diff options
| author | Chris Lattner <sabre@nondot.org> | 2004-02-13 23:29:20 +0000 |
|---|---|---|
| committer | Chris Lattner <sabre@nondot.org> | 2004-02-13 23:29:20 +0000 |
| commit | 1f9c6eb3582781e10c2d299075648ecb13c90435 (patch) | |
| tree | 6c41e65e61bf67a316c3b337ce8a3f3148e8a740 /llvm/lib/Target | |
| parent | c5a4641c21290593a17fa6390fa00156e1c2b961 (diff) | |
| download | bcm5719-llvm-1f9c6eb3582781e10c2d299075648ecb13c90435.tar.gz bcm5719-llvm-1f9c6eb3582781e10c2d299075648ecb13c90435.zip | |
CBackend now lives here
llvm-svn: 11415
Diffstat (limited to 'llvm/lib/Target')
| -rw-r--r-- | llvm/lib/Target/CBackend/CTargetMachine.h | 39 | ||||
| -rw-r--r-- | llvm/lib/Target/CBackend/Makefile | 15 | ||||
| -rw-r--r-- | llvm/lib/Target/CBackend/Writer.cpp | 1383 | ||||
| -rw-r--r-- | llvm/lib/Target/Makefile | 2 |
4 files changed, 1438 insertions, 1 deletions
diff --git a/llvm/lib/Target/CBackend/CTargetMachine.h b/llvm/lib/Target/CBackend/CTargetMachine.h new file mode 100644 index 00000000000..53e01471ea3 --- /dev/null +++ b/llvm/lib/Target/CBackend/CTargetMachine.h @@ -0,0 +1,39 @@ +//===-- CTargetMachine.h - TargetMachine for the C backend ------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file declares the TargetMachine that is used by the C backend. +// +//===----------------------------------------------------------------------===// + +#ifndef CTARGETMACHINE_H +#define CTARGETMACHINE_H + +#include "llvm/Target/TargetMachine.h" + +namespace llvm { +class IntrinsicLowering; + +struct CTargetMachine : public TargetMachine { + CTargetMachine(const Module &M, IntrinsicLowering *IL) : + TargetMachine("CBackend", IL) {} + + virtual const TargetInstrInfo &getInstrInfo() const { abort(); } + virtual const TargetFrameInfo &getFrameInfo() const { abort(); } + virtual const TargetSchedInfo &getSchedInfo() const { abort(); } + virtual const TargetRegInfo &getRegInfo() const { abort(); } + virtual const TargetCacheInfo &getCacheInfo() const { abort(); } + + // This is the only thing that actually does anything here. + virtual bool addPassesToEmitAssembly(PassManager &PM, std::ostream &Out); +}; + +} // End llvm namespace + + +#endif diff --git a/llvm/lib/Target/CBackend/Makefile b/llvm/lib/Target/CBackend/Makefile new file mode 100644 index 00000000000..2e13bf7c99a --- /dev/null +++ b/llvm/lib/Target/CBackend/Makefile @@ -0,0 +1,15 @@ +##===- lib/CWriter/Makefile --------------------------------*- Makefile -*-===## +# +# The LLVM Compiler Infrastructure +# +# This file was developed by the LLVM research group and is distributed under +# the University of Illinois Open Source License. See LICENSE.TXT for details. +# +##===----------------------------------------------------------------------===## + +LEVEL = ../.. + +LIBRARYNAME = cwriter + +include $(LEVEL)/Makefile.common + diff --git a/llvm/lib/Target/CBackend/Writer.cpp b/llvm/lib/Target/CBackend/Writer.cpp new file mode 100644 index 00000000000..25c940a6e1b --- /dev/null +++ b/llvm/lib/Target/CBackend/Writer.cpp @@ -0,0 +1,1383 @@ +//===-- Writer.cpp - Library for converting LLVM code to C ----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This library converts LLVM code to C code, compilable by GCC and other C +// compilers. +// +//===----------------------------------------------------------------------===// + +#include "CTargetMachine.h" +#include "llvm/Target/TargetMachineImpls.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Module.h" +#include "llvm/Instructions.h" +#include "llvm/Pass.h" +#include "llvm/PassManager.h" +#include "llvm/SymbolTable.h" +#include "llvm/Intrinsics.h" +#include "llvm/Analysis/FindUsedTypes.h" +#include "llvm/Analysis/ConstantsScanner.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Support/InstVisitor.h" +#include "llvm/Support/Mangler.h" +#include "Support/StringExtras.h" +#include <algorithm> +#include <sstream> +using namespace llvm; + +namespace { + class CWriter : public Pass, public InstVisitor<CWriter> { + std::ostream &Out; + Mangler *Mang; + const Module *TheModule; + FindUsedTypes *FUT; + + std::map<const Type *, std::string> TypeNames; + std::set<const Value*> MangledGlobals; + + std::map<const ConstantFP *, unsigned> FPConstantMap; + public: + CWriter(std::ostream &o) : Out(o) {} + + void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<FindUsedTypes>(); + } + + virtual const char *getPassName() const { return "C backend"; } + + bool doInitialization(Module &M); + bool run(Module &M) { + doInitialization(M); + + for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) + if (!I->isExternal()) + printFunction(*I); + + // Free memory... + delete Mang; + TypeNames.clear(); + MangledGlobals.clear(); + return true; + } + + std::ostream &printType(std::ostream &Out, const Type *Ty, + const std::string &VariableName = "", + bool IgnoreName = false); + + void writeOperand(Value *Operand); + void writeOperandInternal(Value *Operand); + + private : + bool nameAllUsedStructureTypes(Module &M); + void printModule(Module *M); + void printFloatingPointConstants(Module &M); + void printSymbolTable(const SymbolTable &ST); + void printContainedStructs(const Type *Ty, std::set<const StructType *> &); + void printFunctionSignature(const Function *F, bool Prototype); + + void printFunction(Function &); + + void printConstant(Constant *CPV); + void printConstantArray(ConstantArray *CPA); + + // isInlinableInst - Attempt to inline instructions into their uses to build + // trees as much as possible. To do this, we have to consistently decide + // what is acceptable to inline, so that variable declarations don't get + // printed and an extra copy of the expr is not emitted. + // + static bool isInlinableInst(const Instruction &I) { + // Must be an expression, must be used exactly once. If it is dead, we + // emit it inline where it would go. + if (I.getType() == Type::VoidTy || !I.hasOneUse() || + isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) || + isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<VANextInst>(I)) + // Don't inline a load across a store or other bad things! + return false; + + // Only inline instruction it it's use is in the same BB as the inst. + return I.getParent() == cast<Instruction>(I.use_back())->getParent(); + } + + // isDirectAlloca - Define fixed sized allocas in the entry block as direct + // variables which are accessed with the & operator. This causes GCC to + // generate significantly better code than to emit alloca calls directly. + // + static const AllocaInst *isDirectAlloca(const Value *V) { + const AllocaInst *AI = dyn_cast<AllocaInst>(V); + if (!AI) return false; + if (AI->isArrayAllocation()) + return 0; // FIXME: we can also inline fixed size array allocas! + if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock()) + return 0; + return AI; + } + + // Instruction visitation functions + friend class InstVisitor<CWriter>; + + void visitReturnInst(ReturnInst &I); + void visitBranchInst(BranchInst &I); + void visitSwitchInst(SwitchInst &I); + void visitInvokeInst(InvokeInst &I); + void visitUnwindInst(UnwindInst &I); + + void visitPHINode(PHINode &I); + void visitBinaryOperator(Instruction &I); + + void visitCastInst (CastInst &I); + void visitCallInst (CallInst &I); + void visitCallSite (CallSite CS); + void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } + + void visitMallocInst(MallocInst &I); + void visitAllocaInst(AllocaInst &I); + void visitFreeInst (FreeInst &I); + void visitLoadInst (LoadInst &I); + void visitStoreInst (StoreInst &I); + void visitGetElementPtrInst(GetElementPtrInst &I); + void visitVANextInst(VANextInst &I); + void visitVAArgInst (VAArgInst &I); + + void visitInstruction(Instruction &I) { + std::cerr << "C Writer does not know about " << I; + abort(); + } + + void outputLValue(Instruction *I) { + Out << " " << Mang->getValueName(I) << " = "; + } + void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock, + unsigned Indent); + void printIndexingExpression(Value *Ptr, gep_type_iterator I, + gep_type_iterator E); + }; + +// Pass the Type* and the variable name and this prints out the variable +// declaration. +// +std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty, + const std::string &NameSoFar, + bool IgnoreName) { + if (Ty->isPrimitiveType()) + switch (Ty->getPrimitiveID()) { + case Type::VoidTyID: return Out << "void " << NameSoFar; + case Type::BoolTyID: return Out << "bool " << NameSoFar; + case Type::UByteTyID: return Out << "unsigned char " << NameSoFar; + case Type::SByteTyID: return Out << "signed char " << NameSoFar; + case Type::UShortTyID: return Out << "unsigned short " << NameSoFar; + case Type::ShortTyID: return Out << "short " << NameSoFar; + case Type::UIntTyID: return Out << "unsigned " << NameSoFar; + case Type::IntTyID: return Out << "int " << NameSoFar; + case Type::ULongTyID: return Out << "unsigned long long " << NameSoFar; + case Type::LongTyID: return Out << "signed long long " << NameSoFar; + case Type::FloatTyID: return Out << "float " << NameSoFar; + case Type::DoubleTyID: return Out << "double " << NameSoFar; + default : + std::cerr << "Unknown primitive type: " << Ty << "\n"; + abort(); + } + + // Check to see if the type is named. + if (!IgnoreName || isa<OpaqueType>(Ty)) { + std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty); + if (I != TypeNames.end()) return Out << I->second << " " << NameSoFar; + } + + switch (Ty->getPrimitiveID()) { + case Type::FunctionTyID: { + const FunctionType *MTy = cast<FunctionType>(Ty); + std::stringstream FunctionInnards; + FunctionInnards << " (" << NameSoFar << ") ("; + for (FunctionType::param_iterator I = MTy->param_begin(), + E = MTy->param_end(); I != E; ++I) { + if (I != MTy->param_begin()) + FunctionInnards << ", "; + printType(FunctionInnards, *I, ""); + } + if (MTy->isVarArg()) { + if (MTy->getNumParams()) + FunctionInnards << ", ..."; + } else if (!MTy->getNumParams()) { + FunctionInnards << "void"; + } + FunctionInnards << ")"; + std::string tstr = FunctionInnards.str(); + printType(Out, MTy->getReturnType(), tstr); + return Out; + } + case Type::StructTyID: { + const StructType *STy = cast<StructType>(Ty); + Out << NameSoFar + " {\n"; + unsigned Idx = 0; + for (StructType::element_iterator I = STy->element_begin(), + E = STy->element_end(); I != E; ++I) { + Out << " "; + printType(Out, *I, "field" + utostr(Idx++)); + Out << ";\n"; + } + return Out << "}"; + } + + case Type::PointerTyID: { + const PointerType *PTy = cast<PointerType>(Ty); + std::string ptrName = "*" + NameSoFar; + + if (isa<ArrayType>(PTy->getElementType())) + ptrName = "(" + ptrName + ")"; + + return printType(Out, PTy->getElementType(), ptrName); + } + + case Type::ArrayTyID: { + const ArrayType *ATy = cast<ArrayType>(Ty); + unsigned NumElements = ATy->getNumElements(); + return printType(Out, ATy->getElementType(), + NameSoFar + "[" + utostr(NumElements) + "]"); + } + + case Type::OpaqueTyID: { + static int Count = 0; + std::string TyName = "struct opaque_" + itostr(Count++); + assert(TypeNames.find(Ty) == TypeNames.end()); + TypeNames[Ty] = TyName; + return Out << TyName << " " << NameSoFar; + } + default: + assert(0 && "Unhandled case in getTypeProps!"); + abort(); + } + + return Out; +} + +void CWriter::printConstantArray(ConstantArray *CPA) { + + // As a special case, print the array as a string if it is an array of + // ubytes or an array of sbytes with positive values. + // + const Type *ETy = CPA->getType()->getElementType(); + bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy); + + // Make sure the last character is a null char, as automatically added by C + if (isString && (CPA->getNumOperands() == 0 || + !cast<Constant>(*(CPA->op_end()-1))->isNullValue())) + isString = false; + + if (isString) { + Out << "\""; + // Keep track of whether the last number was a hexadecimal escape + bool LastWasHex = false; + + // Do not include the last character, which we know is null + for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) { + unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getRawValue(); + + // Print it out literally if it is a printable character. The only thing + // to be careful about is when the last letter output was a hex escape + // code, in which case we have to be careful not to print out hex digits + // explicitly (the C compiler thinks it is a continuation of the previous + // character, sheesh...) + // + if (isprint(C) && (!LastWasHex || !isxdigit(C))) { + LastWasHex = false; + if (C == '"' || C == '\\') + Out << "\\" << C; + else + Out << C; + } else { + LastWasHex = false; + switch (C) { + case '\n': Out << "\\n"; break; + case '\t': Out << "\\t"; break; + case '\r': Out << "\\r"; break; + case '\v': Out << "\\v"; break; + case '\a': Out << "\\a"; break; + case '\"': Out << "\\\""; break; + case '\'': Out << "\\\'"; break; + default: + Out << "\\x"; + Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')); + Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); + LastWasHex = true; + break; + } + } + } + Out << "\""; + } else { + Out << "{"; + if (CPA->getNumOperands()) { + Out << " "; + printConstant(cast<Constant>(CPA->getOperand(0))); + for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) { + Out << ", "; + printConstant(cast<Constant>(CPA->getOperand(i))); + } + } + Out << " }"; + } +} + +// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out +// textually as a double (rather than as a reference to a stack-allocated +// variable). We decide this by converting CFP to a string and back into a +// double, and then checking whether the conversion results in a bit-equal +// double to the original value of CFP. This depends on us and the target C +// compiler agreeing on the conversion process (which is pretty likely since we +// only deal in IEEE FP). +// +bool isFPCSafeToPrint(const ConstantFP *CFP) { +#if HAVE_PRINTF_A + char Buffer[100]; + sprintf(Buffer, "%a", CFP->getValue()); + + if (!strncmp(Buffer, "0x", 2) || + !strncmp(Buffer, "-0x", 3) || + !strncmp(Buffer, "+0x", 3)) + return atof(Buffer) == CFP->getValue(); + return false; +#else + std::string StrVal = ftostr(CFP->getValue()); + + while (StrVal[0] == ' ') + StrVal.erase(StrVal.begin()); + + // Check to make sure that the stringized number is not some string like "Inf" + // or NaN. Check that the string matches the "[-+]?[0-9]" regex. + if ((StrVal[0] >= '0' && StrVal[0] <= '9') || + ((StrVal[0] == '-' || StrVal[0] == '+') && + (StrVal[1] >= '0' && StrVal[1] <= '9'))) + // Reparse stringized version! + return atof(StrVal.c_str()) == CFP->getValue(); + return false; +#endif +} + +// printConstant - The LLVM Constant to C Constant converter. +void CWriter::printConstant(Constant *CPV) { + if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) { + switch (CE->getOpcode()) { + case Instruction::Cast: + Out << "(("; + printType(Out, CPV->getType()); + Out << ")"; + printConstant(CE->getOperand(0)); + Out << ")"; + return; + + case Instruction::GetElementPtr: + Out << "(&("; + printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV), + gep_type_end(CPV)); + Out << "))"; + return; + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + case Instruction::Div: + case Instruction::Rem: + case Instruction::SetEQ: + case Instruction::SetNE: + case Instruction::SetLT: + case Instruction::SetLE: + case Instruction::SetGT: + case Instruction::SetGE: + case Instruction::Shl: + case Instruction::Shr: + Out << "("; + printConstant(CE->getOperand(0)); + switch (CE->getOpcode()) { + case Instruction::Add: Out << " + "; break; + case Instruction::Sub: Out << " - "; break; + case Instruction::Mul: Out << " * "; break; + case Instruction::Div: Out << " / "; break; + case Instruction::Rem: Out << " % "; break; + case Instruction::SetEQ: Out << " == "; break; + case Instruction::SetNE: Out << " != "; break; + case Instruction::SetLT: Out << " < "; break; + case Instruction::SetLE: Out << " <= "; break; + case Instruction::SetGT: Out << " > "; break; + case Instruction::SetGE: Out << " >= "; break; + case Instruction::Shl: Out << " << "; break; + case Instruction::Shr: Out << " >> "; break; + default: assert(0 && "Illegal opcode here!"); + } + printConstant(CE->getOperand(1)); + Out << ")"; + return; + + default: + std::cerr << "CWriter Error: Unhandled constant expression: " + << CE << "\n"; + abort(); + } + } + + switch (CPV->getType()->getPrimitiveID()) { + case Type::BoolTyID: + Out << (CPV == ConstantBool::False ? "0" : "1"); break; + case Type::SByteTyID: + case Type::ShortTyID: + Out << cast<ConstantSInt>(CPV)->getValue(); break; + case Type::IntTyID: + if ((int)cast<ConstantSInt>(CPV)->getValue() == (int)0x80000000) + Out << "((int)0x80000000)"; // Handle MININT specially to avoid warning + else + Out << cast<ConstantSInt>(CPV)->getValue(); + break; + + case Type::LongTyID: + Out << cast<ConstantSInt>(CPV)->getValue() << "ll"; break; + + case Type::UByteTyID: + case Type::UShortTyID: + Out << cast<ConstantUInt>(CPV)->getValue(); break; + case Type::UIntTyID: + Out << cast<ConstantUInt>(CPV)->getValue() << "u"; break; + case Type::ULongTyID: + Out << cast<ConstantUInt>(CPV)->getValue() << "ull"; break; + + case Type::FloatTyID: + case Type::DoubleTyID: { + ConstantFP *FPC = cast<ConstantFP>(CPV); + std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC); + if (I != FPConstantMap.end()) { + // Because of FP precision problems we must load from a stack allocated + // value that holds the value in hex. + Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double") + << "*)&FPConstant" << I->second << ")"; + } else { +#if HAVE_PRINTF_A + // Print out the constant as a floating point number. + char Buffer[100]; + sprintf(Buffer, "%a", FPC->getValue()); + Out << Buffer << " /*" << FPC->getValue() << "*/ "; +#else + Out << ftostr(FPC->getValue()); +#endif + } + break; + } + + case Type::ArrayTyID: + printConstantArray(cast<ConstantArray>(CPV)); + break; + + case Type::StructTyID: { + Out << "{"; + if (CPV->getNumOperands()) { + Out << " "; + printConstant(cast<Constant>(CPV->getOperand(0))); + for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) { + Out << ", "; + printConstant(cast<Constant>(CPV->getOperand(i))); + } + } + Out << " }"; + break; + } + + case Type::PointerTyID: + if (isa<ConstantPointerNull>(CPV)) { + Out << "(("; + printType(Out, CPV->getType()); + Out << ")/*NULL*/0)"; + break; + } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CPV)) { + writeOperand(CPR->getValue()); + break; + } + // FALL THROUGH + default: + std::cerr << "Unknown constant type: " << CPV << "\n"; + abort(); + } +} + +void CWriter::writeOperandInternal(Value *Operand) { + if (Instruction *I = dyn_cast<Instruction>(Operand)) + if (isInlinableInst(*I) && !isDirectAlloca(I)) { + // Should we inline this instruction to build a tree? + Out << "("; + visit(*I); + Out << ")"; + return; + } + + if (Constant *CPV = dyn_cast<Constant>(Operand)) { + printConstant(CPV); + } else { + Out << Mang->getValueName(Operand); + } +} + +void CWriter::writeOperand(Value *Operand) { + if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand)) + Out << "(&"; // Global variables are references as their addresses by llvm + + writeOperandInternal(Operand); + + if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand)) + Out << ")"; +} + +// nameAllUsedStructureTypes - If there are structure types in the module that +// are used but do not have names assigned to them in the symbol table yet then +// we assign them names now. +// +bool CWriter::nameAllUsedStructureTypes(Module &M) { + // Get a set of types that are used by the program... + std::set<const Type *> UT = FUT->getTypes(); + + // Loop over the module symbol table, removing types from UT that are already + // named. + // + SymbolTable &MST = M.getSymbolTable(); + if (MST.find(Type::TypeTy) != MST.end()) + for (SymbolTable::type_iterator I = MST.type_begin(Type::TypeTy), + E = MST.type_end(Type::TypeTy); I != E; ++I) + UT.erase(cast<Type>(I->second)); + + // UT now contains types that are not named. Loop over it, naming structure + // types. + // + bool Changed = false; + for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end(); + I != E; ++I) + if (const StructType *ST = dyn_cast<StructType>(*I)) { + ((Value*)ST)->setName("unnamed", &MST); + Changed = true; + } + return Changed; +} + +// generateCompilerSpecificCode - This is where we add conditional compilation +// directives to cater to specific compilers as need be. +// +static void generateCompilerSpecificCode(std::ostream& Out) { + // Alloca is hard to get, and we don't want to include stdlib.h here... + Out << "/* get a declaration for alloca */\n" + << "#ifdef sun\n" + << "extern void *__builtin_alloca(unsigned long);\n" + << "#define alloca(x) __builtin_alloca(x)\n" + << "#else\n" + << "#ifndef __FreeBSD__\n" + << "#include <alloca.h>\n" + << "#endif\n" + << "#endif\n\n"; + + // We output GCC specific attributes to preserve 'linkonce'ness on globals. + // If we aren't being compiled with GCC, just drop these attributes. + Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n" + << "#define __attribute__(X)\n" + << "#endif\n\n"; + +#if 0 + // At some point, we should support "external weak" vs. "weak" linkages. + // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))". + Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" + << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n" + << "#elif defined(__GNUC__)\n" + << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n" + << "#else\n" + << "#define __EXTERNAL_WEAK__\n" + << "#endif\n\n"; +#endif + + // For now, turn off the weak linkage attribute on Mac OS X. (See above.) + Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" + << "#define __ATTRIBUTE_WEAK__\n" + << "#elif defined(__GNUC__)\n" + << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n" + << "#else\n" + << "#define __ATTRIBUTE_WEAK__\n" + << "#endif\n\n"; +} + +bool CWriter::doInitialization(Module &M) { + // Initialize + TheModule = &M; + FUT = &getAnalysis<FindUsedTypes>(); + + // Ensure that all structure types have names... + bool Changed = nameAllUsedStructureTypes(M); + Mang = new Mangler(M); + + // Calculate which global values have names that will collide when we throw + // away type information. + { // Scope to delete the FoundNames set when we are done with it... + std::set<std::string> FoundNames; + for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) + if (I->hasName()) // If the global has a name... + if (FoundNames.count(I->getName())) // And the name is already used + MangledGlobals.insert(I); // Mangle the name + else + FoundNames.insert(I->getName()); // Otherwise, keep track of name + + for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) + if (I->hasName()) // If the global has a name... + if (FoundNames.count(I->getName())) // And the name is already used + MangledGlobals.insert(I); // Mangle the name + else + FoundNames.insert(I->getName()); // Otherwise, keep track of name + } + + // get declaration for alloca + Out << "/* Provide Declarations */\n"; + Out << "#include <stdarg.h>\n"; // Varargs support + Out << "#include <setjmp.h>\n"; // Unwind support + generateCompilerSpecificCode(Out); + + // Provide a definition for `bool' if not compiling with a C++ compiler. + Out << "\n" + << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n" + + << "\n\n/* Support for floating point constants */\n" + << "typedef unsigned long long ConstantDoubleTy;\n" + << "typedef unsigned int ConstantFloatTy;\n" + + << "\n\n/* Global Declarations */\n"; + + // First output all the declarations for the program, because C requires + // Functions & globals to be declared before they are used. + // + + // Loop over the symbol table, emitting all named constants... + printSymbolTable(M.getSymbolTable()); + + // Global variable declarations... + if (!M.gempty()) { + Out << "\n/* External Global Variable Declarations */\n"; + for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) { + if (I->hasExternalLinkage()) { + Out << "extern "; + printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); + Out << ";\n"; + } + } + } + + // Function declarations + if (!M.empty()) { + Out << "\n/* Function Declarations */\n"; + for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { + // If the function is external and the name collides don't print it. + // Sometimes the bytecode likes to have multiple "declarations" for + // external functions + if ((I->hasInternalLinkage() || !MangledGlobals.count(I)) && + !I->getIntrinsicID() && + I->getName() != "setjmp" && I->getName() != "longjmp") { + printFunctionSignature(I, true); + if (I->hasWeakLinkage()) Out << " __ATTRIBUTE_WEAK__"; + Out << ";\n"; + } + } + } + + // Output the global variable declarations + if (!M.gempty()) { + Out << "\n\n/* Global Variable Declarations */\n"; + for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) + if (!I->isExternal()) { + Out << "extern "; + printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); + + if (I->hasLinkOnceLinkage()) + Out << " __attribute__((common))"; + else if (I->hasWeakLinkage()) + Out << " __ATTRIBUTE_WEAK__"; + Out << ";\n"; + } + } + + // Output the global variable definitions and contents... + if (!M.gempty()) { + Out << "\n\n/* Global Variable Definitions and Initialization */\n"; + for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) + if (!I->isExternal()) { + if (I->hasInternalLinkage()) + Out << "static "; + printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); + if (I->hasLinkOnceLinkage()) + Out << " __attribute__((common))"; + else if (I->hasWeakLinkage()) + Out << " __ATTRIBUTE_WEAK__"; + + // If the initializer is not null, emit the initializer. If it is null, + // we try to avoid emitting large amounts of zeros. The problem with + // this, however, occurs when the variable has weak linkage. In this + // case, the assembler will complain about the variable being both weak + // and common, so we disable this optimization. + if (!I->getInitializer()->isNullValue() || + I->hasWeakLinkage()) { + Out << " = " ; + writeOperand(I->getInitializer()); + } + Out << ";\n"; + } + } + + // Output all floating point constants that cannot be printed accurately... + printFloatingPointConstants(M); + + if (!M.empty()) + Out << "\n\n/* Function Bodies */\n"; + return false; +} + + +/// Output all floating point constants that cannot be printed accurately... +void CWriter::printFloatingPointConstants(Module &M) { + union { + double D; + unsigned long long U; + } DBLUnion; + + union { + float F; + unsigned U; + } FLTUnion; + + // Scan the module for floating point constants. If any FP constant is used + // in the function, we want to redirect it here so that we do not depend on + // the precision of the printed form, unless the printed form preserves + // precision. + // + unsigned FPCounter = 0; + for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) + for (constant_iterator I = constant_begin(F), E = constant_end(F); + I != E; ++I) + if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I)) + if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe. + !FPConstantMap.count(FPC)) { + double Val = FPC->getValue(); + + FPConstantMap[FPC] = FPCounter; // Number the FP constants + + if (FPC->getType() == Type::DoubleTy) { + DBLUnion.D = Val; + Out << "const ConstantDoubleTy FPConstant" << FPCounter++ + << " = 0x" << std::hex << DBLUnion.U << std::dec + << "ULL; /* " << Val << " */\n"; + } else if (FPC->getType() == Type::FloatTy) { + FLTUnion.F = Val; + Out << "const ConstantFloatTy FPConstant" << FPCounter++ + << " = 0x" << std::hex << FLTUnion.U << std::dec + << "U; /* " << Val << " */\n"; + } else + assert(0 && "Unknown float type!"); + } + + Out << "\n"; + } + + +/// printSymbolTable - Run through symbol table looking for type names. If a +/// type name is found, emit it's declaration... +/// +void CWriter::printSymbolTable(const SymbolTable &ST) { + // If there are no type names, exit early. + if (ST.find(Type::TypeTy) == ST.end()) + return; + + // We are only interested in the type plane of the symbol table... + SymbolTable::type_const_iterator I = ST.type_begin(Type::TypeTy); + SymbolTable::type_const_iterator End = ST.type_end(Type::TypeTy); + + // Print out forward declarations for structure types before anything else! + Out << "/* Structure forward decls */\n"; + for (; I != End; ++I) + if (const Type *STy = dyn_cast<StructType>(I->second)) + // Only print out used types! + if (FUT->getTypes().count(STy)) { + std::string Name = "struct l_" + Mangler::makeNameProper(I->first); + Out << Name << ";\n"; + TypeNames.insert(std::make_pair(STy, Name)); + } + + Out << "\n"; + + // Now we can print out typedefs... + Out << "/* Typedefs */\n"; + for (I = ST.type_begin(Type::TypeTy); I != End; ++I) + // Only print out used types! + if (FUT->getTypes().count(cast<Type>(I->second))) { + const Type *Ty = cast<Type>(I->second); + std::string Name = "l_" + Mangler::makeNameProper(I->first); + Out << "typedef "; + printType(Out, Ty, Name); + Out << ";\n"; + } + + Out << "\n"; + + // Keep track of which structures have been printed so far... + std::set<const StructType *> StructPrinted; + + // Loop over all structures then push them into the stack so they are + // printed in the correct order. + // + Out << "/* Structure contents */\n"; + for (I = ST.type_begin(Type::TypeTy); I != End; ++I) + if (const StructType *STy = dyn_cast<StructType>(I->second)) + // Only print out used types! + if (FUT->getTypes().count(STy)) + printContainedStructs(STy, StructPrinted); +} + +// Push the struct onto the stack and recursively push all structs +// this one depends on. +void CWriter::printContainedStructs(const Type *Ty, + std::set<const StructType*> &StructPrinted){ + if (const StructType *STy = dyn_cast<StructType>(Ty)) { + //Check to see if we have already printed this struct + if (StructPrinted.count(STy) == 0) { + // Print all contained types first... + for (StructType::element_iterator I = STy->element_begin(), + E = STy->element_end(); I != E; ++I) { + const Type *Ty1 = I->get(); + if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1)) + printContainedStructs(*I, StructPrinted); + } + + //Print structure type out.. + StructPrinted.insert(STy); + std::string Name = TypeNames[STy]; + printType(Out, STy, Name, true); + Out << ";\n\n"; + } + + // If it is an array, check contained types and continue + } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)){ + const Type *Ty1 = ATy->getElementType(); + if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1)) + printContainedStructs(Ty1, StructPrinted); + } +} + + +void CWriter::printFunctionSignature(const Function *F, bool Prototype) { + if (F->hasInternalLinkage()) Out << "static "; + if (F->hasLinkOnceLinkage()) Out << "inline "; + + // Loop over the arguments, printing them... + const FunctionType *FT = cast<FunctionType>(F->getFunctionType()); + + std::stringstream FunctionInnards; + + // Print out the name... + FunctionInnards << Mang->getValueName(F) << "("; + + if (!F->isExternal()) { + if (!F->aempty()) { + std::string ArgName; + if (F->abegin()->hasName() || !Prototype) + ArgName = Mang->getValueName(F->abegin()); + printType(FunctionInnards, F->afront().getType(), ArgName); + for (Function::const_aiterator I = ++F->abegin(), E = F->aend(); + I != E; ++I) { + FunctionInnards << ", "; + if (I->hasName() || !Prototype) + ArgName = Mang->getValueName(I); + else + ArgName = ""; + printType(FunctionInnards, I->getType(), ArgName); + } + } + } else { + // Loop over the arguments, printing them... + for (FunctionType::param_iterator I = FT->param_begin(), + E = FT->param_end(); I != E; ++I) { + if (I != FT->param_begin()) FunctionInnards << ", "; + printType(FunctionInnards, *I); + } + } + + // Finish printing arguments... if this is a vararg function, print the ..., + // unless there are no known types, in which case, we just emit (). + // + if (FT->isVarArg() && FT->getNumParams()) { + if (FT->getNumParams()) FunctionInnards << ", "; + FunctionInnards << "..."; // Output varargs portion of signature! + } else if (!FT->isVarArg() && FT->getNumParams() == 0) { + FunctionInnards << "void"; // ret() -> ret(void) in C. + } + FunctionInnards << ")"; + // Print out the return type and the entire signature for that matter + printType(Out, F->getReturnType(), FunctionInnards.str()); +} + +void CWriter::printFunction(Function &F) { + printFunctionSignature(&F, false); + Out << " {\n"; + + // print local variable information for the function + for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) + if (const AllocaInst *AI = isDirectAlloca(*I)) { + Out << " "; + printType(Out, AI->getAllocatedType(), Mang->getValueName(AI)); + Out << "; /* Address exposed local */\n"; + } else if ((*I)->getType() != Type::VoidTy && !isInlinableInst(**I)) { + Out << " "; + printType(Out, (*I)->getType(), Mang->getValueName(*I)); + Out << ";\n"; + + if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well... + Out << " "; + printType(Out, (*I)->getType(), + Mang->getValueName(*I)+"__PHI_TEMPORARY"); + Out << ";\n"; + } + } + + Out << "\n"; + + // print the basic blocks + for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { + BasicBlock *Prev = BB->getPrev(); + + // Don't print the label for the basic block if there are no uses, or if the + // only terminator use is the predecessor basic block's terminator. We have + // to scan the use list because PHI nodes use basic blocks too but do not + // require a label to be generated. + // + bool NeedsLabel = false; + for (Value::use_iterator UI = BB->use_begin(), UE = BB->use_end(); + UI != UE; ++UI) + if (TerminatorInst *TI = dyn_cast<TerminatorInst>(*UI)) + if (TI != Prev->getTerminator() || + isa<SwitchInst>(Prev->getTerminator()) || + isa<InvokeInst>(Prev->getTerminator())) { + NeedsLabel = true; + break; + } + + if (NeedsLabel) Out << Mang->getValueName(BB) << ":\n"; + + // Output all of the instructions in the basic block... + for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; ++II){ + if (!isInlinableInst(*II) && !isDirectAlloca(II)) { + if (II->getType() != Type::VoidTy) + outputLValue(II); + else + Out << " "; + visit(*II); + Out << ";\n"; + } + } + + // Don't emit prefix or suffix for the terminator... + visit(*BB->getTerminator()); + } + + Out << "}\n\n"; +} + +// Specific Instruction type classes... note that all of the casts are +// necessary because we use the instruction classes as opaque types... +// +void CWriter::visitReturnInst(ReturnInst &I) { + // Don't output a void return if this is the last basic block in the function + if (I.getNumOperands() == 0 && + &*--I.getParent()->getParent()->end() == I.getParent() && + !I.getParent()->size() == 1) { + return; + } + + Out << " return"; + if (I.getNumOperands()) { + Out << " "; + writeOperand(I.getOperand(0)); + } + Out << ";\n"; +} + +void CWriter::visitSwitchInst(SwitchInst &SI) { + Out << " switch ("; + writeOperand(SI.getOperand(0)); + Out << ") {\n default:\n"; + printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2); + Out << ";\n"; + for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) { + Out << " case "; + writeOperand(SI.getOperand(i)); + Out << ":\n"; + BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1)); + printBranchToBlock(SI.getParent(), Succ, 2); + if (Succ == SI.getParent()->getNext()) + Out << " break;\n"; + } + Out << " }\n"; +} + +void CWriter::visitInvokeInst(InvokeInst &II) { + assert(0 && "Lowerinvoke pass didn't work!"); +} + + +void CWriter::visitUnwindInst(UnwindInst &I) { + assert(0 && "Lowerinvoke pass didn't work!"); +} + +bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) { + // If PHI nodes need copies, we need the copy code... + if (isa<PHINode>(To->front()) || + From->getNext() != To) // Not directly successor, need goto + return true; + + // Otherwise we don't need the code. + return false; +} + +void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ, + unsigned Indent) { + for (BasicBlock::iterator I = Succ->begin(); + PHINode *PN = dyn_cast<PHINode>(I); ++I) { + // now we have to do the printing + Out << std::string(Indent, ' '); + Out << " " << Mang->getValueName(I) << "__PHI_TEMPORARY = "; + writeOperand(PN->getIncomingValue(PN->getBasicBlockIndex(CurBB))); + Out << "; /* for PHI node */\n"; + } + + if (CurBB->getNext() != Succ || + isa<InvokeInst>(CurBB->getTerminator()) || + isa<SwitchInst>(CurBB->getTerminator())) { + Out << std::string(Indent, ' ') << " goto "; + writeOperand(Succ); + Out << ";\n"; + } +} + +// Branch instruction printing - Avoid printing out a branch to a basic block +// that immediately succeeds the current one. +// +void CWriter::visitBranchInst(BranchInst &I) { + if (I.isConditional()) { + if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) { + Out << " if ("; + writeOperand(I.getCondition()); + Out << ") {\n"; + + printBranchToBlock(I.getParent(), I.getSuccessor(0), 2); + + if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) { + Out << " } else {\n"; + printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); + } + } else { + // First goto not necessary, assume second one is... + Out << " if (!"; + writeOperand(I.getCondition()); + Out << ") {\n"; + + printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); + } + + Out << " }\n"; + } else { + printBranchToBlock(I.getParent(), I.getSuccessor(0), 0); + } + Out << "\n"; +} + +// PHI nodes get copied into temporary values at the end of predecessor basic +// blocks. We now need to copy these temporary values into the REAL value for +// the PHI. +void CWriter::visitPHINode(PHINode &I) { + writeOperand(&I); + Out << "__PHI_TEMPORARY"; +} + + +void CWriter::visitBinaryOperator(Instruction &I) { + // binary instructions, shift instructions, setCond instructions. + assert(!isa<PointerType>(I.getType())); + + // We must cast the results of binary operations which might be promoted. + bool needsCast = false; + if ((I.getType() == Type::UByteTy) || (I.getType() == Type::SByteTy) + || (I.getType() == Type::UShortTy) || (I.getType() == Type::ShortTy) + || (I.getType() == Type::FloatTy)) { + needsCast = true; + Out << "(("; + printType(Out, I.getType()); + Out << ")("; + } + + writeOperand(I.getOperand(0)); + + switch (I.getOpcode()) { + case Instruction::Add: Out << " + "; break; + case Instruction::Sub: Out << " - "; break; + case Instruction::Mul: Out << "*"; break; + case Instruction::Div: Out << "/"; break; + case Instruction::Rem: Out << "%"; break; + case Instruction::And: Out << " & "; break; + case Instruction::Or: Out << " | "; break; + case Instruction::Xor: Out << " ^ "; break; + case Instruction::SetEQ: Out << " == "; break; + case Instruction::SetNE: Out << " != "; break; + case Instruction::SetLE: Out << " <= "; break; + case Instruction::SetGE: Out << " >= "; break; + case Instruction::SetLT: Out << " < "; break; + case Instruction::SetGT: Out << " > "; break; + case Instruction::Shl : Out << " << "; break; + case Instruction::Shr : Out << " >> "; break; + default: std::cerr << "Invalid operator type!" << I; abort(); + } + + writeOperand(I.getOperand(1)); + + if (needsCast) { + Out << "))"; + } +} + +void CWriter::visitCastInst(CastInst &I) { + if (I.getType() == Type::BoolTy) { + Out << "("; + writeOperand(I.getOperand(0)); + Out << " != 0)"; + return; + } + Out << "("; + printType(Out, I.getType()); + Out << ")"; + if (isa<PointerType>(I.getType())&&I.getOperand(0)->getType()->isIntegral() || + isa<PointerType>(I.getOperand(0)->getType())&&I.getType()->isIntegral()) { + // Avoid "cast to pointer from integer of different size" warnings + Out << "(long)"; + } + + writeOperand(I.getOperand(0)); +} + +void CWriter::visitCallInst(CallInst &I) { + // Handle intrinsic function calls first... + if (Function *F = I.getCalledFunction()) + if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { + switch (ID) { + default: assert(0 && "Unknown LLVM intrinsic!"); + case Intrinsic::va_start: + Out << "0; "; + + Out << "va_start(*(va_list*)&" << Mang->getValueName(&I) << ", "; + // Output the last argument to the enclosing function... + if (I.getParent()->getParent()->aempty()) { + std::cerr << "The C backend does not currently support zero " + << "argument varargs functions, such as '" + << I.getParent()->getParent()->getName() << "'!\n"; + abort(); + } + writeOperand(&I.getParent()->getParent()->aback()); + Out << ")"; + return; + case Intrinsic::va_end: + Out << "va_end(*(va_list*)&"; + writeOperand(I.getOperand(1)); + Out << ")"; + return; + case Intrinsic::va_copy: + Out << "0;"; + Out << "va_copy(*(va_list*)&" << Mang->getValueName(&I) << ", "; + Out << "*(va_list*)&"; + writeOperand(I.getOperand(1)); + Out << ")"; + return; + case Intrinsic::setjmp: + case Intrinsic::sigsetjmp: + // This intrinsic should never exist in the program, but until we get + // setjmp/longjmp transformations going on, we should codegen it to + // something reasonable. This will allow code that never calls longjmp + // to work. + Out << "0"; + return; + case Intrinsic::longjmp: + case Intrinsic::siglongjmp: + // Longjmp is not implemented, and never will be. It would cause an + // exception throw. + Out << "abort()"; + return; + case Intrinsic::memcpy: + Out << "memcpy("; + writeOperand(I.getOperand(1)); + Out << ", "; + writeOperand(I.getOperand(2)); + Out << ", "; + writeOperand(I.getOperand(3)); + Out << ")"; + return; + case Intrinsic::memmove: + Out << "memmove("; + writeOperand(I.getOperand(1)); + Out << ", "; + writeOperand(I.getOperand(2)); + Out << ", "; + writeOperand(I.getOperand(3)); + Out << ")"; + return; + } + } + visitCallSite(&I); +} + +void CWriter::visitCallSite(CallSite CS) { + const PointerType *PTy = cast<PointerType>(CS.getCalledValue()->getType()); + const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); + const Type *RetTy = FTy->getReturnType(); + + writeOperand(CS.getCalledValue()); + Out << "("; + + if (CS.arg_begin() != CS.arg_end()) { + CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); + writeOperand(*AI); + + for (++AI; AI != AE; ++AI) { + Out << ", "; + writeOperand(*AI); + } + } + Out << ")"; +} + +void CWriter::visitMallocInst(MallocInst &I) { + assert(0 && "lowerallocations pass didn't work!"); +} + +void CWriter::visitAllocaInst(AllocaInst &I) { + Out << "("; + printType(Out, I.getType()); + Out << ") alloca(sizeof("; + printType(Out, I.getType()->getElementType()); + Out << ")"; + if (I.isArrayAllocation()) { + Out << " * " ; + writeOperand(I.getOperand(0)); + } + Out << ")"; +} + +void CWriter::visitFreeInst(FreeInst &I) { + assert(0 && "lowerallocations pass didn't work!"); +} + +void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I, + gep_type_iterator E) { + bool HasImplicitAddress = false; + // If accessing a global value with no indexing, avoid *(&GV) syndrome + if (GlobalValue *V = dyn_cast<GlobalValue>(Ptr)) { + HasImplicitAddress = true; + } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Ptr)) { + HasImplicitAddress = true; + Ptr = CPR->getValue(); // Get to the global... + } else if (isDirectAlloca(Ptr)) { + HasImplicitAddress = true; + } + + if (I == E) { + if (!HasImplicitAddress) + Out << "*"; // Implicit zero first argument: '*x' is equivalent to 'x[0]' + + writeOperandInternal(Ptr); + return; + } + + const Constant *CI = dyn_cast<Constant>(I.getOperand()); + if (HasImplicitAddress && (!CI || !CI->isNullValue())) + Out << "(&"; + + writeOperandInternal(Ptr); + + if (HasImplicitAddress && (!CI || !CI->isNullValue())) { + Out << ")"; + HasImplicitAddress = false; // HIA is only true if we haven't addressed yet + } + + assert(!HasImplicitAddress || (CI && CI->isNullValue()) && + "Can only have implicit address with direct accessing"); + + if (HasImplicitAddress) { + ++I; + } else if (CI && CI->isNullValue()) { + gep_type_iterator TmpI = I; ++TmpI; + + // Print out the -> operator if possible... + if (TmpI != E && isa<StructType>(*TmpI)) { + Out << (HasImplicitAddress ? "." : "->"); + Out << "field" << cast<ConstantUInt>(TmpI.getOperand())->getValue(); + I = ++TmpI; + } + } + + for (; I != E; ++I) + if (isa<StructType>(*I)) { + Out << ".field" << cast<ConstantUInt>(I.getOperand())->getValue(); + } else { + Out << "["; + writeOperand(I.getOperand()); + Out << "]"; + } +} + +void CWriter::visitLoadInst(LoadInst &I) { + Out << "*"; + writeOperand(I.getOperand(0)); +} + +void CWriter::visitStoreInst(StoreInst &I) { + Out << "*"; + writeOperand(I.getPointerOperand()); + Out << " = "; + writeOperand(I.getOperand(0)); +} + +void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) { + Out << "&"; + printIndexingExpression(I.getPointerOperand(), gep_type_begin(I), + gep_type_end(I)); +} + +void CWriter::visitVANextInst(VANextInst &I) { + Out << Mang->getValueName(I.getOperand(0)); + Out << "; va_arg(*(va_list*)&" << Mang->getValueName(&I) << ", "; + printType(Out, I.getArgType()); + Out << ")"; +} + +void CWriter::visitVAArgInst(VAArgInst &I) { + Out << "0;\n"; + Out << "{ va_list Tmp; va_copy(Tmp, *(va_list*)&"; + writeOperand(I.getOperand(0)); + Out << ");\n " << Mang->getValueName(&I) << " = va_arg(Tmp, "; + printType(Out, I.getType()); + Out << ");\n va_end(Tmp); }"; +} + +} + +//===----------------------------------------------------------------------===// +// External Interface declaration +//===----------------------------------------------------------------------===// + +bool CTargetMachine::addPassesToEmitAssembly(PassManager &PM, std::ostream &o) { + PM.add(createLowerAllocationsPass()); + PM.add(createLowerInvokePass()); + PM.add(new CWriter(o)); + return false; +} + +TargetMachine *llvm::allocateCTargetMachine(const Module &M, + IntrinsicLowering *IL) { + return new CTargetMachine(M, IL); +} diff --git a/llvm/lib/Target/Makefile b/llvm/lib/Target/Makefile index 01ad71116b5..89ed3e975d7 100644 --- a/llvm/lib/Target/Makefile +++ b/llvm/lib/Target/Makefile @@ -7,7 +7,7 @@ # ##===----------------------------------------------------------------------===## LEVEL = ../.. -DIRS = Sparc X86 PowerPC +DIRS = CBackend X86 Sparc PowerPC LIBRARYNAME = target BUILD_ARCHIVE = 1 |

