Inst{22:15-12} => NEON Rd
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
+ decodeNEONRd(insn))));
+ ++OpIdx;
+
+ if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
+ // TIED_TO operand.
+ MI.addOperand(MCOperand::CreateReg(0));
+ ++OpIdx;
+ }
+
+ assert(OpInfo[OpIdx].RegClass == ARM::DPRRegClassID ||
+ OpInfo[OpIdx].RegClass == ARM::QPRRegClassID);
+
+ // Qm/Dm = Inst{5:3-0} => NEON Rm
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
+ decodeNEONRm(insn))));
+ ++OpIdx;
+
+ assert(OpInfo[OpIdx].RegClass == 0);
+
+ // Add the imm operand.
+ MI.addOperand(MCOperand::CreateImm(decodeNVSAmt(insn, NormalShift)));
+ ++OpIdx;
+
+ return true;
+}
+
+// Normal shift amount interpretation.
+static bool DisassembleNVectorShift(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleNVectorShift0(MI, Opcode, insn, NumOps, NumOpsAdded, true);
+}
+// Different shift amount interpretation.
+static bool DisassembleNVectorShift2(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleNVectorShift0(MI, Opcode, insn, NumOps, NumOpsAdded, false);
+}
+
+namespace {
+enum N3VFlag {
+ N3V_None,
+ N3V_VectorExtract,
+ N3V_VectorShift,
+ N3V_Multiply_By_Scalar
+};
+} // End of unnamed namespace
+
+// NEON Three Register Instructions with Optional Immediate Operand
+//
+// Vector Extract Instructions.
+// Qd/Dd Qn/Dn Qm/Dm imm4
+//
+// Vector Shift (Register) Instructions.
+// Qd/Dd Qm/Dm Qn/Dn (notice the order of m, n)
+//
+// Vector Multiply [Accumulate/Subtract] [Long] By Scalar Instructions.
+// Qd/Dd Qn/Dn RestrictedDm index
+//
+// Others
+static bool DisassembleNVdVnVmImm0(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded, N3VFlag Flag = N3V_None) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+
+ assert(NumOps >= 3 &&
+ (OpInfo[0].RegClass == ARM::DPRRegClassID ||
+ OpInfo[0].RegClass == ARM::QPRRegClassID) &&
+ (OpInfo[1].RegClass == ARM::DPRRegClassID ||
+ OpInfo[1].RegClass == ARM::QPRRegClassID) &&
+ (OpInfo[2].RegClass != 0));
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ bool VdVnVm = Flag == N3V_VectorShift ? false : true;
+ bool IsImm4 = Flag == N3V_VectorExtract ? true : false;
+ bool IsDmRestricted = Flag == N3V_Multiply_By_Scalar ? true : false;
+ ElemSize esize = ESizeNA;
+ if (Flag == N3V_Multiply_By_Scalar) {
+ unsigned size = (insn >> 20) & 3;
+ if (size == 1) esize = ESize16;
+ if (size == 2) esize = ESize32;
+ assert (esize == ESize16 || esize == ESize32);
+ }
+
+ // Qd/Dd = Inst{22:15-12} => NEON Rd
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(OpInfo[OpIdx].RegClass,
+ decodeNEONRd(insn))));
+ ++OpIdx;
+
+ // VABA, VABAL, VBSLd, VBSLq, ...
+ if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
+ // TIED_TO operand.
+ MI.addOperand(MCOperand::CreateReg(0));
+ ++OpIdx;
+ }
+
+ // Dn = Inst{7:19-16} => NEON Rn
+ // or
+ // Dm = Inst{5:3-0} => NEON Rm
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(OpInfo[OpIdx].RegClass,
+ VdVnVm ? decodeNEONRn(insn)
+ : decodeNEONRm(insn))));
+ ++OpIdx;
+
+ // Dm = Inst{5:3-0} => NEON Rm
+ // or
+ // Dm is restricted to D0-D7 if size is 16, D0-D15 otherwise
+ // or
+ // Dn = Inst{7:19-16} => NEON Rn
+ unsigned m = VdVnVm ? (IsDmRestricted ? decodeRestrictedDm(insn, esize)
+ : decodeNEONRm(insn))
+ : decodeNEONRn(insn);
+
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(OpInfo[OpIdx].RegClass, m)));
+ ++OpIdx;
+
+ if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
+ && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
+ // Add the imm operand.
+ unsigned Imm = 0;
+ if (IsImm4)
+ Imm = decodeN3VImm(insn);
+ else if (IsDmRestricted)
+ Imm = decodeRestrictedDmIndex(insn, esize);
+ else
+ assert(0 && "Internal error: unreachable code!");
+
+ MI.addOperand(MCOperand::CreateImm(Imm));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+static bool DisassembleNVdVnVmImm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleNVdVnVmImm0(MI, Opcode, insn, NumOps, NumOpsAdded);
+}
+static bool DisassembleNVdVnVmImmVectorShift(MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleNVdVnVmImm0(MI, Opcode, insn, NumOps, NumOpsAdded,
+ N3V_VectorShift);
+}
+static bool DisassembleNVdVnVmImmVectorExtract(MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleNVdVnVmImm0(MI, Opcode, insn, NumOps, NumOpsAdded,
+ N3V_VectorExtract);
+}
+static bool DisassembleNVdVnVmImmMulScalar(MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ return DisassembleNVdVnVmImm0(MI, Opcode, insn, NumOps, NumOpsAdded,
+ N3V_Multiply_By_Scalar);
+}
+
+// Vector Table Lookup
+//
+// VTBL1, VTBX1: Dd [Dd(TIED_TO)] Dn Dm
+// VTBL2, VTBX2: Dd [Dd(TIED_TO)] Dn Dn+1 Dm
+// VTBL3, VTBX3: Dd [Dd(TIED_TO)] Dn Dn+1 Dn+2 Dm
+// VTBL4, VTBX4: Dd [Dd(TIED_TO)] Dn Dn+1 Dn+2 Dn+3 Dm
+static bool DisassembleVTBL(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+
+ assert(NumOps >= 3 &&
+ OpInfo[0].RegClass == ARM::DPRRegClassID &&
+ OpInfo[1].RegClass == ARM::DPRRegClassID &&
+ OpInfo[2].RegClass == ARM::DPRRegClassID);
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ unsigned Rn = decodeNEONRn(insn);
+
+ // {Dn} encoded as len = 0b00
+ // {Dn Dn+1} encoded as len = 0b01
+ // {Dn Dn+1 Dn+2 } encoded as len = 0b10
+ // {Dn Dn+1 Dn+2 Dn+3} encoded as len = 0b11
+ unsigned Len = slice(insn, 9, 8) + 1;
+
+ // Dd (the destination vector)
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::DPRRegClassID,
+ decodeNEONRd(insn))));
+ ++OpIdx;
+
+ // Process tied_to operand constraint.
+ int Idx;
+ if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) {
+ MI.addOperand(MI.getOperand(Idx));
+ ++OpIdx;
+ }
+
+ // Do the <list> now.
+ for (unsigned i = 0; i < Len; ++i) {
+ assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::DPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::DPRRegClassID,
+ Rn + i)));
+ ++OpIdx;
+ }
+
+ // Dm (the index vector)
+ assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::DPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::DPRRegClassID,
+ decodeNEONRm(insn))));
+ ++OpIdx;
+
+ return true;
+}
+
+/// NEONFuncPtrs - NEONFuncPtrs maps NSFormat to corresponding DisassembleFP.
+/// We divide the disassembly task into different categories, with each one
+/// corresponding to a specific instruction encoding format. There could be
+/// exceptions when handling a specific format, and that is why the Opcode is
+/// also present in the function prototype.
+static const DisassembleFP NEONFuncPtrs[] = {
+ // This will assert().
+ &DisassembleNSFormatNone,
+
+ // VLD and VST (including one lane) Instructions.
+ &DisassembleVLDSTLane,
+
+ // VLD and VST (including one lane) Double-Spaced Instructions.
+ &DisassembleVLDSTLaneDbl,
+
+ // A8.6.319 VLDM & A8.6.399 VSTM
+ // LLVM defines VLDRQ/VSTRQ to load/store a Q register as a D register pair.
+ &DisassembleVLDSTRQ,
+
+ // A7.4.6 One register and a modified immediate value
+ // 1-Register Instructions with imm.
+ // LLVM only defines VMOVv instructions.
+ &DisassembleNVdImm,
+
+ // 2-Register Instructions with no imm.
+ &DisassembleNVdVmImm,
+
+ // 2-Register Instructions with imm (vector convert float/fixed point).
+ &DisassembleNVdVmImmVCVT,
+
+ // 2-Register Instructions with imm (vector dup lane).
+ &DisassembleNVdVmImmVDupLane,
+
+ // 2-Register Instructions with imm (vector shift left long).
+ &DisassembleNVdVmImmVSHLL,
+
+ // Vector Transpose/Unzip/Zip Instructions.
+ &DisassembleNVectorShuffle,
+
+ // Vector Shift [Narrow Accumulate] Instructions.
+ &DisassembleNVectorShift,
+
+ // Vector Shift Instructions with different interpretation of shift amount.
+ &DisassembleNVectorShift2,
+
+ // 3-Register Data-Processing Instructions.
+ &DisassembleNVdVnVmImm,
+
+ // Vector Shift (Register) Instructions.
+ // D:Vd M:Vm N:Vn (notice that M:Vm is the first operand)
+ &DisassembleNVdVnVmImmVectorShift,
+
+ // Vector Extract Instructions.
+ &DisassembleNVdVnVmImmVectorExtract,
+
+ // Vector [Saturating Rounding Doubling] Multiply [Accumulate/Subtract] [Long]
+ // By Scalar Instructions.
+ &DisassembleNVdVnVmImmMulScalar,
+
+ // Vector Table Lookup uses byte indexes in a control vector to look up byte
+ // values in a table and generate a new vector.
+ &DisassembleVTBL,
+ NULL,
+};
+
+static bool DisassembleNEONFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+ assert(0 && "Code is not reachable");
+ return false;
+}
+
+// Vector Get Lane (move scalar to ARM core register) Instructions.
+// VGETLNi32, VGETLNs16, VGETLNs8, VGETLNu16, VGETLNu8: Rt Dn index
+static bool DisassembleNEONGetLnFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ unsigned short NumDefs = TID.getNumDefs();
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+
+ assert(NumDefs == 1 && NumOps >= 3 &&
+ OpInfo[0].RegClass == ARM::GPRRegClassID &&
+ OpInfo[1].RegClass == ARM::DPRRegClassID &&
+ OpInfo[2].RegClass == 0);
+
+ ElemSize esize =
+ Opcode == ARM::VGETLNi32 ? ESize32
+ : ((Opcode == ARM::VGETLNs16 || Opcode == ARM::VGETLNu16) ? ESize16
+ : ESize32);
+
+ // Rt = Inst{15-12} => ARM Rd
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+
+ // Dn = Inst{7:19-16} => NEON Rn
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::DPRRegClassID,
+ decodeNEONRn(insn))));
+
+ MI.addOperand(MCOperand::CreateImm(decodeNVLaneOpIndex(insn, esize)));
+
+ NumOpsAdded = 3;
+ return true;
+}
+
+// Vector Set Lane (move ARM core register to scalar) Instructions.
+// VSETLNi16, VSETLNi32, VSETLNi8: Dd Dd (TIED_TO) Rt index
+static bool DisassembleNEONSetLnFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ unsigned short NumDefs = TID.getNumDefs();
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+
+ assert(NumDefs == 1 && NumOps >= 3 &&
+ OpInfo[0].RegClass == ARM::DPRRegClassID &&
+ OpInfo[1].RegClass == ARM::DPRRegClassID &&
+ TID.getOperandConstraint(1, TOI::TIED_TO) != -1 &&
+ OpInfo[2].RegClass == ARM::GPRRegClassID &&
+ OpInfo[3].RegClass == 0);
+
+ ElemSize esize =
+ Opcode == ARM::VSETLNi8 ? ESize8
+ : (Opcode == ARM::VSETLNi16 ? ESize16
+ : ESize32);
+
+ // Dd = Inst{7:19-16} => NEON Rn
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::DPRRegClassID,
+ decodeNEONRn(insn))));
+
+ // TIED_TO operand.
+ MI.addOperand(MCOperand::CreateReg(0));
+
+ // Rt = Inst{15-12} => ARM Rd
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+
+ MI.addOperand(MCOperand::CreateImm(decodeNVLaneOpIndex(insn, esize)));
+
+ NumOpsAdded = 4;
+ return true;
+}
+
+// Vector Duplicate Instructions (from ARM core register to all elements).
+// VDUP8d, VDUP16d, VDUP32d, VDUP8q, VDUP16q, VDUP32q: Qd/Dd Rt
+static bool DisassembleNEONDupFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ assert(NumOps >= 2 &&
+ (OpInfo[0].RegClass == ARM::DPRRegClassID ||
+ OpInfo[0].RegClass == ARM::QPRRegClassID) &&
+ OpInfo[1].RegClass == ARM::GPRRegClassID);
+
+ unsigned RegClass = OpInfo[0].RegClass;
+
+ // Qd/Dd = Inst{7:19-16} => NEON Rn
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(RegClass,
+ decodeNEONRn(insn))));
+
+ // Rt = Inst{15-12} => ARM Rd
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+
+ NumOpsAdded = 2;
+ return true;
+}
+
+// A8.6.41 DMB
+// A8.6.42 DSB
+// A8.6.49 ISB
+static inline bool MemBarrierInstr(uint32_t insn) {
+ unsigned op7_4 = slice(insn, 7, 4);
+ if (slice(insn, 31, 20) == 0xf57 && (op7_4 >= 4 && op7_4 <= 6))
+ return true;
+
+ return false;
+}
+
+static inline bool PreLoadOpcode(unsigned Opcode) {
+ switch(Opcode) {
+ case ARM::PLDi: case ARM::PLDr:
+ case ARM::PLDWi: case ARM::PLDWr:
+ case ARM::PLIi: case ARM::PLIr:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static bool DisassemblePreLoadFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ // Preload Data/Instruction requires either 2 or 4 operands.
+ // PLDi, PLDWi, PLIi: Rn [+/-]imm12 add = (U == '1')
+ // PLDr[a|m], PLDWr[a|m], PLIr[a|m]: Rn Rm addrmode2_opc
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+
+ if (Opcode == ARM::PLDi || Opcode == ARM::PLDWi || Opcode == ARM::PLIi) {
+ unsigned Imm12 = slice(insn, 11, 0);
+ bool Negative = getUBit(insn) == 0;
+ int Offset = Negative ? -1 - Imm12 : 1 * Imm12;
+ MI.addOperand(MCOperand::CreateImm(Offset));
+ NumOpsAdded = 2;
+ } else {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+
+ ARM_AM::AddrOpc AddrOpcode = getUBit(insn) ? ARM_AM::add : ARM_AM::sub;
+
+ // Inst{6-5} encodes the shift opcode.
+ ARM_AM::ShiftOpc ShOp = getShiftOpcForBits(slice(insn, 6, 5));
+ // Inst{11-7} encodes the imm5 shift amount.
+ unsigned ShImm = slice(insn, 11, 7);
+
+ // A8.4.1. Possible rrx or shift amount of 32...
+ getImmShiftSE(ShOp, ShImm);
+ MI.addOperand(MCOperand::CreateImm(
+ ARM_AM::getAM2Opc(AddrOpcode, ShImm, ShOp)));
+ NumOpsAdded = 3;
+ }
+
+ return true;
+}
+
+static bool DisassembleMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ if (MemBarrierInstr(insn))
+ return true;
+
+ switch (Opcode) {
+ case ARM::CLREX:
+ case ARM::NOP:
+ case ARM::TRAP:
+ case ARM::YIELD:
+ case ARM::WFE:
+ case ARM::WFI:
+ case ARM::SEV:
+ case ARM::SETENDBE:
+ case ARM::SETENDLE:
+ return true;
+ default:
+ break;
+ }
+
+ // CPS has a singleton $opt operand that contains the following information:
+ // opt{4-0} = mode from Inst{4-0}
+ // opt{5} = changemode from Inst{17}
+ // opt{8-6} = AIF from Inst{8-6}
+ // opt{10-9} = imod from Inst{19-18} with 0b10 as enable and 0b11 as disable
+ if (Opcode == ARM::CPS) {
+ unsigned Option = slice(insn, 4, 0) | slice(insn, 17, 17) << 5 |
+ slice(insn, 8, 6) << 6 | slice(insn, 19, 18) << 9;
+ MI.addOperand(MCOperand::CreateImm(Option));
+ NumOpsAdded = 1;
+ return true;
+ }
+
+ // DBG has its option specified in Inst{3-0}.
+ if (Opcode == ARM::DBG) {
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 3, 0)));
+ NumOpsAdded = 1;
+ return true;
+ }
+
+ // BKPT takes an imm32 val equal to ZeroExtend(Inst{19-8:3-0}).
+ if (Opcode == ARM::BKPT) {
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 8) << 4 |
+ slice(insn, 3, 0)));
+ NumOpsAdded = 1;
+ return true;
+ }
+
+ if (PreLoadOpcode(Opcode))
+ return DisassemblePreLoadFrm(MI, Opcode, insn, NumOps, NumOpsAdded);
+
+ assert(0 && "Unexpected misc instruction!");
+ return false;
+}
+
+static bool DisassembleThumbMiscFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(0 && "Unexpected thumb misc. instruction!");
+ return false;
+}
+
+/// FuncPtrs - FuncPtrs maps ARMFormat to its corresponding DisassembleFP.
+/// We divide the disassembly task into different categories, with each one
+/// corresponding to a specific instruction encoding format. There could be
+/// exceptions when handling a specific format, and that is why the Opcode is
+/// also present in the function prototype.
+static const DisassembleFP FuncPtrs[] = {
+ &DisassemblePseudo,
+ &DisassembleMulFrm,
+ &DisassembleBrFrm,
+ &DisassembleBrMiscFrm,
+ &DisassembleDPFrm,
+ &DisassembleDPSoRegFrm,
+ &DisassembleLdFrm,
+ &DisassembleStFrm,
+ &DisassembleLdMiscFrm,
+ &DisassembleStMiscFrm,
+ &DisassembleLdStMulFrm,
+ &DisassembleArithMiscFrm,
+ &DisassembleExtFrm,
+ &DisassembleVFPUnaryFrm,
+ &DisassembleVFPBinaryFrm,
+ &DisassembleVFPConv1Frm,
+ &DisassembleVFPConv2Frm,
+ &DisassembleVFPConv3Frm,
+ &DisassembleVFPConv4Frm,
+ &DisassembleVFPConv5Frm,
+ &DisassembleVFPLdStFrm,
+ &DisassembleVFPLdStMulFrm,
+ &DisassembleVFPMiscFrm,
+ &DisassembleThumbFrm,
+ &DisassembleNEONFrm,
+ &DisassembleNEONGetLnFrm,
+ &DisassembleNEONSetLnFrm,
+ &DisassembleNEONDupFrm,
+ &DisassembleLdStExFrm,
+ &DisassembleMiscFrm,
+ &DisassembleThumbMiscFrm,
+ NULL,
+};
+
+/// ARMAlgorithm - ARMAlgorithm implements ARMDisassemblyAlgorithm for solving
+/// the problem of building the MCOperands of an MCInst. Construction of
+/// ARMAlgorithm requires passing in a function pointer with the DisassembleFP
+/// data type.
+class ARMAlgorithm : public ARMDisassemblyAlgorithm {
+ /// Algorithms - Algorithms stores a map from Format to ARMAlgorithm*.
+ static std::vector<ARMAlgorithm*> Algorithms;
+ /// NSAlgorithms - NSAlgorithms stores a map from NSFormat to ARMAlgorithm*.
+ static std::vector<ARMAlgorithm*> NSAlgorithms;
+
+ DisassembleFP Disassemble;
+
+public:
+ /// GetInstance - GetInstance returns an instance of ARMAlgorithm given the
+ /// encoding Format. API clients should not free up the returned instance.
+ static ARMAlgorithm *GetInstance(ARMFormat Format, NSFormat NSF) {
+ /// Init the first time.
+ if (Algorithms.size() == 0) {
+ Algorithms.resize(array_lengthof(FuncPtrs));
+ for (unsigned i = 0, num = array_lengthof(FuncPtrs); i < num; ++i)
+ if (FuncPtrs[i])
+ Algorithms[i] = new ARMAlgorithm(FuncPtrs[i]);
+ else
+ Algorithms[i] = NULL;
+ }
+ if (NSAlgorithms.size() == 0) {
+ NSAlgorithms.resize(array_lengthof(NEONFuncPtrs));
+ for (unsigned i = 0, num = array_lengthof(NEONFuncPtrs); i < num; ++i)
+ if (NEONFuncPtrs[i])
+ NSAlgorithms[i] = new ARMAlgorithm(NEONFuncPtrs[i]);
+ else
+ NSAlgorithms[i] = NULL;
+ }
+
+ if (Format != ARM_FORMAT_NEONFRM)
+ return Algorithms[Format];
+ else
+ return NSAlgorithms[NSF];
+ }
+
+ virtual bool Solve(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) const {
+ if (Disassemble == NULL)
+ return false;
+
+ return (*Disassemble)(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+
+private:
+ ARMAlgorithm(DisassembleFP fp) :
+ ARMDisassemblyAlgorithm(), Disassemble(fp) {}
+
+ ARMAlgorithm(ARMAlgorithm &AA) :
+ ARMDisassemblyAlgorithm(), Disassemble(AA.Disassemble) {}
+
+ virtual ~ARMAlgorithm() {}
+};
+
+// Define the symbol here.
+std::vector<ARMAlgorithm*> ARMAlgorithm::Algorithms;
+
+// Define the symbol here.
+std::vector<ARMAlgorithm*> ARMAlgorithm::NSAlgorithms;
+
+// Define the symbol here.
+unsigned ARMBasicMCBuilder::ITCounter = 0;
+
+// Define the symbol here.
+unsigned ARMBasicMCBuilder::ITState = 0;
+
+// A8.6.50
+static unsigned short CountITSize(unsigned ITMask) {
+ // First count the trailing zeros of the IT mask.
+ unsigned TZ = CountTrailingZeros_32(ITMask);
+ assert(TZ <= 3);
+ return (4 - TZ);
+}
+
+/// BuildIt - BuildIt performs the build step for this ARM Basic MC Builder.
+/// The general idea is to set the Opcode for the MCInst, followed by adding
+/// the appropriate MCOperands to the MCInst. ARM Basic MC Builder delegates
+/// to the Algo (ARM Disassemble Algorithm) object to perform Format-specific
+/// disassembly, followed by class method TryPredicateAndSBitModifier() to do
+/// PredicateOperand and OptionalDefOperand which follow the Dst/Src Operands.
+bool ARMBasicMCBuilder::BuildIt(MCInst &MI, uint32_t insn) {
+ // Stage 1 sets the Opcode.
+ MI.setOpcode(Opcode);
+ // If the number of operands is zero, we're done!
+ if (NumOps == 0)
+ return true;
+
+ // Stage 2 calls the ARM Disassembly Algorithm to build the operand list.
+ unsigned NumOpsAdded = 0;
+ bool OK = Algo.Solve(MI, Opcode, insn, NumOps, NumOpsAdded);
+
+ if (!OK) return false;
+ if (NumOpsAdded >= NumOps)
+ return true;
+
+ // Stage 3 deals with operands unaccounted for after stage 2 is finished.
+ // FIXME: Should this be done selectively?
+ return TryPredicateAndSBitModifier(MI, Opcode, insn, NumOps - NumOpsAdded);
+}
+
+bool ARMBasicMCBuilder::TryPredicateAndSBitModifier(MCInst& MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOpsRemaining) {
+
+ assert(NumOpsRemaining > 0);
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ const std::string &Name = ARMInsts[Opcode].Name;
+ unsigned Idx = MI.getNumOperands();
+
+ // First, we check whether this instr specifies the PredicateOperand through
+ // a pair of TargetOperandInfos with isPredicate() property.
+ if (NumOpsRemaining >= 2 &&
+ OpInfo[Idx].isPredicate() && OpInfo[Idx+1].isPredicate() &&
+ OpInfo[Idx].RegClass == 0 && OpInfo[Idx+1].RegClass == ARM::CCRRegClassID)
+ {
+ // If we are inside an IT block, get the IT condition bits maintained via
+ // ARMBasicMCBuilder::ITState[7:0], through ARMBasicMCBuilder::GetITCond().
+ // See also A2.5.2.
+ if (InITBlock())
+ MI.addOperand(MCOperand::CreateImm(GetITCond()));
+ else {
+ if (Name.length() > 1 && Name[0] == 't') {
+ // Thumb conditional branch instructions have their cond field embedded,
+ // like ARM.
+ //
+ // A8.6.16 B
+ if (Name == "t2Bcc")
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 25, 22)));
+ else if (Name == "tBcc")
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 11, 8)));
+ else
+ MI.addOperand(MCOperand::CreateImm(ARMCC::AL));
+ } else {
+ // ARM Instructions. Check condition field.
+ int64_t CondVal = getCondField(insn);
+ if (CondVal == 0xF)
+ MI.addOperand(MCOperand::CreateImm(ARMCC::AL));
+ else
+ MI.addOperand(MCOperand::CreateImm(CondVal));
+ }
+ }
+ MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
+ Idx += 2;
+ NumOpsRemaining -= 2;
+ if (NumOpsRemaining == 0)
+ return true;
+ }
+
+ assert(NumOpsRemaining > 0);
+
+ // Next, if OptionalDefOperand exists, we check whether the 'S' bit is set.
+ if (OpInfo[Idx].isOptionalDef() && OpInfo[Idx].RegClass==ARM::CCRRegClassID) {
+ MI.addOperand(MCOperand::CreateReg(getSBit(insn) == 1 ? ARM::CPSR : 0));
+ --NumOpsRemaining;
+ }
+
+ if (NumOpsRemaining == 0)
+ return true;
+ else
+ return false;
+}
+
+/// RunBuildAfterHook - RunBuildAfterHook performs operations deemed necessary
+/// after BuildIt is finished.
+bool ARMBasicMCBuilder::RunBuildAfterHook(bool Status, MCInst &MI,
+ uint32_t insn) {
+
+ if (Opcode == ARM::t2IT) {
+ ARMBasicMCBuilder::ITCounter = CountITSize(slice(insn, 3, 0));
+ ARMBasicMCBuilder::InitITState(slice(insn, 7, 0));
+ } else if (InITBlock())
+ ARMBasicMCBuilder::UpdateITState();
+
+ return Status;
+}
+
+AbstractARMMCBuilder *ARMMCBuilderFactory::CreateMCBuilder(unsigned Opcode,
+ ARMFormat Format, NSFormat NSF) {
+
+ ARMAlgorithm *Algo = ARMAlgorithm::GetInstance(Format, NSF);
+ if (!Algo)
+ return NULL;
+
+ return new ARMBasicMCBuilder(Opcode, Format, NSF,
+ ARMInsts[Opcode].getNumOperands(), *Algo);
+}
diff --git a/llvm/lib/Target/ARM/Disassembler/ARMDisassemblerCore.h b/llvm/lib/Target/ARM/Disassembler/ARMDisassemblerCore.h
new file mode 100644
index 00000000000..23b309cd4f4
--- /dev/null
+++ b/llvm/lib/Target/ARM/Disassembler/ARMDisassemblerCore.h
@@ -0,0 +1,301 @@
+//===- ARMDisassemblerCore.h - ARM disassembler helpers ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is part of the ARM Disassembler.
+//
+// The first part defines the enumeration type of ARM instruction format, which
+// specifies the encoding used by the instruction, as well as a helper function
+// to convert the enums to printable char strings.
+//
+// It also contains code to represent the concepts of Builder, Builder Factory,
+// as well as the Algorithm to solve the problem of disassembling an ARM instr.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef ARMDISASSEMBLERCORE_H
+#define ARMDISASSEMBLERCORE_H
+
+#include "llvm/MC/MCInst.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "ARMInstrInfo.h"
+
+namespace llvm {
+
+class ARMUtils {
+public:
+ static const char *OpcodeName(unsigned Opcode);
+};
+
+#define ARM_FORMATS \
+ ENTRY(ARM_FORMAT_PSEUDO, 0) \
+ ENTRY(ARM_FORMAT_MULFRM, 1) \
+ ENTRY(ARM_FORMAT_BRFRM, 2) \
+ ENTRY(ARM_FORMAT_BRMISCFRM, 3) \
+ ENTRY(ARM_FORMAT_DPFRM, 4) \
+ ENTRY(ARM_FORMAT_DPSOREGFRM, 5) \
+ ENTRY(ARM_FORMAT_LDFRM, 6) \
+ ENTRY(ARM_FORMAT_STFRM, 7) \
+ ENTRY(ARM_FORMAT_LDMISCFRM, 8) \
+ ENTRY(ARM_FORMAT_STMISCFRM, 9) \
+ ENTRY(ARM_FORMAT_LDSTMULFRM, 10) \
+ ENTRY(ARM_FORMAT_ARITHMISCFRM, 11) \
+ ENTRY(ARM_FORMAT_EXTFRM, 12) \
+ ENTRY(ARM_FORMAT_VFPUNARYFRM, 13) \
+ ENTRY(ARM_FORMAT_VFPBINARYFRM, 14) \
+ ENTRY(ARM_FORMAT_VFPCONV1FRM, 15) \
+ ENTRY(ARM_FORMAT_VFPCONV2FRM, 16) \
+ ENTRY(ARM_FORMAT_VFPCONV3FRM, 17) \
+ ENTRY(ARM_FORMAT_VFPCONV4FRM, 18) \
+ ENTRY(ARM_FORMAT_VFPCONV5FRM, 19) \
+ ENTRY(ARM_FORMAT_VFPLDSTFRM, 20) \
+ ENTRY(ARM_FORMAT_VFPLDSTMULFRM, 21) \
+ ENTRY(ARM_FORMAT_VFPMISCFRM, 22) \
+ ENTRY(ARM_FORMAT_THUMBFRM, 23) \
+ ENTRY(ARM_FORMAT_NEONFRM, 24) \
+ ENTRY(ARM_FORMAT_NEONGETLNFRM, 25) \
+ ENTRY(ARM_FORMAT_NEONSETLNFRM, 26) \
+ ENTRY(ARM_FORMAT_NEONDUPFRM, 27) \
+ ENTRY(ARM_FORMAT_LDSTEXFRM, 28) \
+ ENTRY(ARM_FORMAT_MISCFRM, 29) \
+ ENTRY(ARM_FORMAT_THUMBMISCFRM, 30)
+
+// ARM instruction format specifies the encoding used by the instruction.
+#define ENTRY(n, v) n = v,
+typedef enum {
+ ARM_FORMATS
+ ARM_FORMAT_NA
+} ARMFormat;
+#undef ENTRY
+
+// Converts enum to const char*.
+static const inline char *stringForARMFormat(ARMFormat form) {
+#define ENTRY(n, v) case n: return #n;
+ switch(form) {
+ ARM_FORMATS
+ case ARM_FORMAT_NA:
+ default:
+ return "";
+ }
+#undef ENTRY
+}
+
+#define NS_FORMATS \
+ ENTRY(NS_FORMAT_NONE, 0) \
+ ENTRY(NS_FORMAT_VLDSTLane, 1) \
+ ENTRY(NS_FORMAT_VLDSTLaneDbl, 2) \
+ ENTRY(NS_FORMAT_VLDSTRQ, 3) \
+ ENTRY(NS_FORMAT_NVdImm, 4) \
+ ENTRY(NS_FORMAT_NVdVmImm, 5) \
+ ENTRY(NS_FORMAT_NVdVmImmVCVT, 6) \
+ ENTRY(NS_FORMAT_NVdVmImmVDupLane, 7) \
+ ENTRY(NS_FORMAT_NVdVmImmVSHLL, 8) \
+ ENTRY(NS_FORMAT_NVectorShuffle, 9) \
+ ENTRY(NS_FORMAT_NVectorShift, 10) \
+ ENTRY(NS_FORMAT_NVectorShift2, 11) \
+ ENTRY(NS_FORMAT_NVdVnVmImm, 12) \
+ ENTRY(NS_FORMAT_NVdVnVmImmVectorShift, 13) \
+ ENTRY(NS_FORMAT_NVdVnVmImmVectorExtract, 14) \
+ ENTRY(NS_FORMAT_NVdVnVmImmMulScalar, 15) \
+ ENTRY(NS_FORMAT_VTBL, 16)
+
+// NEON instruction sub-format further classify the NEONFrm instruction.
+#define ENTRY(n, v) n = v,
+typedef enum {
+ NS_FORMATS
+ NS_FORMAT_NA
+} NSFormat;
+#undef ENTRY
+
+// Converts enum to const char*.
+static const inline char *stringForNSFormat(NSFormat form) {
+#define ENTRY(n, v) case n: return #n;
+ switch(form) {
+ NS_FORMATS
+ case NS_FORMAT_NA:
+ return "NA";
+ default:
+ return "";
+ }
+#undef ENTRY
+}
+
+/// Expands on the enum definitions from ARMBaseInstrInfo.h.
+/// They are being used by the disassembler implementation.
+namespace ARMII {
+ enum {
+ NEONRegMask = 15,
+ GPRRegMask = 15,
+ NEON_RegRdShift = 12,
+ NEON_D_BitShift = 22,
+ NEON_RegRnShift = 16,
+ NEON_N_BitShift = 7,
+ NEON_RegRmShift = 0,
+ NEON_M_BitShift = 5
+ };
+}
+
+/// Utility function for extracting [From, To] bits from a uint32_t.
+static inline unsigned slice(uint32_t Bits, unsigned From, unsigned To) {
+ assert(From < 32 && To < 32 && From >= To);
+ return (Bits >> To) & ((1 << (From - To + 1)) - 1);
+}
+
+/// Utility function for setting [From, To] bits to Val for a uint32_t.
+static inline void setSlice(uint32_t &Bits, unsigned From, unsigned To,
+ uint32_t Val) {
+ assert(From < 32 && To < 32 && From >= To);
+ uint32_t Mask = ((1 << (From - To + 1)) - 1);
+ Bits &= ~(Mask << To);
+ Bits |= (Val & Mask) << To;
+}
+
+/// Various utilities for checking the target specific flags.
+
+/// A unary data processing instruction doesn't have an Rn operand.
+static inline bool isUnaryDP(unsigned TSFlags) {
+ return (TSFlags & ARMII::UnaryDP);
+}
+
+/// This four-bit field describes the addressing mode used.
+/// See also ARMBaseInstrInfo.h.
+static inline unsigned getAddrMode(unsigned TSFlags) {
+ return (TSFlags & ARMII::AddrModeMask);
+}
+
+/// {IndexModePre, IndexModePost}
+/// Only valid for load and store ops.
+/// See also ARMBaseInstrInfo.h.
+static inline unsigned getIndexMode(unsigned TSFlags) {
+ return (TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift;
+}
+
+/// Pre-/post-indexed operations define an extra $base_wb in the OutOperandList.
+static inline bool isPrePostLdSt(unsigned TSFlags) {
+ return (TSFlags & ARMII::IndexModeMask) != 0;
+}
+
+/// AbstractARMMCBuilder - AbstractARMMCBuilder represents an interface of ARM
+/// MCInst builder that knows how to build up the MCOperand list.
+class AbstractARMMCBuilder {
+public:
+ /// Build - Build the MCInst fully and return true. Return false if any
+ /// failure occurs.
+ virtual bool Build(MCInst &MI, uint32_t insn) { return false; }
+};
+
+/// ARMDisassemblyAlgorithm - ARMDisassemblyAlgorithm represents an interface of
+/// ARM disassembly algorithm that relies on the entries of target operand info,
+/// among other things, to solve the problem of disassembling an ARM machine
+/// instruction.
+class ARMDisassemblyAlgorithm {
+public:
+ /// Return true if this algorithm successfully disassembles the instruction.
+ /// NumOpsAdded is updated to reflect the number of operands added by the
+ /// algorithm. NumOpsAdded may be less than NumOps, in which case, there are
+ /// operands unaccounted for which need to be dealt with by the API client.
+ virtual bool Solve(MCInst& MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) const
+ = 0;
+};
+
+/// ARMBasicMCBuilder - ARMBasicMCBuilder represents a concrete subclass of
+/// ARMAbstractMCBuilder.
+class ARMBasicMCBuilder : public AbstractARMMCBuilder {
+ unsigned Opcode;
+ ARMFormat Format;
+ NSFormat NSF;
+ unsigned short NumOps;
+ const ARMDisassemblyAlgorithm &Algo;
+ static unsigned ITCounter; // Possible values: 0, 1, 2, 3, 4.
+ static unsigned ITState; // A2.5.2 Consists of IT[7:5] and IT[4:0] initially.
+
+public:
+ ARMBasicMCBuilder(ARMBasicMCBuilder &MCB) : AbstractARMMCBuilder(),
+ Opcode(MCB.Opcode), Format(MCB.Format), NSF(MCB.NSF), NumOps(MCB.NumOps),
+ Algo(MCB.Algo) {}
+
+ /// Opcode, Format, NSF, NumOperands, and Algo make an ARM Basic MCBuilder.
+ ARMBasicMCBuilder(unsigned opc, ARMFormat format, NSFormat NSF,
+ unsigned short num, const ARMDisassemblyAlgorithm &algo)
+ : AbstractARMMCBuilder(), Opcode(opc), Format(format), NumOps(num),
+ Algo(algo) {}
+
+ /// TryPredicateAndSBitModifier - TryPredicateAndSBitModifier tries to process
+ /// the possible Predicate and SBitModifier, to build the remaining MCOperand
+ /// constituents.
+ static bool TryPredicateAndSBitModifier(MCInst& MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOpsRemaning);
+
+ /// InITBlock - InITBlock returns true if we are inside an IT block.
+ static bool InITBlock() {
+ return ITCounter > 0;
+ }
+
+ /// Build - Build delegates to BuildIt to perform the heavy liftling. After
+ /// that, it invokes RunBuildAfterHook where some housekeepings can be done.
+ virtual bool Build(MCInst &MI, uint32_t insn) {
+ bool Status = BuildIt(MI, insn);
+ return RunBuildAfterHook(Status, MI, insn);
+ }
+
+ /// BuildIt - BuildIt performs the build step for this ARM Basic MC Builder.
+ /// The general idea is to set the Opcode for the MCInst, followed by adding
+ /// the appropriate MCOperands to the MCInst. ARM Basic MC Builder delegates
+ /// to the Algo (ARM Disassemble Algorithm) object to perform Format-specific
+ /// disassembly, followed by class method TryPredicateAndSBitModifier() to do
+ /// PredicateOperand and OptionalDefOperand which follow the Dst/Src Operands.
+ virtual bool BuildIt(MCInst &MI, uint32_t insn);
+
+ /// RunBuildAfterHook - RunBuildAfterHook performs operations deemed necessary
+ /// after BuildIt is finished.
+ virtual bool RunBuildAfterHook(bool Status, MCInst &MI, uint32_t insn);
+
+private:
+ /// Get condition of the current IT instruction.
+ static unsigned GetITCond() {
+ return slice(ITState, 7, 4);
+ }
+
+ /// Init ITState.
+ static void InitITState(unsigned short bits7_0) {
+ ITState = bits7_0;
+ }
+
+ /// Update ITState if necessary.
+ static void UpdateITState() {
+ assert(ITCounter);
+ --ITCounter;
+ if (ITCounter == 0)
+ ITState = 0;
+ else {
+ unsigned short NewITState4_0 = slice(ITState, 4, 0) << 1;
+ setSlice(ITState, 4, 0, NewITState4_0);
+ }
+ }
+};
+
+/// ARMMCBuilderFactory - ARMMCBuilderFactory represents the factory class that
+/// vends out ARMAbstractMCBuilder instances through its class method.
+class ARMMCBuilderFactory {
+private:
+ ARMMCBuilderFactory(); // DO NOT IMPLEMENT.
+
+public:
+ /// CreateMCBuilder - Return an AbstractARMMCBuilder that can build up the MC
+ /// infrastructure of an MCInst given the Opcode and Format of the instr.
+ /// Return NULL if it fails to create/return a proper builder. API clients
+ /// are responsible for freeing up of the allocated memory. Cacheing can be
+ /// performed by the API clients to improve performance.
+ static AbstractARMMCBuilder *CreateMCBuilder(unsigned Opcode,
+ ARMFormat Format, NSFormat NSF);
+};
+
+} // namespace llvm
+
+#endif
diff --git a/llvm/lib/Target/ARM/Disassembler/Makefile b/llvm/lib/Target/ARM/Disassembler/Makefile
new file mode 100644
index 00000000000..3eab8325a44
--- /dev/null
+++ b/llvm/lib/Target/ARM/Disassembler/Makefile
@@ -0,0 +1,17 @@
+##===- lib/Target/ARM/Disassembler/Makefile ----------------*- Makefile -*-===##
+#
+# The LLVM Compiler Infrastructure
+#
+# This file is distributed under the University of Illinois Open Source
+# License. See LICENSE.TXT for details.
+#
+##===----------------------------------------------------------------------===##
+
+LEVEL = ../../../..
+LIBRARYNAME = LLVMARMDisassembler
+CXXFLAGS = -fno-rtti
+
+# Hack: we need to include 'main' arm target directory to grab private headers
+CPPFLAGS = -I$(PROJ_OBJ_DIR)/.. -I$(PROJ_SRC_DIR)/..
+
+include $(LEVEL)/Makefile.common
diff --git a/llvm/lib/Target/ARM/Disassembler/ThumbDisassemblerCore.cpp.inc b/llvm/lib/Target/ARM/Disassembler/ThumbDisassemblerCore.cpp.inc
new file mode 100644
index 00000000000..928c403b7ef
--- /dev/null
+++ b/llvm/lib/Target/ARM/Disassembler/ThumbDisassemblerCore.cpp.inc
@@ -0,0 +1,2158 @@
+//===- ThumbDisassemblerCore.cpp - ARM disassembler helpers ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is part of the ARM Disassembler.
+// It contains code for disassembling a Thumb instr.
+//
+//===----------------------------------------------------------------------===//
+
+///////////////////////////////
+// //
+// Utility Functions //
+// //
+///////////////////////////////
+
+// Utilities for 16-bit Thumb instructions.
+/*
+15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+ [ tRt ]
+ [ tRm ] [ tRn ] [ tRd ]
+ D [ Rm ] [ Rd ]
+
+ [ imm3]
+ [ imm5 ]
+ i [ imm5 ]
+ [ imm7 ]
+ [ imm8 ]
+ [ imm11 ]
+
+ [ cond ]
+*/
+
+static bool InITBlock() {
+ return ARMBasicMCBuilder::InITBlock();
+}
+
+// Extract tRt: Inst{10-8}.
+static inline unsigned getT1tRt(uint32_t insn) {
+ return slice(insn, 10, 8);
+}
+
+// Extract tRm: Inst{8-6}.
+static inline unsigned getT1tRm(uint32_t insn) {
+ return slice(insn, 8, 6);
+}
+
+// Extract tRn: Inst{5-3}.
+static inline unsigned getT1tRn(uint32_t insn) {
+ return slice(insn, 5, 3);
+}
+
+// Extract tRd: Inst{2-0}.
+static inline unsigned getT1tRd(uint32_t insn) {
+ return slice(insn, 2, 0);
+}
+
+// Extract [D:Rd]: Inst{7:2-0}.
+static inline unsigned getT1Rd(uint32_t insn) {
+ return slice(insn, 7, 7) << 3 | slice(insn, 2, 0);
+}
+
+// Extract Rm: Inst{6-3}.
+static inline unsigned getT1Rm(uint32_t insn) {
+ return slice(insn, 6, 3);
+}
+
+// Extract imm3: Inst{8-6}.
+static inline unsigned getT1Imm3(uint32_t insn) {
+ return slice(insn, 8, 6);
+}
+
+// Extract imm5: Inst{10-6}.
+static inline unsigned getT1Imm5(uint32_t insn) {
+ return slice(insn, 10, 6);
+}
+
+// Extract i:imm5: Inst{9:7-3}.
+static inline unsigned getT1Imm6(uint32_t insn) {
+ return slice(insn, 9, 9) << 5 | slice(insn, 7, 3);
+}
+
+// Extract imm7: Inst{6-0}.
+static inline unsigned getT1Imm7(uint32_t insn) {
+ return slice(insn, 6, 0);
+}
+
+// Extract imm8: Inst{7-0}.
+static inline unsigned getT1Imm8(uint32_t insn) {
+ return slice(insn, 7, 0);
+}
+
+// Extract imm11: Inst{10-0}.
+static inline unsigned getT1Imm11(uint32_t insn) {
+ return slice(insn, 10, 0);
+}
+
+// Extract cond: Inst{11-8}.
+static inline unsigned getT1Cond(uint32_t insn) {
+ return slice(insn, 11, 8);
+}
+
+static inline bool IsGPR(unsigned RegClass) {
+ return RegClass == ARM::GPRRegClassID;
+}
+
+// Utilities for 32-bit Thumb instructions.
+
+// Extract imm4: Inst{19-16}.
+static inline unsigned getImm4(uint32_t insn) {
+ return slice(insn, 19, 16);
+}
+
+// Extract imm3: Inst{14-12}.
+static inline unsigned getImm3(uint32_t insn) {
+ return slice(insn, 14, 12);
+}
+
+// Extract imm8: Inst{7-0}.
+static inline unsigned getImm8(uint32_t insn) {
+ return slice(insn, 7, 0);
+}
+
+// A8.6.61 LDRB (immediate, Thumb) and friends
+// +/-: Inst{9}
+// imm8: Inst{7-0}
+static inline int decodeImm8(uint32_t insn) {
+ int Offset = getImm8(insn);
+ return slice(insn, 9, 9) ? Offset : -Offset;
+}
+
+// Extract imm12: Inst{11-0}.
+static inline unsigned getImm12(uint32_t insn) {
+ return slice(insn, 11, 0);
+}
+
+// A8.6.63 LDRB (literal) and friends
+// +/-: Inst{23}
+// imm12: Inst{11-0}
+static inline int decodeImm12(uint32_t insn) {
+ int Offset = getImm12(insn);
+ return slice(insn, 23, 23) ? Offset : -Offset;
+}
+
+// Extract imm2: Inst{7-6}.
+static inline unsigned getImm2(uint32_t insn) {
+ return slice(insn, 7, 6);
+}
+
+// For BFI, BFC, t2SBFX, and t2UBFX.
+// Extract lsb: Inst{14-12:7-6}.
+static inline unsigned getLsb(uint32_t insn) {
+ return getImm3(insn) << 2 | getImm2(insn);
+}
+
+// For BFI and BFC.
+// Extract msb: Inst{4-0}.
+static inline unsigned getMsb(uint32_t insn) {
+ return slice(insn, 4, 0);
+}
+
+// For t2SBFX and t2UBFX.
+// Extract widthminus1: Inst{4-0}.
+static inline unsigned getWidthMinus1(uint32_t insn) {
+ return slice(insn, 4, 0);
+}
+
+// For t2ADDri12 and t2SUBri12.
+// imm12 = i:imm3:imm8;
+static inline unsigned getIImm3Imm8(uint32_t insn) {
+ return slice(insn, 26, 26) << 11 | getImm3(insn) << 8 | getImm8(insn);
+}
+
+// For t2MOVi16 and t2MOVTi16.
+// imm16 = imm4:i:imm3:imm8;
+static inline unsigned getImm16(uint32_t insn) {
+ return getImm4(insn) << 12 | slice(insn, 26, 26) << 11 |
+ getImm3(insn) << 8 | getImm8(insn);
+}
+
+// Inst{5-4} encodes the shift type.
+static inline unsigned getShiftTypeBits(uint32_t insn) {
+ return slice(insn, 5, 4);
+}
+
+// Inst{14-12}:Inst{7-6} encodes the imm5 shift amount.
+static inline unsigned getShiftAmtBits(uint32_t insn) {
+ return getImm3(insn) << 2 | getImm2(insn);
+}
+
+// A8.6.17 BFC
+// Encoding T1 ARMv6T2, ARMv7
+// LLVM-specific encoding for #<lsb> and #<width>
+static inline uint32_t getBitfieldInvMask(uint32_t insn) {
+ uint32_t lsb = getImm3(insn) << 2 | getImm2(insn);
+ uint32_t msb = getMsb(insn);
+ uint32_t Val = 0;
+ assert(lsb <= msb && "Encoding error: lsb > msb");
+ for (uint32_t i = lsb; i <= msb; ++i)
+ Val |= (1 << i);
+ return ~Val;
+}
+
+// A8.4 Shifts applied to a register
+// A8.4.1 Constant shifts
+// A8.4.3 Pseudocode details of instruction-specified shifts and rotates
+//
+// decodeImmShift() returns the shift amount and the the shift opcode.
+// Note that, as of Jan-06-2010, LLVM does not support rrx shifted operands yet.
+static inline unsigned decodeImmShift(unsigned bits2, unsigned imm5,
+ ARM_AM::ShiftOpc &ShOp) {
+
+ assert(imm5 < 32);
+ switch (bits2) {
+ default: assert(0 && "No such value");
+ case 0:
+ ShOp = ARM_AM::lsl;
+ return imm5;
+ case 1:
+ ShOp = ARM_AM::lsr;
+ return (imm5 == 0 ? 32 : imm5);
+ case 2:
+ ShOp = ARM_AM::asr;
+ return (imm5 == 0 ? 32 : imm5);
+ case 3:
+ ShOp = (imm5 == 0 ? ARM_AM::rrx : ARM_AM::ror);
+ return (imm5 == 0 ? 1 : imm5);
+ }
+}
+
+// A6.3.2 Modified immediate constants in Thumb instructions
+//
+// ThumbExpandImm() returns the modified immediate constant given an imm12 for
+// Thumb data-processing instructions with modified immediate.
+// See also A6.3.1 Data-processing (modified immediate).
+static inline unsigned ThumbExpandImm(unsigned imm12) {
+ assert(imm12 <= 0xFFF);
+
+ // If the leading two bits is 0b00, the modified immediate constant is
+ // obtained by splatting the low 8 bits into the first byte, every other byte,
+ // or every byte of a 32-bit value.
+ //
+ // Otherwise, a rotate right of '1':imm12<6:0> by the amount imm12<11:7> is
+ // performed.
+
+ if (slice(imm12, 11, 10) == 0) {
+ unsigned short control = slice(imm12, 9, 8);
+ unsigned imm8 = slice(imm12, 7, 0);
+ switch (control) {
+ default:
+ assert(0 && "No such value");
+ return 0;
+ case 0:
+ return imm8;
+ case 1:
+ return imm8 << 16 | imm8;
+ case 2:
+ return imm8 << 24 | imm8 << 8;
+ case 3:
+ return imm8 << 24 | imm8 << 16 | imm8 << 8 | imm8;
+ }
+ } else {
+ // A rotate is required.
+ unsigned Val = 1 << 7 | slice(imm12, 6, 0);
+ unsigned Amt = slice(imm12, 11, 7);
+ return ARM_AM::rotr32(Val, Amt);
+ }
+}
+
+static inline int decodeImm32_B_EncodingT3(uint32_t insn) {
+ bool S = slice(insn, 26, 26);
+ bool J1 = slice(insn, 13, 13);
+ bool J2 = slice(insn, 11, 11);
+ unsigned Imm21 = slice(insn, 21, 16) << 12 | slice(insn, 10, 0) << 1;
+ if (S) Imm21 |= 1 << 20;
+ if (J2) Imm21 |= 1 << 19;
+ if (J1) Imm21 |= 1 << 18;
+
+ return signextend<signed int, 21>(Imm21);
+}
+
+static inline int decodeImm32_B_EncodingT4(uint32_t insn) {
+ unsigned S = slice(insn, 26, 26);
+ bool I1 = slice(insn, 13, 13) == S;
+ bool I2 = slice(insn, 11, 11) == S;
+ unsigned Imm25 = slice(insn, 25, 16) << 12 | slice(insn, 10, 0) << 1;
+ if (S) Imm25 |= 1 << 24;
+ if (I1) Imm25 |= 1 << 23;
+ if (I2) Imm25 |= 1 << 22;
+
+ return signextend<signed int, 25>(Imm25);
+}
+
+static inline int decodeImm32_BL(uint32_t insn) {
+ unsigned S = slice(insn, 26, 26);
+ bool I1 = slice(insn, 13, 13) == S;
+ bool I2 = slice(insn, 11, 11) == S;
+ unsigned Imm25 = slice(insn, 25, 16) << 12 | slice(insn, 10, 0) << 1;
+ if (S) Imm25 |= 1 << 24;
+ if (I1) Imm25 |= 1 << 23;
+ if (I2) Imm25 |= 1 << 22;
+
+ return signextend<signed int, 25>(Imm25);
+}
+
+static inline int decodeImm32_BLX(uint32_t insn) {
+ unsigned S = slice(insn, 26, 26);
+ bool I1 = slice(insn, 13, 13) == S;
+ bool I2 = slice(insn, 11, 11) == S;
+ unsigned Imm25 = slice(insn, 25, 16) << 12 | slice(insn, 10, 1) << 2;
+ if (S) Imm25 |= 1 << 24;
+ if (I1) Imm25 |= 1 << 23;
+ if (I2) Imm25 |= 1 << 22;
+
+ return signextend<signed int, 25>(Imm25);
+}
+
+// See, for example, A8.6.221 SXTAB16.
+static inline unsigned decodeRotate(uint32_t insn) {
+ unsigned rotate = slice(insn, 5, 4);
+ return rotate << 3;
+}
+
+///////////////////////////////////////////////
+// //
+// Thumb1 instruction disassembly functions. //
+// //
+///////////////////////////////////////////////
+
+// See "Utilities for 16-bit Thumb instructions" for register naming convention.
+
+// A6.2.1 Shift (immediate), add, subtract, move, and compare
+//
+// shift immediate: tRd CPSR tRn imm5
+// add/sub register: tRd CPSR tRn tRm
+// add/sub 3-bit immediate: tRd CPSR tRn imm3
+// add/sub 8-bit immediate: tRt CPSR tRt(TIED_TO) imm8
+// mov/cmp immediate: tRt [CPSR] imm8 (CPSR present for mov)
+//
+// Special case:
+// tMOVSr: tRd tRn
+static bool DisassembleThumb1General(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::tGPRRegClassID);
+
+ bool Imm3 = (Opcode == ARM::tADDi3 || Opcode == ARM::tSUBi3);
+
+ // Use Rt implies use imm8.
+ bool UseRt = (Opcode == ARM::tADDi8 || Opcode == ARM::tSUBi8 ||
+ Opcode == ARM::tMOVi8 || Opcode == ARM::tCMPi8);
+
+ // Add the destination operand.
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::tGPRRegClassID,
+ UseRt ? getT1tRt(insn) : getT1tRd(insn))));
+ ++OpIdx;
+
+ // Check whether the next operand to be added is a CCR Register.
+ if (OpInfo[OpIdx].RegClass == ARM::CCRRegClassID) {
+ assert(OpInfo[OpIdx].isOptionalDef());
+ MI.addOperand(MCOperand::CreateReg(InITBlock() ? 0 : ARM::CPSR));
+ ++OpIdx;
+ }
+
+ // Check whether the next operand to be added is a Thumb1 Register.
+ assert(OpIdx < NumOps);
+ if (OpInfo[OpIdx].RegClass == ARM::tGPRRegClassID) {
+ // For UseRt, the reg operand is tied to the first reg operand.
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::tGPRRegClassID,
+ UseRt ? getT1tRt(insn) : getT1tRn(insn))));
+ ++OpIdx;
+ }
+
+ // Special case for tMOVSr.
+ if (OpIdx == NumOps)
+ return true;
+
+ // The next available operand is either a reg operand or an imm operand.
+ if (OpInfo[OpIdx].RegClass == ARM::tGPRRegClassID) {
+ // Three register operand instructions.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRm(insn))));
+ } else {
+ assert(OpInfo[OpIdx].RegClass == 0 &&
+ !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef());
+ MI.addOperand(MCOperand::CreateImm(UseRt ? getT1Imm8(insn)
+ : (Imm3 ? getT1Imm3(insn)
+ : getT1Imm5(insn))));
+ }
+ ++OpIdx;
+
+ return true;
+}
+
+// A6.2.2 Data-processing
+//
+// tCMPr, tTST, tCMN: tRd tRn
+// tMVN, tRSB: tRd CPSR tRn
+// Others: tRd CPSR tRd(TIED_TO) tRn
+static bool DisassembleThumb1DP(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::tGPRRegClassID &&
+ (OpInfo[1].RegClass == ARM::CCRRegClassID
+ || OpInfo[1].RegClass == ARM::tGPRRegClassID));
+
+ // Add the destination operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRd(insn))));
+ ++OpIdx;
+
+ // Check whether the next operand to be added is a CCR Register.
+ if (OpInfo[OpIdx].RegClass == ARM::CCRRegClassID) {
+ assert(OpInfo[OpIdx].isOptionalDef());
+ MI.addOperand(MCOperand::CreateReg(InITBlock() ? 0 : ARM::CPSR));
+ ++OpIdx;
+ }
+
+ // We have either { tRd(TIED_TO), tRn } or { tRn } remaining.
+ // Process the TIED_TO operand first.
+
+ assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::tGPRRegClassID);
+ int Idx;
+ if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) {
+ // The reg operand is tied to the first reg operand.
+ MI.addOperand(MI.getOperand(Idx));
+ ++OpIdx;
+ }
+
+ // Process possible next reg operand.
+ if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::tGPRRegClassID) {
+ // Add tRn operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRn(insn))));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+// A6.2.3 Special data instructions and branch and exchange
+//
+// tADDhirr: Rd Rd(TIED_TO) Rm
+// tCMPhir: Rd Rm
+// tMOVr, tMOVgpr2gpr, tMOVgpr2tgpr, tMOVtgpr2gpr: Rd|tRd Rm|tRn
+// tBX_RET: 0 operand
+// tBX_RET_vararg: Rm
+// tBLXr_r9: Rm
+static bool DisassembleThumb1Special(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ // tBX_RET has 0 operand.
+ if (NumOps == 0)
+ return true;
+
+ // BX/BLX has 1 reg operand: Rm.
+ if (NumOps == 1) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ getT1Rm(insn))));
+ NumOpsAdded = 1;
+ return true;
+ }
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ // Add the destination operand.
+ unsigned RegClass = OpInfo[OpIdx].RegClass;
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(RegClass,
+ IsGPR(RegClass) ? getT1Rd(insn)
+ : getT1tRd(insn))));
+ ++OpIdx;
+
+ // We have either { Rd(TIED_TO), Rm } or { Rm|tRn } remaining.
+ // Process the TIED_TO operand first.
+
+ assert(OpIdx < NumOps);
+ int Idx;
+ if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) {
+ // The reg operand is tied to the first reg operand.
+ MI.addOperand(MI.getOperand(Idx));
+ ++OpIdx;
+ }
+
+ // The next reg operand is either Rm or tRn.
+ assert(OpIdx < NumOps);
+ RegClass = OpInfo[OpIdx].RegClass;
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(RegClass,
+ IsGPR(RegClass) ? getT1Rm(insn)
+ : getT1tRn(insn))));
+ ++OpIdx;
+
+ return true;
+}
+
+// A8.6.59 LDR (literal)
+//
+// tLDRpci: tRt imm8*4
+static bool DisassembleThumb1LdPC(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::tGPRRegClassID &&
+ (OpInfo[1].RegClass == 0 &&
+ !OpInfo[1].isPredicate() &&
+ !OpInfo[1].isOptionalDef()));
+
+ // Add the destination operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRt(insn))));
+
+ // And the (imm8 << 2) operand.
+ MI.addOperand(MCOperand::CreateImm(getT1Imm8(insn) << 2));
+
+ NumOpsAdded = 2;
+
+ return true;
+}
+
+// Thumb specific addressing modes (see ARMInstrThumb.td):
+//
+// t_addrmode_rr := reg + reg
+//
+// t_addrmode_s4 := reg + reg
+// reg + imm5 * 4
+//
+// t_addrmode_s2 := reg + reg
+// reg + imm5 * 2
+//
+// t_addrmode_s1 := reg + reg
+// reg + imm5
+//
+// t_addrmode_sp := sp + imm8 * 4
+//
+
+// A6.2.4 Load/store single data item
+//
+// Load/Store Register (reg|imm): tRd tRn imm5 tRm
+// Load Register Signed Byte|Halfword: tRd tRn tRm
+static bool DisassembleThumb1LdSt(unsigned opA, MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ // Table A6-5 16-bit Thumb Load/store instructions
+ // opA = 0b0101 for STR/LDR (register) and friends.
+ // Otherwise, we have STR/LDR (immediate) and friends.
+ bool Imm5 = (opA != 5);
+
+ assert(NumOps >= 2
+ && OpInfo[0].RegClass == ARM::tGPRRegClassID
+ && OpInfo[1].RegClass == ARM::tGPRRegClassID);
+
+ // Add the destination reg and the base reg.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRd(insn))));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRn(insn))));
+ OpIdx = 2;
+
+ // We have either { imm5, tRm } or { tRm } remaining.
+ // Process the imm5 first. Note that STR/LDR (register) should skip the imm5
+ // offset operand for t_addrmode_s[1|2|4].
+
+ assert(OpIdx < NumOps);
+
+ if (OpInfo[OpIdx].RegClass == 0 && !OpInfo[OpIdx].isPredicate() &&
+ !OpInfo[OpIdx].isOptionalDef()) {
+
+ MI.addOperand(MCOperand::CreateImm(Imm5 ? getT1Imm5(insn) : 0));
+ ++OpIdx;
+ }
+
+ // The next reg operand is tRm, the offset.
+ assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == ARM::tGPRRegClassID);
+ MI.addOperand(MCOperand::CreateReg(Imm5 ? 0
+ : getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRm(insn))));
+ ++OpIdx;
+
+ return true;
+}
+
+// A6.2.4 Load/store single data item
+//
+// Load/Store Register SP relative: tRt ARM::SP imm8
+static bool DisassembleThumb1LdStSP(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi);
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ assert(NumOps >= 3 &&
+ OpInfo[0].RegClass == ARM::tGPRRegClassID &&
+ OpInfo[1].RegClass == ARM::GPRRegClassID &&
+ (OpInfo[2].RegClass == 0 &&
+ !OpInfo[2].isPredicate() &&
+ !OpInfo[2].isOptionalDef()));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRt(insn))));
+ MI.addOperand(MCOperand::CreateReg(ARM::SP));
+ MI.addOperand(MCOperand::CreateImm(getT1Imm8(insn)));
+ NumOpsAdded = 3;
+ return true;
+}
+
+// Table A6-1 16-bit Thumb instruction encoding
+// A8.6.10 ADR
+//
+// tADDrPCi: tRt imm8
+static bool DisassembleThumb1AddPCi(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(Opcode == ARM::tADDrPCi);
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::tGPRRegClassID &&
+ (OpInfo[1].RegClass == 0 &&
+ !OpInfo[1].isPredicate() &&
+ !OpInfo[1].isOptionalDef()));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRt(insn))));
+ MI.addOperand(MCOperand::CreateImm(getT1Imm8(insn)));
+ NumOpsAdded = 2;
+ return true;
+}
+
+// Table A6-1 16-bit Thumb instruction encoding
+// A8.6.8 ADD (SP plus immediate)
+//
+// tADDrSPi: tRt ARM::SP imm8
+static bool DisassembleThumb1AddSPi(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(Opcode == ARM::tADDrSPi);
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ assert(NumOps >= 3 &&
+ OpInfo[0].RegClass == ARM::tGPRRegClassID &&
+ OpInfo[1].RegClass == ARM::GPRRegClassID &&
+ (OpInfo[2].RegClass == 0 &&
+ !OpInfo[2].isPredicate() &&
+ !OpInfo[2].isOptionalDef()));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRt(insn))));
+ MI.addOperand(MCOperand::CreateReg(ARM::SP));
+ MI.addOperand(MCOperand::CreateImm(getT1Imm8(insn)));
+ NumOpsAdded = 3;
+ return true;
+}
+
+// tPUSH, tPOP: Pred-Imm Pred-CCR register_list
+//
+// where register_list = low registers + [lr] for PUSH or
+// low registers + [pc] for POP
+//
+// "low registers" is specified by Inst{7-0}
+// lr|pc is specified by Inst{8}
+static bool DisassembleThumb1PushPop(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(Opcode == ARM::tPUSH || Opcode == ARM::tPOP);
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ // Handling the two predicate operands before the reglist.
+ MI.addOperand(MCOperand::CreateImm(ARMCC::AL));
+ MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
+ OpIdx = 2;
+
+ // Fill the variadic part of reglist.
+ unsigned RegListBits = slice(insn, 8, 8) << (Opcode == ARM::tPUSH ? 14 : 15)
+ | slice(insn, 7, 0);
+ for (unsigned i = 0; i < 16; ++i) {
+ if ((RegListBits >> i) & 1) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ i)));
+ ++OpIdx;
+ }
+ }
+
+ return true;
+}
+
+// A6.2.5 Miscellaneous 16-bit instructions
+// Delegate to DisassembleThumb1PushPop() for tPUSH & tPOP.
+//
+// tADDspi, tSUBspi: ARM::SP ARM::SP(TIED_TO) imm7
+// t2IT: firstcond=Inst{7-4} mask=Inst{3-0}
+// tCBNZ, tCBZ: tRd imm6*2
+// tBKPT: imm8
+// tNOP, tSEV, tYIELD, tWFE, tWFI:
+// no operand (except predicate pair)
+// tSETENDBE, tSETENDLE, :
+// no operand
+// Others: tRd tRn
+static bool DisassembleThumb1Misc(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ if (NumOps == 0)
+ return true;
+
+ if (Opcode == ARM::tPUSH || Opcode == ARM::tPOP)
+ return DisassembleThumb1PushPop(MI, Opcode, insn, NumOps, NumOpsAdded);
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ // Predicate operands are handled elsewhere.
+ if (NumOps == 2 &&
+ OpInfo[0].isPredicate() && OpInfo[1].isPredicate() &&
+ OpInfo[0].RegClass == 0 && OpInfo[1].RegClass == ARM::CCRRegClassID) {
+ return true;
+ }
+
+ if (Opcode == ARM::tADDspi || Opcode == ARM::tSUBspi) {
+ // Special case handling for tADDspi and tSUBspi.
+ // A8.6.8 ADD (SP plus immediate) & A8.6.215 SUB (SP minus immediate)
+ MI.addOperand(MCOperand::CreateReg(ARM::SP));
+ MI.addOperand(MCOperand::CreateReg(ARM::SP));
+ MI.addOperand(MCOperand::CreateImm(getT1Imm7(insn)));
+ NumOpsAdded = 3;
+ return true;
+ }
+
+ if (Opcode == ARM::t2IT) {
+ // Special case handling for If-Then.
+ // A8.6.50 IT
+ // Tag the (firstcond[0] bit << 4) along with mask.
+
+ // firstcond
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 7, 4)));
+
+ // firstcond[0] and mask
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 4, 0)));
+ NumOpsAdded = 2;
+ return true;
+ }
+
+ if (Opcode == ARM::tBKPT) {
+ MI.addOperand(MCOperand::CreateImm(getT1Imm8(insn))); // breakpoint value
+ NumOpsAdded = 1;
+ return true;
+ }
+
+ // CPS has a singleton $opt operand that contains the following information:
+ // opt{4-0} = don't care
+ // opt{5} = 0 (false)
+ // opt{8-6} = AIF from Inst{2-0}
+ // opt{10-9} = 1:imod from Inst{4} with 0b10 as enable and 0b11 as disable
+ if (Opcode == ARM::tCPS) {
+ unsigned Option = slice(insn, 2, 0) << 6 | slice(insn, 4, 4) << 9 | 1 << 10;
+ MI.addOperand(MCOperand::CreateImm(Option));
+ NumOpsAdded = 1;
+ return true;
+ }
+
+ assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::tGPRRegClassID &&
+ (OpInfo[1].RegClass==0 || OpInfo[1].RegClass==ARM::tGPRRegClassID));
+
+ // Add the destination operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRd(insn))));
+
+ if (OpInfo[1].RegClass == ARM::tGPRRegClassID) {
+ // Two register instructions.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ getT1tRn(insn))));
+ } else {
+ // CBNZ, CBZ
+ assert(Opcode == ARM::tCBNZ || Opcode == ARM::tCBZ);
+ MI.addOperand(MCOperand::CreateImm(getT1Imm6(insn) * 2));
+ }
+
+ NumOpsAdded = 2;
+
+ return true;
+}
+
+// A8.6.53 LDM / LDMIA
+// A8.6.189 STM / STMIA
+//
+// tRt AM4ModeImm Pred-Imm Pred-CCR register_list
+static bool DisassembleThumb1LdStMul(bool Ld, MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(Opcode == ARM::tLDM || Opcode == ARM::tSTM_UPD);
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ unsigned tRt = getT1tRt(insn);
+ unsigned RegListBits = slice(insn, 7, 0);
+
+ OpIdx = 0;
+
+ // For STM, WB is always true.
+ if (Opcode == ARM::tSTM_UPD) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ tRt)));
+ ++OpIdx;
+ }
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ tRt)));
+ ++OpIdx;
+
+ // A8.6.53 LDM / LDMIA / LDMFD - Encoding T1
+ // WB is true if tRt is not specified as a member of the register list.
+ // For STM, WB is always true.
+ bool WB = Ld ? ((RegListBits >> tRt) & 1) == 0 : true;
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(ARM_AM::ia, WB)));
+ ++OpIdx;
+
+ // Handling the two predicate operands before the reglist.
+ MI.addOperand(MCOperand::CreateImm(ARMCC::AL));
+ MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
+ OpIdx += 2;
+
+ // Fill the variadic part of reglist.
+ for (unsigned i = 0; i < 8; ++i) {
+ if ((RegListBits >> i) & 1) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::tGPRRegClassID,
+ i)));
+ ++OpIdx;
+ }
+ }
+
+ return true;
+}
+
+static bool DisassembleThumb1LdMul(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+ return DisassembleThumb1LdStMul(true, MI, Opcode, insn, NumOps, NumOpsAdded);
+}
+
+static bool DisassembleThumb1StMul(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+ return DisassembleThumb1LdStMul(false, MI, Opcode, insn, NumOps, NumOpsAdded);
+}
+
+// A8.6.16 B Encoding T1
+// cond = Inst{11-8} & imm8 = Inst{7-0}
+// imm32 = SignExtend(imm8:'0', 32)
+//
+// tBcc: offset Pred-Imm Pred-CCR
+// tSVC: imm8 Pred-Imm Pred-CCR
+// tTRAP: 0 operand (early return)
+static bool DisassembleThumb1CondBr(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ if (Opcode == ARM::tTRAP)
+ return true;
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ assert(NumOps == 3 && OpInfo[0].RegClass == 0 &&
+ OpInfo[1].isPredicate() && OpInfo[2].RegClass == ARM::CCRRegClassID);
+
+ unsigned Imm8 = getT1Imm8(insn);
+ MI.addOperand(MCOperand::CreateImm(
+ Opcode == ARM::tBcc ? signextend<signed int, 9>(Imm8 << 1) + 4
+ : (int)Imm8));
+
+ // Predicate operands by ARMBasicMCBuilder::TryPredicateAndSBitModifier().
+ NumOpsAdded = 1;
+
+ return true;
+}
+
+// A8.6.16 B Encoding T2
+// imm11 = Inst{10-0}
+// imm32 = SignExtend(imm11:'0', 32)
+//
+// tB: offset
+static bool DisassembleThumb1Br(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ assert(NumOps == 1 && OpInfo[0].RegClass == 0);
+
+ unsigned Imm11 = getT1Imm11(insn);
+
+ // When executing a Thumb instruction, PC reads as the address of the current
+ // instruction plus 4. The assembler subtracts 4 from the difference between
+ // the branch instruction and the target address, disassembler has to add 4 to
+ // to compensate.
+ MI.addOperand(MCOperand::CreateImm(
+ signextend<signed int, 12>(Imm11 << 1) + 4));
+
+ NumOpsAdded = 1;
+
+ return true;
+
+}
+
+// See A6.2 16-bit Thumb instruction encoding for instruction classes
+// corresponding to op.
+//
+// Table A6-1 16-bit Thumb instruction encoding (abridged)
+// op Instruction or instruction class
+// ------ --------------------------------------------------------------------
+// 00xxxx Shift (immediate), add, subtract, move, and compare on page A6-7
+// 010000 Data-processing on page A6-8
+// 010001 Special data instructions and branch and exchange on page A6-9
+// 01001x Load from Literal Pool, see LDR (literal) on page A8-122
+// 0101xx Load/store single data item on page A6-10
+// 011xxx
+// 100xxx
+// 10100x Generate PC-relative address, see ADR on page A8-32
+// 10101x Generate SP-relative address, see ADD (SP plus immediate) on page A8-28
+// 1011xx Miscellaneous 16-bit instructions on page A6-11
+// 11000x Store multiple registers, see STM / STMIA / STMEA on page A8-374
+// 11001x Load multiple registers, see LDM / LDMIA / LDMFD on page A8-110 a
+// 1101xx Conditional branch, and Supervisor Call on page A6-13
+// 11100x Unconditional Branch, see B on page A8-44
+//
+static bool DisassembleThumb1(uint16_t op,
+ MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ unsigned op1 = slice(op, 5, 4);
+ unsigned op2 = slice(op, 3, 2);
+ unsigned op3 = slice(op, 1, 0);
+ unsigned opA = slice(op, 5, 2);
+ switch (op1) {
+ case 0:
+ // A6.2.1 Shift (immediate), add, subtract, move, and compare
+ return DisassembleThumb1General(MI, Opcode, insn, NumOps, NumOpsAdded);
+ case 1:
+ switch (op2) {
+ case 0:
+ switch (op3) {
+ case 0:
+ // A6.2.2 Data-processing
+ return DisassembleThumb1DP(MI, Opcode, insn, NumOps, NumOpsAdded);
+ case 1:
+ // A6.2.3 Special data instructions and branch and exchange
+ return DisassembleThumb1Special(MI, Opcode, insn, NumOps, NumOpsAdded);
+ default:
+ // A8.6.59 LDR (literal)
+ return DisassembleThumb1LdPC(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+ break;
+ default:
+ // A6.2.4 Load/store single data item
+ return DisassembleThumb1LdSt(opA, MI, Opcode, insn, NumOps, NumOpsAdded);
+ break;
+ }
+ break;
+ case 2:
+ switch (op2) {
+ case 0:
+ // A6.2.4 Load/store single data item
+ return DisassembleThumb1LdSt(opA, MI, Opcode, insn, NumOps, NumOpsAdded);
+ case 1:
+ // A6.2.4 Load/store single data item
+ return DisassembleThumb1LdStSP(MI, Opcode, insn, NumOps, NumOpsAdded);
+ case 2:
+ if (op3 <= 1) {
+ // A8.6.10 ADR
+ return DisassembleThumb1AddPCi(MI, Opcode, insn, NumOps, NumOpsAdded);
+ } else {
+ // A8.6.8 ADD (SP plus immediate)
+ return DisassembleThumb1AddSPi(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+ default:
+ // A6.2.5 Miscellaneous 16-bit instructions
+ return DisassembleThumb1Misc(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+ break;
+ case 3:
+ switch (op2) {
+ case 0:
+ if (op3 <= 1) {
+ // A8.6.189 STM / STMIA / STMEA
+ return DisassembleThumb1StMul(MI, Opcode, insn, NumOps, NumOpsAdded);
+ } else {
+ // A8.6.53 LDM / LDMIA / LDMFD
+ return DisassembleThumb1LdMul(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+ case 1:
+ // A6.2.6 Conditional branch, and Supervisor Call
+ return DisassembleThumb1CondBr(MI, Opcode, insn, NumOps, NumOpsAdded);
+ case 2:
+ // Unconditional Branch, see B on page A8-44
+ return DisassembleThumb1Br(MI, Opcode, insn, NumOps, NumOpsAdded);
+ default:
+ assert(0 && "Unreachable code");
+ break;
+ }
+ break;
+ default:
+ assert(0 && "Unreachable code");
+ break;
+ }
+
+ return false;
+}
+
+///////////////////////////////////////////////
+// //
+// Thumb2 instruction disassembly functions. //
+// //
+///////////////////////////////////////////////
+
+///////////////////////////////////////////////////////////
+// //
+// Note: the register naming follows the ARM convention! //
+// //
+///////////////////////////////////////////////////////////
+
+static inline bool Thumb2SRSOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ return false;
+ case ARM::t2SRSDBW: case ARM::t2SRSDB:
+ case ARM::t2SRSIAW: case ARM::t2SRSIA:
+ return true;
+ }
+}
+
+static inline bool Thumb2RFEOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ return false;
+ case ARM::t2RFEDBW: case ARM::t2RFEDB:
+ case ARM::t2RFEIAW: case ARM::t2RFEIA:
+ return true;
+ }
+}
+
+// t2SRS[IA|DB]W/t2SRS[IA|DB]: mode_imm = Inst{4-0}
+static bool DisassembleThumb2SRS(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 4, 0)));
+ NumOpsAdded = 1;
+ return true;
+}
+
+// t2RFE[IA|DB]W/t2RFE[IA|DB]: Rn
+static bool DisassembleThumb2RFE(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ NumOpsAdded = 1;
+ return true;
+}
+
+static bool DisassembleThumb2LdStMul(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ if (Thumb2SRSOpcode(Opcode))
+ return DisassembleThumb2SRS(MI, Opcode, insn, NumOps, NumOpsAdded);
+
+ if (Thumb2RFEOpcode(Opcode))
+ return DisassembleThumb2RFE(MI, Opcode, insn, NumOps, NumOpsAdded);
+
+ assert(Opcode == ARM::t2LDM || Opcode == ARM::t2LDM_UPD ||
+ Opcode == ARM::t2STM || Opcode == ARM::t2STM_UPD);
+ assert(NumOps >= 5 && "Thumb2 LdStMul expects NumOps of 5");
+
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ unsigned Base = getRegisterEnum(ARM::GPRRegClassID, decodeRn(insn));
+
+ // Writeback to base.
+ if (Opcode == ARM::t2LDM_UPD || Opcode == ARM::t2STM_UPD) {
+ MI.addOperand(MCOperand::CreateReg(Base));
+ ++OpIdx;
+ }
+
+ MI.addOperand(MCOperand::CreateReg(Base));
+ ++OpIdx;
+
+ ARM_AM::AMSubMode SubMode = getAMSubModeForBits(getPUBits(insn));
+ bool WB = getWBit(insn) == 1;
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getAM4ModeImm(SubMode, WB)));
+ ++OpIdx;
+
+ // Handling the two predicate operands before the reglist.
+ MI.addOperand(MCOperand::CreateImm(ARMCC::AL));
+ MI.addOperand(MCOperand::CreateReg(ARM::CPSR));
+ OpIdx += 2;
+
+ // Fill the variadic part of reglist.
+ unsigned RegListBits = insn & ((1 << 16) - 1);
+ for (unsigned i = 0; i < 16; ++i) {
+ if ((RegListBits >> i) & 1) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ i)));
+ ++OpIdx;
+ }
+ }
+
+ return true;
+}
+
+// t2LDREX: Rd Rn
+// t2LDREXD: Rd Rs Rn
+// t2LDREXB, t2LDREXH: Rd Rn
+// t2STREX: Rs Rd Rn
+// t2STREXD: Rm Rd Rs Rn
+// t2STREXB, t2STREXH: Rm Rd Rn
+static bool DisassembleThumb2LdStEx(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2
+ && OpInfo[0].RegClass == ARM::GPRRegClassID
+ && OpInfo[1].RegClass == ARM::GPRRegClassID);
+
+ bool isStore = (ARM::t2STREX <= Opcode && Opcode <= ARM::t2STREXH);
+ bool isSW = (Opcode == ARM::t2LDREX || Opcode == ARM::t2STREX);
+ bool isDW = (Opcode == ARM::t2LDREXD || Opcode == ARM::t2STREXD);
+
+ // Add the destination operand for store.
+ if (isStore) {
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::GPRRegClassID,
+ isSW ? decodeRs(insn) : decodeRm(insn))));
+ ++OpIdx;
+ }
+
+ // Source operand for store and destination operand for load.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ ++OpIdx;
+
+ // Thumb2 doubleword complication: with an extra source/destination operand.
+ if (isDW) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRs(insn))));
+ ++OpIdx;
+ }
+
+ // Finally add the pointer operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+
+ return true;
+}
+
+// LLVM, as of Jan-05-2010, does not output <Rt2>, i.e., Rs, in the asm.
+// Whereas the ARM Arch. Manual does not require that t2 = t+1 like in ARM ISA.
+//
+// t2LDRDi8: Rd Rs Rn imm8s4 (offset mode)
+// t2LDRDpci: Rd Rs imm8s4 (Not decoded, prefer the generic t2LDRDi8 version)
+// t2STRDi8: Rd Rs Rn imm8s4 (offset mode)
+//
+// Ditto for t2LDRD_PRE, t2LDRD_POST, t2STRD_PRE, t2STRD_POST, which are for
+// disassembly only and do not have a tied_to writeback base register operand.
+static bool DisassembleThumb2LdStDual(MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ assert(NumOps >= 4
+ && OpInfo[0].RegClass == ARM::GPRRegClassID
+ && OpInfo[1].RegClass == ARM::GPRRegClassID
+ && OpInfo[2].RegClass == ARM::GPRRegClassID
+ && OpInfo[3].RegClass == 0);
+
+ // Add the <Rt> <Rt2> operands.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRs(insn))));
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+
+ // Finally add (+/-)imm8*4, depending on the U bit.
+ int Offset = getImm8(insn) * 4;
+ if (getUBit(insn) == 0)
+ Offset = -Offset;
+ MI.addOperand(MCOperand::CreateImm(Offset));
+ NumOpsAdded = 4;
+
+ return true;
+}
+
+// PC-based defined for Codegen, which do not get decoded by design:
+//
+// t2TBB, t2TBH: Rm immDontCare immDontCare
+//
+// Generic version defined for disassembly:
+//
+// t2TBBgen, t2TBHgen: Rn Rm Pred-Imm Pred-CCR
+static bool DisassembleThumb2TB(MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ assert(NumOps >= 2);
+
+ // The generic version of TBB/TBH needs a base register.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ // Add the index register.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ NumOpsAdded = 2;
+
+ return true;
+}
+
+static inline bool Thumb2ShiftOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ return false;
+ case ARM::t2MOVCClsl: case ARM::t2MOVCClsr:
+ case ARM::t2MOVCCasr: case ARM::t2MOVCCror:
+ case ARM::t2LSLri: case ARM::t2LSRri:
+ case ARM::t2ASRri: case ARM::t2RORri:
+ return true;
+ }
+}
+
+// A6.3.11 Data-processing (shifted register)
+//
+// Two register operands (Rn=0b1111 no 1st operand reg): Rs Rm
+// Two register operands (Rs=0b1111 no dst operand reg): Rn Rm
+// Three register operands: Rs Rn Rm
+// Three register operands: (Rn=0b1111 Conditional Move) Rs Ro(TIED_TO) Rm
+//
+// Constant shifts t2_so_reg is a 2-operand unit corresponding to the Thumb2
+// register with shift forms: (Rm, ConstantShiftSpecifier).
+// Constant shift specifier: Imm = (ShOp | ShAmt<<3).
+//
+// There are special instructions, like t2MOVsra_flag and t2MOVsrl_flag, which
+// only require two register operands: Rd, Rm in ARM Reference Manual terms, and
+// nothing else, because the shift amount is already specified.
+// Similar case holds for t2MOVrx, t2ADDrr, ..., etc.
+static bool DisassembleThumb2DPSoReg(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ // Special case handling.
+ if (Opcode == ARM::t2BR_JT) {
+ assert(NumOps == 4
+ && OpInfo[0].RegClass == ARM::GPRRegClassID
+ && OpInfo[1].RegClass == ARM::GPRRegClassID
+ && OpInfo[2].RegClass == 0
+ && OpInfo[3].RegClass == 0);
+ // Only need to populate the src reg operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ MI.addOperand(MCOperand::CreateReg(0));
+ MI.addOperand(MCOperand::CreateImm(0));
+ MI.addOperand(MCOperand::CreateImm(0));
+ NumOpsAdded = 4;
+ return true;
+ }
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2
+ && OpInfo[0].RegClass == ARM::GPRRegClassID
+ && OpInfo[1].RegClass == ARM::GPRRegClassID);
+
+ bool ThreeReg = (NumOps > 2 && OpInfo[2].RegClass == ARM::GPRRegClassID);
+ bool NoDstReg = (decodeRs(insn) == 0xF);
+
+ // Build the register operands, followed by the constant shift specifier.
+
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::GPRRegClassID,
+ NoDstReg ? decodeRn(insn) : decodeRs(insn))));
+ ++OpIdx;
+
+ if (ThreeReg) {
+ int Idx;
+ if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) {
+ // Process tied_to operand constraint.
+ MI.addOperand(MI.getOperand(Idx));
+ } else {
+ assert(!NoDstReg);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ }
+ ++OpIdx;
+ }
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ ++OpIdx;
+
+ if (NumOps == OpIdx)
+ return true;
+
+ if (OpInfo[OpIdx].RegClass == 0 && !OpInfo[OpIdx].isPredicate()
+ && !OpInfo[OpIdx].isOptionalDef()) {
+
+ if (Thumb2ShiftOpcode(Opcode))
+ MI.addOperand(MCOperand::CreateImm(getShiftAmtBits(insn)));
+ else {
+ // Build the constant shift specifier operand.
+ unsigned bits2 = getShiftTypeBits(insn);
+ unsigned imm5 = getShiftAmtBits(insn);
+ ARM_AM::ShiftOpc ShOp = ARM_AM::no_shift;
+ unsigned ShAmt = decodeImmShift(bits2, imm5, ShOp);
+
+ // PKHBT/PKHTB are special in that we need the decodeImmShift() call to
+ // decode the shift amount from raw imm5 and bits2, but we DO NOT need
+ // to encode the ShOp, as it's in the asm string already.
+ if (Opcode == ARM::t2PKHBT || Opcode == ARM::t2PKHTB)
+ MI.addOperand(MCOperand::CreateImm(ShAmt));
+ else
+ MI.addOperand(MCOperand::CreateImm(ARM_AM::getSORegOpc(ShOp, ShAmt)));
+ }
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+// A6.3.1 Data-processing (modified immediate)
+//
+// Two register operands: Rs Rn ModImm
+// One register operands (Rs=0b1111 no explicit dest reg): Rn ModImm
+// One register operands (Rn=0b1111 no explicit src reg): Rs ModImm - {t2MOVi, t2MVNi}
+//
+// ModImm = ThumbExpandImm(i:imm3:imm8)
+static bool DisassembleThumb2DPModImm(MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::GPRRegClassID);
+
+ bool TwoReg = (OpInfo[1].RegClass == ARM::GPRRegClassID);
+ bool NoDstReg = (decodeRs(insn) == 0xF);
+
+ // Build the register operands, followed by the modified immediate.
+
+ MI.addOperand(MCOperand::CreateReg(
+ getRegisterEnum(ARM::GPRRegClassID,
+ NoDstReg ? decodeRn(insn) : decodeRs(insn))));
+ ++OpIdx;
+
+ if (TwoReg) {
+ assert(!NoDstReg);
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+ }
+
+ // The modified immediate operand should come next.
+ assert(OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0 &&
+ !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef());
+
+ // i:imm3:imm8
+ // A6.3.2 Modified immediate constants in Thumb instructions
+ unsigned imm12 = getIImm3Imm8(insn);
+ MI.addOperand(MCOperand::CreateImm(ThumbExpandImm(imm12)));
+ ++OpIdx;
+
+ return true;
+}
+
+static inline bool Thumb2SaturateOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ case ARM::t2SSATlsl: case ARM::t2SSATasr: case ARM::t2SSAT16:
+ case ARM::t2USATlsl: case ARM::t2USATasr: case ARM::t2USAT16:
+ return true;
+ default:
+ return false;
+ }
+}
+
+static inline unsigned decodeThumb2SaturatePos(unsigned Opcode, uint32_t insn) {
+ switch (Opcode) {
+ case ARM::t2SSATlsl:
+ case ARM::t2SSATasr:
+ return slice(insn, 4, 0) + 1;
+ case ARM::t2SSAT16:
+ return slice(insn, 3, 0) + 1;
+ case ARM::t2USATlsl:
+ case ARM::t2USATasr:
+ return slice(insn, 4, 0);
+ case ARM::t2USAT16:
+ return slice(insn, 3, 0);
+ default:
+ llvm_unreachable("Invalid opcode passed in");
+ return 0;
+ }
+}
+
+// A6.3.3 Data-processing (plain binary immediate)
+//
+// o t2ADDri12, t2SUBri12: Rs Rn imm12
+// o t2LEApcrel (ADR): Rs imm12
+// o t2BFC (BFC): Rs Ro(TIED_TO) bf_inv_mask_imm
+// o t2BFI (BFI) (Currently not defined in LLVM as of Jan-07-2010)
+// o t2MOVi16: Rs imm16
+// o t2MOVTi16: Rs imm16
+// o t2SBFX (SBFX): Rs Rn lsb width
+// o t2UBFX (UBFX): Rs Rn lsb width
+// o t2BFI (BFI): Rs Rn lsb width
+//
+// [Signed|Unsigned] Saturate [16]
+//
+// o t2SSAT[lsl|asr], t2USAT[lsl|asr]: Rs sat_pos Rn shamt
+// o t2SSAT16, t2USAT16: Rs sat_pos Rn
+static bool DisassembleThumb2DPBinImm(MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2 && OpInfo[0].RegClass == ARM::GPRRegClassID);
+
+ bool TwoReg = (OpInfo[1].RegClass == ARM::GPRRegClassID);
+
+ // Build the register operand(s), followed by the immediate(s).
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRs(insn))));
+ ++OpIdx;
+
+ // t2SSAT/t2SSAT16/t2USAT/t2USAT16 has imm operand after Rd.
+ if (Thumb2SaturateOpcode(Opcode)) {
+ MI.addOperand(MCOperand::CreateImm(decodeThumb2SaturatePos(Opcode, insn)));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+
+ if (Opcode == ARM::t2SSAT16 || Opcode == ARM::t2USAT16) {
+ OpIdx += 2;
+ return true;
+ }
+
+ // For SSAT operand reg (Rn) has been disassembled above.
+ // Now disassemble the shift amount.
+
+ // Inst{14-12:7-6} encodes the imm5 shift amount.
+ unsigned ShAmt = slice(insn, 14, 12) << 2 | slice(insn, 7, 6);
+
+ MI.addOperand(MCOperand::CreateImm(ShAmt));
+
+ OpIdx += 3;
+ return true;
+ }
+
+ if (TwoReg) {
+ assert(NumOps >= 3);
+ int Idx;
+ if ((Idx = TID.getOperandConstraint(OpIdx, TOI::TIED_TO)) != -1) {
+ // Process tied_to operand constraint.
+ MI.addOperand(MI.getOperand(Idx));
+ } else {
+ // Add src reg operand.
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ }
+ ++OpIdx;
+ }
+
+ assert(OpInfo[OpIdx].RegClass == 0 && !OpInfo[OpIdx].isPredicate()
+ && !OpInfo[OpIdx].isOptionalDef());
+
+ // Pre-increment OpIdx.
+ ++OpIdx;
+
+ if (Opcode == ARM::t2ADDri12 || Opcode == ARM::t2SUBri12
+ || Opcode == ARM::t2LEApcrel)
+ MI.addOperand(MCOperand::CreateImm(getIImm3Imm8(insn)));
+ else if (Opcode == ARM::t2MOVi16 || Opcode == ARM::t2MOVTi16)
+ MI.addOperand(MCOperand::CreateImm(getImm16(insn)));
+ else if (Opcode == ARM::t2BFC)
+ MI.addOperand(MCOperand::CreateImm(getBitfieldInvMask(insn)));
+ else {
+ // Handle the case of: lsb width
+ assert(Opcode == ARM::t2SBFX || Opcode == ARM::t2UBFX ||
+ Opcode == ARM::t2BFI);
+ MI.addOperand(MCOperand::CreateImm(getLsb(insn)));
+ if (Opcode == ARM::t2BFI) {
+ assert(getMsb(insn) >= getLsb(insn));
+ MI.addOperand(MCOperand::CreateImm(getMsb(insn) - getLsb(insn) + 1));
+ } else
+ MI.addOperand(MCOperand::CreateImm(getWidthMinus1(insn) + 1));
+
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+// A6.3.4 Table A6-15 Miscellaneous control instructions
+// A8.6.41 DMB
+// A8.6.42 DSB
+// A8.6.49 ISB
+static inline bool t2MiscCtrlInstr(uint32_t insn) {
+ if (slice(insn, 31, 20) == 0xf3b && slice(insn, 15, 14) == 2 &&
+ slice(insn, 12, 12) == 0)
+ return true;
+
+ return false;
+}
+
+// A6.3.4 Branches and miscellaneous control
+//
+// A8.6.16 B
+// Branches: t2B, t2Bcc -> imm operand
+//
+// Branches: t2TPsoft -> no operand
+//
+// A8.6.23 BL, BLX (immediate)
+// Branches (defined in ARMInstrThumb.td): tBLr9, tBLXi_r9 -> imm operand
+//
+// A8.6.26
+// t2BXJ -> Rn
+//
+// Miscellaneous control: t2Int_MemBarrierV7 (and its t2DMB variants),
+// t2Int_SyncBarrierV7 (and its t2DSB varianst), t2ISBsy, t2CLREX
+// -> no operand (except pred-imm pred-ccr for CLREX, memory barrier variants)
+//
+// Hint: t2NOP, t2YIELD, t2WFE, t2WFI, t2SEV
+// -> no operand (except pred-imm pred-ccr)
+//
+// t2DBG -> imm4 = Inst{3-0}
+//
+// t2MRS/t2MRSsys -> Rs
+// t2MSR/t2MSRsys -> Rn mask=Inst{11-8}
+// t2SMC -> imm4 = Inst{19-16}
+static bool DisassembleThumb2BrMiscCtrl(MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ if (NumOps == 0)
+ return true;
+
+ if (t2MiscCtrlInstr(insn))
+ return true;
+
+ switch (Opcode) {
+ case ARM::t2CLREX:
+ case ARM::t2NOP:
+ case ARM::t2YIELD:
+ case ARM::t2WFE:
+ case ARM::t2WFI:
+ case ARM::t2SEV:
+ return true;
+ default:
+ break;
+ }
+
+ // CPS has a singleton $opt operand that contains the following information:
+ // opt{4-0} = mode from Inst{4-0}
+ // opt{5} = changemode from Inst{8}
+ // opt{8-6} = AIF from Inst{7-5}
+ // opt{10-9} = imod from Inst{10-9} with 0b10 as enable and 0b11 as disable
+ if (Opcode == ARM::t2CPS) {
+ unsigned Option = slice(insn, 4, 0) | slice(insn, 8, 8) << 5 |
+ slice(insn, 7, 5) << 6 | slice(insn, 10, 9) << 9;
+ MI.addOperand(MCOperand::CreateImm(Option));
+ NumOpsAdded = 1;
+ return true;
+ }
+
+ // DBG has its option specified in Inst{3-0}.
+ if (Opcode == ARM::t2DBG) {
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 3, 0)));
+ NumOpsAdded = 1;
+ return true;
+ }
+
+ // MRS and MRSsys take one GPR reg Rs.
+ if (Opcode == ARM::t2MRS || Opcode == ARM::t2MRSsys) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRs(insn))));
+ NumOpsAdded = 1;
+ return true;
+ }
+ // BXJ takes one GPR reg Rn.
+ if (Opcode == ARM::t2BXJ) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ NumOpsAdded = 1;
+ return true;
+ }
+ // MSR and MSRsys take one GPR reg Rn, followed by the mask.
+ if (Opcode == ARM::t2MSR || Opcode == ARM::t2MSRsys || Opcode == ARM::t2BXJ) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 11, 8)));
+ NumOpsAdded = 2;
+ return true;
+ }
+ // SMC take imm4.
+ if (Opcode == ARM::t2SMC) {
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 19, 16)));
+ NumOpsAdded = 1;
+ return true;
+ }
+
+ // Add the imm operand.
+ int Offset = 0;
+
+ switch (Opcode) {
+ default:
+ assert(0 && "Unreachable code");
+ case ARM::t2B:
+ Offset = decodeImm32_B_EncodingT4(insn);
+ break;
+ case ARM::t2Bcc:
+ Offset = decodeImm32_B_EncodingT3(insn);
+ break;
+ case ARM::tBLr9:
+ Offset = decodeImm32_BL(insn);
+ break;
+ case ARM::tBLXi_r9:
+ Offset = decodeImm32_BLX(insn);
+ break;
+ }
+ // When executing a Thumb instruction, PC reads as the address of the current
+ // instruction plus 4. The assembler subtracts 4 from the difference between
+ // the branch instruction and the target address, disassembler has to add 4 to
+ // to compensate.
+ MI.addOperand(MCOperand::CreateImm(Offset + 4));
+
+ NumOpsAdded = 1;
+
+ return true;
+}
+
+static inline bool Thumb2PreloadOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ return false;
+ case ARM::t2PLDi12: case ARM::t2PLDi8: case ARM::t2PLDpci:
+ case ARM::t2PLDr: case ARM::t2PLDs:
+ case ARM::t2PLDWi12: case ARM::t2PLDWi8: case ARM::t2PLDWpci:
+ case ARM::t2PLDWr: case ARM::t2PLDWs:
+ case ARM::t2PLIi12: case ARM::t2PLIi8: case ARM::t2PLIpci:
+ case ARM::t2PLIr: case ARM::t2PLIs:
+ return true;
+ }
+}
+
+static bool DisassembleThumb2PreLoad(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ // Preload Data/Instruction requires either 2 or 3 operands.
+ // t2PLDi12, t2PLDi8, t2PLDpci: Rn [+/-]imm12/imm8
+ // t2PLDr: Rn Rm
+ // t2PLDs: Rn Rm imm2=Inst{5-4}
+ // Same pattern applies for t2PLDW* and t2PLI*.
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2 &&
+ OpInfo[0].RegClass == ARM::GPRRegClassID);
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+
+ if (OpInfo[OpIdx].RegClass == ARM::GPRRegClassID) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ } else {
+ assert(OpInfo[OpIdx].RegClass == 0 && !OpInfo[OpIdx].isPredicate()
+ && !OpInfo[OpIdx].isOptionalDef());
+ int Offset = 0;
+ if (Opcode == ARM::t2PLDpci || Opcode == ARM::t2PLDWpci ||
+ Opcode == ARM::t2PLIpci) {
+ bool Negative = slice(insn, 23, 23) == 0;
+ unsigned Imm12 = getImm12(insn);
+ Offset = Negative ? -1 - Imm12 : 1 * Imm12;
+ } else if (Opcode == ARM::t2PLDi8 || Opcode == ARM::t2PLDWi8 ||
+ Opcode == ARM::t2PLIi8) {
+ // A8.6.117 Encoding T2: add = FALSE
+ unsigned Imm8 = getImm8(insn);
+ Offset = -1 - Imm8;
+ } else // The i12 forms. See, for example, A8.6.117 Encoding T1.
+ Offset = decodeImm12(insn);
+ MI.addOperand(MCOperand::CreateImm(Offset));
+ }
+ ++OpIdx;
+
+ if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0 &&
+ !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
+ // Fills in the shift amount for t2PLDs, t2PLDWs, t2PLIs.
+ MI.addOperand(MCOperand::CreateImm(slice(insn, 5, 4)));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+// A8.6.63 LDRB (literal)
+// A8.6.79 LDRSB (literal)
+// A8.6.75 LDRH (literal)
+// A8.6.83 LDRSH (literal)
+// A8.6.59 LDR (literal)
+//
+// These instrs calculate an address from the PC value and an immediate offset.
+// Rd Rn=PC (+/-)imm12 (+ if Inst{23} == 0b1)
+static bool DisassembleThumb2Ldpci(MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ assert(NumOps >= 2 &&
+ OpInfo[0].RegClass == ARM::GPRRegClassID &&
+ OpInfo[1].RegClass == 0);
+
+ // Build the register operand, followed by the (+/-)imm12 immediate.
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+
+ MI.addOperand(MCOperand::CreateImm(decodeImm12(insn)));
+
+ NumOpsAdded = 2;
+
+ return true;
+}
+
+// A6.3.10 Store single data item
+// A6.3.9 Load byte, memory hints
+// A6.3.8 Load halfword, memory hints
+// A6.3.7 Load word
+//
+// For example,
+//
+// t2LDRi12: Rd Rn (+)imm12
+// t2LDRi8: Rd Rn (+/-)imm8 (+ if Inst{9} == 0b1)
+// t2LDRs: Rd Rn Rm ConstantShiftSpecifier (see also DisassembleThumb2DPSoReg)
+// t2LDR_POST: Rd Rn Rn(TIED_TO) (+/-)imm8 (+ if Inst{9} == 0b1)
+// t2LDR_PRE: Rd Rn Rn(TIED_TO) (+/-)imm8 (+ if Inst{9} == 0b1)
+//
+// t2STRi12: Rd Rn (+)imm12
+// t2STRi8: Rd Rn (+/-)imm8 (+ if Inst{9} == 0b1)
+// t2STRs: Rd Rn Rm ConstantShiftSpecifier (see also DisassembleThumb2DPSoReg)
+// t2STR_POST: Rn Rd Rn(TIED_TO) (+/-)imm8 (+ if Inst{9} == 0b1)
+// t2STR_PRE: Rn Rd Rn(TIED_TO) (+/-)imm8 (+ if Inst{9} == 0b1)
+//
+// Note that for indexed modes, the Rn(TIED_TO) operand needs to be populated
+// correctly, as LLVM AsmPrinter depends on it. For indexed stores, the first
+// operand is Rn; for all the other instructions, Rd is the first operand.
+//
+// Delegates to DisassembleThumb2PreLoad() for preload data/instruction.
+// Delegates to DisassembleThumb2Ldpci() for load * literal operations.
+static bool DisassembleThumb2LdSt(bool Load, MCInst &MI, unsigned Opcode,
+ uint32_t insn, unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ unsigned Rn = decodeRn(insn);
+
+ if (Thumb2PreloadOpcode(Opcode))
+ return DisassembleThumb2PreLoad(MI, Opcode, insn, NumOps, NumOpsAdded);
+
+ // See, for example, A6.3.7 Load word: Table A6-18 Load word.
+ if (Load && Rn == 15)
+ return DisassembleThumb2Ldpci(MI, Opcode, insn, NumOps, NumOpsAdded);
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 3 &&
+ OpInfo[0].RegClass == ARM::GPRRegClassID &&
+ OpInfo[1].RegClass == ARM::GPRRegClassID);
+
+ bool ThreeReg = (OpInfo[2].RegClass == ARM::GPRRegClassID);
+ bool TIED_TO = ThreeReg && TID.getOperandConstraint(2, TOI::TIED_TO) != -1;
+ bool Imm12 = !ThreeReg && slice(insn, 23, 23) == 1; // ARMInstrThumb2.td
+
+ // Build the register operands, followed by the immediate.
+ unsigned R0, R1, R2 = 0;
+ unsigned Rd = decodeRd(insn);
+ int Imm = 0;
+
+ if (!Load && TIED_TO) {
+ R0 = Rn;
+ R1 = Rd;
+ } else {
+ R0 = Rd;
+ R1 = Rn;
+ }
+ if (ThreeReg) {
+ if (TIED_TO) {
+ R2 = Rn;
+ Imm = decodeImm8(insn);
+ } else {
+ R2 = decodeRm(insn);
+ // See, for example, A8.6.64 LDRB (register).
+ // And ARMAsmPrinter::printT2AddrModeSoRegOperand().
+ // LSL is the default shift opc, and LLVM does not expect it to be encoded
+ // as part of the immediate operand.
+ // Imm = ARM_AM::getSORegOpc(ARM_AM::lsl, slice(insn, 5, 4));
+ Imm = slice(insn, 5, 4);
+ }
+ } else {
+ if (Imm12)
+ Imm = getImm12(insn);
+ else
+ Imm = decodeImm8(insn);
+ }
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID, R0)));
+ ++OpIdx;
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID, R1)));
+ ++OpIdx;
+
+ if (ThreeReg) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,R2)));
+ ++OpIdx;
+ }
+
+ assert(OpInfo[OpIdx].RegClass == 0 && !OpInfo[OpIdx].isPredicate()
+ && !OpInfo[OpIdx].isOptionalDef());
+
+ MI.addOperand(MCOperand::CreateImm(Imm));
+ ++OpIdx;
+
+ return true;
+}
+
+// A6.3.12 Data-processing (register)
+//
+// Two register operands [rotate]: Rs Rm [rotation(= (rotate:'000'))]
+// Three register operands only: Rs Rn Rm
+// Three register operands [rotate]: Rs Rn Rm [rotation(= (rotate:'000'))]
+//
+// Parallel addition and subtraction 32-bit Thumb instructions: Rs Rn Rm
+//
+// Miscellaneous operations: Rs [Rn] Rm
+static bool DisassembleThumb2DPReg(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetInstrDesc &TID = ARMInsts[Opcode];
+ const TargetOperandInfo *OpInfo = TID.OpInfo;
+ unsigned &OpIdx = NumOpsAdded;
+
+ OpIdx = 0;
+
+ assert(NumOps >= 2 &&
+ OpInfo[0].RegClass == ARM::GPRRegClassID &&
+ OpInfo[1].RegClass == ARM::GPRRegClassID);
+
+ // Build the register operands, followed by the optional rotation amount.
+
+ bool ThreeReg = NumOps > 2 && OpInfo[2].RegClass == ARM::GPRRegClassID;
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRs(insn))));
+ ++OpIdx;
+
+ if (ThreeReg) {
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+ ++OpIdx;
+ }
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+ ++OpIdx;
+
+ if (OpIdx < NumOps && OpInfo[OpIdx].RegClass == 0
+ && !OpInfo[OpIdx].isPredicate() && !OpInfo[OpIdx].isOptionalDef()) {
+ // Add the rotation amount immediate.
+ MI.addOperand(MCOperand::CreateImm(decodeRotate(insn)));
+ ++OpIdx;
+ }
+
+ return true;
+}
+
+// A6.3.16 Multiply, multiply accumulate, and absolute difference
+//
+// t2MLA, t2MLS, t2SMMLA, t2SMMLS: Rs Rn Rm Ra=Inst{15-12}
+// t2MUL, t2SMMUL: Rs Rn Rm
+// t2SMLA[BB|BT|TB|TT|WB|WT]: Rs Rn Rm Ra=Inst{15-12}
+// t2SMUL[BB|BT|TB|TT|WB|WT]: Rs Rn Rm
+//
+// Dual halfword multiply: t2SMUAD[X], t2SMUSD[X], t2SMLAD[X], t2SMLSD[X]:
+// Rs Rn Rm Ra=Inst{15-12}
+//
+// Unsigned Sum of Absolute Differences [and Accumulate]
+// Rs Rn Rm [Ra=Inst{15-12}]
+static bool DisassembleThumb2Mul(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ assert(NumOps >= 3 &&
+ OpInfo[0].RegClass == ARM::GPRRegClassID &&
+ OpInfo[1].RegClass == ARM::GPRRegClassID &&
+ OpInfo[2].RegClass == ARM::GPRRegClassID);
+
+ // Build the register operands.
+
+ bool FourReg = NumOps > 3 && OpInfo[3].RegClass == ARM::GPRRegClassID;
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRs(insn))));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+
+ if (FourReg)
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+
+ NumOpsAdded = FourReg ? 4 : 3;
+
+ return true;
+}
+
+// A6.3.17 Long multiply, long multiply accumulate, and divide
+//
+// t2SMULL, t2UMULL, t2SMLAL, t2UMLAL, t2UMAAL: RdLo RdHi Rn Rm
+// where RdLo = Inst{15-12} and RdHi = Inst{11-8}
+//
+// Halfword multiple accumulate long: t2SMLAL<x><y>: RdLo RdHi Rn Rm
+// where RdLo = Inst{15-12} and RdHi = Inst{11-8}
+//
+// Dual halfword multiple: t2SMLALD[X], t2SMLSLD[X]: RdLo RdHi Rn Rm
+// where RdLo = Inst{15-12} and RdHi = Inst{11-8}
+//
+// Signed/Unsigned divide: t2SDIV, t2UDIV: Rs Rn Rm
+static bool DisassembleThumb2LongMul(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ const TargetOperandInfo *OpInfo = ARMInsts[Opcode].OpInfo;
+
+ assert(NumOps >= 3 &&
+ OpInfo[0].RegClass == ARM::GPRRegClassID &&
+ OpInfo[1].RegClass == ARM::GPRRegClassID &&
+ OpInfo[2].RegClass == ARM::GPRRegClassID);
+
+ bool FourReg = NumOps > 3 && OpInfo[3].RegClass == ARM::GPRRegClassID;
+
+ // Build the register operands.
+
+ if (FourReg)
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRd(insn))));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRs(insn))));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRn(insn))));
+
+ MI.addOperand(MCOperand::CreateReg(getRegisterEnum(ARM::GPRRegClassID,
+ decodeRm(insn))));
+
+ if (FourReg)
+ NumOpsAdded = 4;
+ else
+ NumOpsAdded = 3;
+
+ return true;
+}
+
+// See A6.3 32-bit Thumb instruction encoding for instruction classes
+// corresponding to (op1, op2, op).
+//
+// Table A6-9 32-bit Thumb instruction encoding
+// op1 op2 op Instruction class, see
+// --- ------- -- ------------------------------------------------------------
+// 01 00xx0xx - Load/store multiple on page A6-23
+// 00xx1xx - Load/store dual, load/store exclusive, table branch on page A6-24
+// 01xxxxx - Data-processing (shifted register) on page A6-31
+// 1xxxxxx - Coprocessor instructions on page A6-40
+// 10 x0xxxxx 0 Data-processing (modified immediate) on page A6-15
+// x1xxxxx 0 Data-processing (plain binary immediate) on page A6-19
+// - 1 Branches and miscellaneous control on page A6-20
+// 11 000xxx0 - Store single data item on page A6-30
+// 001xxx0 - Advanced SIMD element or structure load/store instructions on page A7-27
+// 00xx001 - Load byte, memory hints on page A6-28
+// 00xx011 - Load halfword, memory hints on page A6-26
+// 00xx101 - Load word on page A6-25
+// 00xx111 - UNDEFINED
+// 010xxxx - Data-processing (register) on page A6-33
+// 0110xxx - Multiply, multiply accumulate, and absolute difference on page A6-38
+// 0111xxx - Long multiply, long multiply accumulate, and divide on page A6-39
+// 1xxxxxx - Coprocessor instructions on page A6-40
+//
+static bool DisassembleThumb2(uint16_t op1, uint16_t op2, uint16_t op,
+ MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ switch (op1) {
+ case 1:
+ if (slice(op2, 6, 5) == 0) {
+ if (slice(op2, 2, 2) == 0) {
+ // Load/store multiple.
+ return DisassembleThumb2LdStMul(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+
+ // Load/store dual, load/store exclusive, table branch, otherwise.
+ assert(slice(op2, 2, 2) == 1);
+ if ((ARM::t2LDREX <= Opcode && Opcode <= ARM::t2LDREXH) ||
+ (ARM::t2STREX <= Opcode && Opcode <= ARM::t2STREXH)) {
+ // Load/store exclusive.
+ return DisassembleThumb2LdStEx(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+ if (Opcode == ARM::t2LDRDi8 ||
+ Opcode == ARM::t2LDRD_PRE || Opcode == ARM::t2LDRD_POST ||
+ Opcode == ARM::t2STRDi8 ||
+ Opcode == ARM::t2STRD_PRE || Opcode == ARM::t2STRD_POST) {
+ // Load/store dual.
+ return DisassembleThumb2LdStDual(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+ if (Opcode == ARM::t2TBBgen || Opcode == ARM::t2TBHgen) {
+ // Table branch.
+ return DisassembleThumb2TB(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+ } else if (slice(op2, 6, 5) == 1) {
+ // Data-processing (shifted register).
+ return DisassembleThumb2DPSoReg(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+
+ // FIXME: A6.3.18 Coprocessor instructions
+ // But see ThumbDisassembler::getInstruction().
+
+ break;
+ case 2:
+ if (op == 0) {
+ if (slice(op2, 5, 5) == 0) {
+ // Data-processing (modified immediate)
+ return DisassembleThumb2DPModImm(MI, Opcode, insn, NumOps, NumOpsAdded);
+ } else {
+ // Data-processing (plain binary immediate)
+ return DisassembleThumb2DPBinImm(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+ } else {
+ // Branches and miscellaneous control on page A6-20.
+ return DisassembleThumb2BrMiscCtrl(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+
+ break;
+ case 3:
+ switch (slice(op2, 6, 5)) {
+ case 0:
+ // Load/store instructions...
+ if (slice(op2, 0, 0) == 0) {
+ if (slice(op2, 4, 4) == 0) {
+ // Store single data item on page A6-30
+ return DisassembleThumb2LdSt(false, MI,Opcode,insn,NumOps,NumOpsAdded);
+ } else {
+ // FIXME: Advanced SIMD element or structure load/store instructions.
+ // But see ThumbDisassembler::getInstruction().
+ ;
+ }
+ } else {
+ // Table A6-9 32-bit Thumb instruction encoding: Load byte|halfword|word
+ return DisassembleThumb2LdSt(true, MI,Opcode,insn,NumOps,NumOpsAdded);
+ }
+ break;
+ case 1:
+ if (slice(op2, 4, 4) == 0) {
+ // A6.3.12 Data-processing (register)
+ return DisassembleThumb2DPReg(MI, Opcode, insn, NumOps, NumOpsAdded);
+ } else if (slice(op2, 3, 3) == 0) {
+ // A6.3.16 Multiply, multiply accumulate, and absolute difference
+ return DisassembleThumb2Mul(MI, Opcode, insn, NumOps, NumOpsAdded);
+ } else {
+ // A6.3.17 Long multiply, long multiply accumulate, and divide
+ return DisassembleThumb2LongMul(MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+ break;
+ default:
+ // FIXME: A6.3.18 Coprocessor instructions
+ // But see ThumbDisassembler::getInstruction().
+ ;
+ break;
+ }
+
+ break;
+ default:
+ assert(0 && "Encoding error for Thumb2 instruction!");
+ break;
+ }
+
+ return false;
+}
+
+static bool DisassembleThumbFrm(MCInst &MI, unsigned Opcode, uint32_t insn,
+ unsigned short NumOps, unsigned &NumOpsAdded) {
+
+ uint16_t HalfWord = slice(insn, 31, 16);
+
+ if (HalfWord == 0) {
+ // A6.2 16-bit Thumb instruction encoding
+ // op = bits[15:10]
+ uint16_t op = slice(insn, 15, 10);
+ return DisassembleThumb1(op, MI, Opcode, insn, NumOps, NumOpsAdded);
+ }
+
+ unsigned bits15_11 = slice(HalfWord, 15, 11);
+
+ // A6.1 Thumb instruction set encoding
+ assert((bits15_11 == 0x1D || bits15_11 == 0x1E || bits15_11 == 0x1F) &&
+ "Bits [15:11] of first halfword of a Thumb2 instruction out of range");
+
+ // A6.3 32-bit Thumb instruction encoding
+
+ uint16_t op1 = slice(HalfWord, 12, 11);
+ uint16_t op2 = slice(HalfWord, 10, 4);
+ uint16_t op = slice(insn, 15, 15);
+
+ return DisassembleThumb2(op1, op2, op, MI, Opcode, insn, NumOps, NumOpsAdded);
+}
diff --git a/llvm/lib/Target/ARM/Makefile b/llvm/lib/Target/ARM/Makefile
index a8dd38cb362..2aac1161201 100644
--- a/llvm/lib/Target/ARM/Makefile
+++ b/llvm/lib/Target/ARM/Makefile
@@ -16,8 +16,9 @@ BUILT_SOURCES = ARMGenRegisterInfo.h.inc ARMGenRegisterNames.inc \
ARMGenRegisterInfo.inc ARMGenInstrNames.inc \
ARMGenInstrInfo.inc ARMGenAsmWriter.inc \
ARMGenDAGISel.inc ARMGenSubtarget.inc \
- ARMGenCodeEmitter.inc ARMGenCallingConv.inc
+ ARMGenCodeEmitter.inc ARMGenCallingConv.inc \
+ ARMGenDisassemblerTables.inc
-DIRS = AsmPrinter AsmParser TargetInfo
+DIRS = AsmPrinter AsmParser Disassembler TargetInfo
include $(LEVEL)/Makefile.common
diff --git a/llvm/lib/Target/ARM/Thumb2ITBlockPass.cpp b/llvm/lib/Target/ARM/Thumb2ITBlockPass.cpp
index f5ba155f402..f36d4ef7567 100644
--- a/llvm/lib/Target/ARM/Thumb2ITBlockPass.cpp
+++ b/llvm/lib/Target/ARM/Thumb2ITBlockPass.cpp
@@ -78,14 +78,16 @@ bool Thumb2ITBlockPass::InsertITBlocks(MachineBasicBlock &MBB) {
DebugLoc ndl = NMI->getDebugLoc();
unsigned NPredReg = 0;
ARMCC::CondCodes NCC = getPredicate(NMI, NPredReg);
- if (NCC == OCC) {
- Mask |= (1 << Pos);
- } else if (NCC != CC)
+ if (NCC == CC || NCC == OCC)
+ Mask |= (NCC & 1) << Pos;
+ else
break;
--Pos;
++MBBI;
}
Mask |= (1 << Pos);
+ // Tag along (firstcond[0] << 4) with the mask.
+ Mask |= (CC & 1) << 4;
MIB.addImm(Mask);
Modified = true;
++NumITs;
OpenPOWER on IntegriCloud