diff options
author | Chris Lattner <sabre@nondot.org> | 2004-01-09 06:17:12 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2004-01-09 06:17:12 +0000 |
commit | b9c79998812dc0f9609951d4feb0ce764e538bb0 (patch) | |
tree | 8b4625654199cfeb90af013cd90a9161c5090eee /llvm/lib/Target/Sparc/RegAlloc/PhyRegAlloc.cpp | |
parent | df3c342a4c254870b63709c7268a575a75e2bafc (diff) | |
download | bcm5719-llvm-b9c79998812dc0f9609951d4feb0ce764e538bb0.tar.gz bcm5719-llvm-b9c79998812dc0f9609951d4feb0ce764e538bb0.zip |
Move lib/Codegen/RegAlloc into lib/Target/Sparc, as it is sparc specific
llvm-svn: 10728
Diffstat (limited to 'llvm/lib/Target/Sparc/RegAlloc/PhyRegAlloc.cpp')
-rw-r--r-- | llvm/lib/Target/Sparc/RegAlloc/PhyRegAlloc.cpp | 1397 |
1 files changed, 1397 insertions, 0 deletions
diff --git a/llvm/lib/Target/Sparc/RegAlloc/PhyRegAlloc.cpp b/llvm/lib/Target/Sparc/RegAlloc/PhyRegAlloc.cpp new file mode 100644 index 00000000000..a9a5f3d7fe7 --- /dev/null +++ b/llvm/lib/Target/Sparc/RegAlloc/PhyRegAlloc.cpp @@ -0,0 +1,1397 @@ +//===-- PhyRegAlloc.cpp ---------------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Traditional graph-coloring global register allocator currently used +// by the SPARC back-end. +// +// NOTE: This register allocator has some special support +// for the Reoptimizer, such as not saving some registers on calls to +// the first-level instrumentation function. +// +// NOTE 2: This register allocator can save its state in a global +// variable in the module it's working on. This feature is not +// thread-safe; if you have doubts, leave it turned off. +// +//===----------------------------------------------------------------------===// + +#include "AllocInfo.h" +#include "IGNode.h" +#include "PhyRegAlloc.h" +#include "RegAllocCommon.h" +#include "RegClass.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/iOther.h" +#include "llvm/Module.h" +#include "llvm/Type.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/CodeGen/FunctionLiveVarInfo.h" +#include "llvm/CodeGen/InstrSelection.h" +#include "llvm/CodeGen/MachineCodeForInstruction.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionInfo.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineInstrAnnot.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/Support/InstIterator.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "Support/CommandLine.h" +#include "Support/SetOperations.h" +#include "Support/STLExtras.h" +#include <cmath> + +namespace llvm { + +RegAllocDebugLevel_t DEBUG_RA; + +/// The reoptimizer wants to be able to grovel through the register +/// allocator's state after it has done its job. This is a hack. +/// +PhyRegAlloc::SavedStateMapTy ExportedFnAllocState; +const bool SaveStateToModule = true; + +static cl::opt<RegAllocDebugLevel_t, true> +DRA_opt("dregalloc", cl::Hidden, cl::location(DEBUG_RA), + cl::desc("enable register allocation debugging information"), + cl::values( + clEnumValN(RA_DEBUG_None , "n", "disable debug output"), + clEnumValN(RA_DEBUG_Results, "y", "debug output for allocation results"), + clEnumValN(RA_DEBUG_Coloring, "c", "debug output for graph coloring step"), + clEnumValN(RA_DEBUG_Interference,"ig","debug output for interference graphs"), + clEnumValN(RA_DEBUG_LiveRanges , "lr","debug output for live ranges"), + clEnumValN(RA_DEBUG_Verbose, "v", "extra debug output"), + 0)); + +static cl::opt<bool> +SaveRegAllocState("save-ra-state", cl::Hidden, + cl::desc("write reg. allocator state into module")); + +FunctionPass *getRegisterAllocator(TargetMachine &T) { + return new PhyRegAlloc (T); +} + +void PhyRegAlloc::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<LoopInfo> (); + AU.addRequired<FunctionLiveVarInfo> (); +} + + +/// Initialize interference graphs (one in each reg class) and IGNodeLists +/// (one in each IG). The actual nodes will be pushed later. +/// +void PhyRegAlloc::createIGNodeListsAndIGs() { + if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "Creating LR lists ...\n"; + + LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap()->begin(); + LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap()->end(); + + for (; HMI != HMIEnd ; ++HMI ) { + if (HMI->first) { + LiveRange *L = HMI->second; // get the LiveRange + if (!L) { + if (DEBUG_RA) + std::cerr << "\n**** ?!?WARNING: NULL LIVE RANGE FOUND FOR: " + << RAV(HMI->first) << "****\n"; + continue; + } + + // if the Value * is not null, and LR is not yet written to the IGNodeList + if (!(L->getUserIGNode()) ) { + RegClass *const RC = // RegClass of first value in the LR + RegClassList[ L->getRegClassID() ]; + RC->addLRToIG(L); // add this LR to an IG + } + } + } + + // init RegClassList + for ( unsigned rc=0; rc < NumOfRegClasses ; rc++) + RegClassList[rc]->createInterferenceGraph(); + + if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "LRLists Created!\n"; +} + + +/// Add all interferences for a given instruction. Interference occurs only +/// if the LR of Def (Inst or Arg) is of the same reg class as that of live +/// var. The live var passed to this function is the LVset AFTER the +/// instruction. +/// +void PhyRegAlloc::addInterference(const Value *Def, const ValueSet *LVSet, + bool isCallInst) { + ValueSet::const_iterator LIt = LVSet->begin(); + + // get the live range of instruction + const LiveRange *const LROfDef = LRI->getLiveRangeForValue( Def ); + + IGNode *const IGNodeOfDef = LROfDef->getUserIGNode(); + assert( IGNodeOfDef ); + + RegClass *const RCOfDef = LROfDef->getRegClass(); + + // for each live var in live variable set + for ( ; LIt != LVSet->end(); ++LIt) { + + if (DEBUG_RA >= RA_DEBUG_Verbose) + std::cerr << "< Def=" << RAV(Def) << ", Lvar=" << RAV(*LIt) << "> "; + + // get the live range corresponding to live var + LiveRange *LROfVar = LRI->getLiveRangeForValue(*LIt); + + // LROfVar can be null if it is a const since a const + // doesn't have a dominating def - see Assumptions above + if (LROfVar) + if (LROfDef != LROfVar) // do not set interf for same LR + if (RCOfDef == LROfVar->getRegClass()) // 2 reg classes are the same + RCOfDef->setInterference( LROfDef, LROfVar); + } +} + + +/// For a call instruction, this method sets the CallInterference flag in +/// the LR of each variable live in the Live Variable Set live after the +/// call instruction (except the return value of the call instruction - since +/// the return value does not interfere with that call itself). +/// +void PhyRegAlloc::setCallInterferences(const MachineInstr *MInst, + const ValueSet *LVSetAft) { + if (DEBUG_RA >= RA_DEBUG_Interference) + std::cerr << "\n For call inst: " << *MInst; + + // for each live var in live variable set after machine inst + for (ValueSet::const_iterator LIt = LVSetAft->begin(), LEnd = LVSetAft->end(); + LIt != LEnd; ++LIt) { + + // get the live range corresponding to live var + LiveRange *const LR = LRI->getLiveRangeForValue(*LIt ); + + // LR can be null if it is a const since a const + // doesn't have a dominating def - see Assumptions above + if (LR ) { + if (DEBUG_RA >= RA_DEBUG_Interference) { + std::cerr << "\n\tLR after Call: "; + printSet(*LR); + } + LR->setCallInterference(); + if (DEBUG_RA >= RA_DEBUG_Interference) { + std::cerr << "\n ++After adding call interference for LR: " ; + printSet(*LR); + } + } + + } + + // Now find the LR of the return value of the call + // We do this because, we look at the LV set *after* the instruction + // to determine, which LRs must be saved across calls. The return value + // of the call is live in this set - but it does not interfere with call + // (i.e., we can allocate a volatile register to the return value) + CallArgsDescriptor* argDesc = CallArgsDescriptor::get(MInst); + + if (const Value *RetVal = argDesc->getReturnValue()) { + LiveRange *RetValLR = LRI->getLiveRangeForValue( RetVal ); + assert( RetValLR && "No LR for RetValue of call"); + RetValLR->clearCallInterference(); + } + + // If the CALL is an indirect call, find the LR of the function pointer. + // That has a call interference because it conflicts with outgoing args. + if (const Value *AddrVal = argDesc->getIndirectFuncPtr()) { + LiveRange *AddrValLR = LRI->getLiveRangeForValue( AddrVal ); + assert( AddrValLR && "No LR for indirect addr val of call"); + AddrValLR->setCallInterference(); + } +} + + +/// Create interferences in the IG of each RegClass, and calculate the spill +/// cost of each Live Range (it is done in this method to save another pass +/// over the code). +/// +void PhyRegAlloc::buildInterferenceGraphs() { + if (DEBUG_RA >= RA_DEBUG_Interference) + std::cerr << "Creating interference graphs ...\n"; + + unsigned BBLoopDepthCost; + for (MachineFunction::iterator BBI = MF->begin(), BBE = MF->end(); + BBI != BBE; ++BBI) { + const MachineBasicBlock &MBB = *BBI; + const BasicBlock *BB = MBB.getBasicBlock(); + + // find the 10^(loop_depth) of this BB + BBLoopDepthCost = (unsigned)pow(10.0, LoopDepthCalc->getLoopDepth(BB)); + + // get the iterator for machine instructions + MachineBasicBlock::const_iterator MII = MBB.begin(); + + // iterate over all the machine instructions in BB + for ( ; MII != MBB.end(); ++MII) { + const MachineInstr *MInst = *MII; + + // get the LV set after the instruction + const ValueSet &LVSetAI = LVI->getLiveVarSetAfterMInst(MInst, BB); + bool isCallInst = TM.getInstrInfo().isCall(MInst->getOpCode()); + + if (isCallInst) { + // set the isCallInterference flag of each live range which extends + // across this call instruction. This information is used by graph + // coloring algorithm to avoid allocating volatile colors to live ranges + // that span across calls (since they have to be saved/restored) + setCallInterferences(MInst, &LVSetAI); + } + + // iterate over all MI operands to find defs + for (MachineInstr::const_val_op_iterator OpI = MInst->begin(), + OpE = MInst->end(); OpI != OpE; ++OpI) { + if (OpI.isDef()) // create a new LR since def + addInterference(*OpI, &LVSetAI, isCallInst); + + // Calculate the spill cost of each live range + LiveRange *LR = LRI->getLiveRangeForValue(*OpI); + if (LR) LR->addSpillCost(BBLoopDepthCost); + } + + // Mark all operands of pseudo-instructions as interfering with one + // another. This must be done because pseudo-instructions may be + // expanded to multiple instructions by the assembler, so all the + // operands must get distinct registers. + if (TM.getInstrInfo().isPseudoInstr(MInst->getOpCode())) + addInterf4PseudoInstr(MInst); + + // Also add interference for any implicit definitions in a machine + // instr (currently, only calls have this). + unsigned NumOfImpRefs = MInst->getNumImplicitRefs(); + for (unsigned z=0; z < NumOfImpRefs; z++) + if (MInst->getImplicitOp(z).isDef()) + addInterference( MInst->getImplicitRef(z), &LVSetAI, isCallInst ); + + } // for all machine instructions in BB + } // for all BBs in function + + // add interferences for function arguments. Since there are no explicit + // defs in the function for args, we have to add them manually + addInterferencesForArgs(); + + if (DEBUG_RA >= RA_DEBUG_Interference) + std::cerr << "Interference graphs calculated!\n"; +} + + +/// Mark all operands of the given MachineInstr as interfering with one +/// another. +/// +void PhyRegAlloc::addInterf4PseudoInstr(const MachineInstr *MInst) { + bool setInterf = false; + + // iterate over MI operands to find defs + for (MachineInstr::const_val_op_iterator It1 = MInst->begin(), + ItE = MInst->end(); It1 != ItE; ++It1) { + const LiveRange *LROfOp1 = LRI->getLiveRangeForValue(*It1); + assert((LROfOp1 || It1.isDef()) && "No LR for Def in PSEUDO insruction"); + + MachineInstr::const_val_op_iterator It2 = It1; + for (++It2; It2 != ItE; ++It2) { + const LiveRange *LROfOp2 = LRI->getLiveRangeForValue(*It2); + + if (LROfOp2) { + RegClass *RCOfOp1 = LROfOp1->getRegClass(); + RegClass *RCOfOp2 = LROfOp2->getRegClass(); + + if (RCOfOp1 == RCOfOp2 ){ + RCOfOp1->setInterference( LROfOp1, LROfOp2 ); + setInterf = true; + } + } // if Op2 has a LR + } // for all other defs in machine instr + } // for all operands in an instruction + + if (!setInterf && MInst->getNumOperands() > 2) { + std::cerr << "\nInterf not set for any operand in pseudo instr:\n"; + std::cerr << *MInst; + assert(0 && "Interf not set for pseudo instr with > 2 operands" ); + } +} + + +/// Add interferences for incoming arguments to a function. +/// +void PhyRegAlloc::addInterferencesForArgs() { + // get the InSet of root BB + const ValueSet &InSet = LVI->getInSetOfBB(&Fn->front()); + + for (Function::const_aiterator AI = Fn->abegin(); AI != Fn->aend(); ++AI) { + // add interferences between args and LVars at start + addInterference(AI, &InSet, false); + + if (DEBUG_RA >= RA_DEBUG_Interference) + std::cerr << " - %% adding interference for argument " << RAV(AI) << "\n"; + } +} + + +/// The following are utility functions used solely by updateMachineCode and +/// the functions that it calls. They should probably be folded back into +/// updateMachineCode at some point. +/// + +// used by: updateMachineCode (1 time), PrependInstructions (1 time) +inline void InsertBefore(MachineInstr* newMI, MachineBasicBlock& MBB, + MachineBasicBlock::iterator& MII) { + MII = MBB.insert(MII, newMI); + ++MII; +} + +// used by: AppendInstructions (1 time) +inline void InsertAfter(MachineInstr* newMI, MachineBasicBlock& MBB, + MachineBasicBlock::iterator& MII) { + ++MII; // insert before the next instruction + MII = MBB.insert(MII, newMI); +} + +// used by: updateMachineCode (1 time) +inline void DeleteInstruction(MachineBasicBlock& MBB, + MachineBasicBlock::iterator& MII) { + MII = MBB.erase(MII); +} + +// used by: updateMachineCode (1 time) +inline void SubstituteInPlace(MachineInstr* newMI, MachineBasicBlock& MBB, + MachineBasicBlock::iterator MII) { + *MII = newMI; +} + +// used by: updateMachineCode (2 times) +inline void PrependInstructions(std::vector<MachineInstr *> &IBef, + MachineBasicBlock& MBB, + MachineBasicBlock::iterator& MII, + const std::string& msg) { + if (!IBef.empty()) { + MachineInstr* OrigMI = *MII; + std::vector<MachineInstr *>::iterator AdIt; + for (AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt) { + if (DEBUG_RA) { + if (OrigMI) std::cerr << "For MInst:\n " << *OrigMI; + std::cerr << msg << "PREPENDed instr:\n " << **AdIt << "\n"; + } + InsertBefore(*AdIt, MBB, MII); + } + } +} + +// used by: updateMachineCode (1 time) +inline void AppendInstructions(std::vector<MachineInstr *> &IAft, + MachineBasicBlock& MBB, + MachineBasicBlock::iterator& MII, + const std::string& msg) { + if (!IAft.empty()) { + MachineInstr* OrigMI = *MII; + std::vector<MachineInstr *>::iterator AdIt; + for ( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt ) { + if (DEBUG_RA) { + if (OrigMI) std::cerr << "For MInst:\n " << *OrigMI; + std::cerr << msg << "APPENDed instr:\n " << **AdIt << "\n"; + } + InsertAfter(*AdIt, MBB, MII); + } + } +} + +/// Set the registers for operands in the given MachineInstr, if a register was +/// successfully allocated. Return true if any of its operands has been marked +/// for spill. +/// +bool PhyRegAlloc::markAllocatedRegs(MachineInstr* MInst) +{ + bool instrNeedsSpills = false; + + // First, set the registers for operands in the machine instruction + // if a register was successfully allocated. Do this first because we + // will need to know which registers are already used by this instr'n. + for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) { + MachineOperand& Op = MInst->getOperand(OpNum); + if (Op.getType() == MachineOperand::MO_VirtualRegister || + Op.getType() == MachineOperand::MO_CCRegister) { + const Value *const Val = Op.getVRegValue(); + if (const LiveRange* LR = LRI->getLiveRangeForValue(Val)) { + // Remember if any operand needs spilling + instrNeedsSpills |= LR->isMarkedForSpill(); + + // An operand may have a color whether or not it needs spilling + if (LR->hasColor()) + MInst->SetRegForOperand(OpNum, + MRI.getUnifiedRegNum(LR->getRegClassID(), + LR->getColor())); + } + } + } // for each operand + + return instrNeedsSpills; +} + +/// Mark allocated registers (using markAllocatedRegs()) on the instruction +/// that MII points to. Then, if it's a call instruction, insert caller-saving +/// code before and after it. Finally, insert spill code before and after it, +/// using insertCode4SpilledLR(). +/// +void PhyRegAlloc::updateInstruction(MachineBasicBlock::iterator& MII, + MachineBasicBlock &MBB) { + MachineInstr* MInst = *MII; + unsigned Opcode = MInst->getOpCode(); + + // Reset tmp stack positions so they can be reused for each machine instr. + MF->getInfo()->popAllTempValues(); + + // Mark the operands for which regs have been allocated. + bool instrNeedsSpills = markAllocatedRegs(*MII); + +#ifndef NDEBUG + // Mark that the operands have been updated. Later, + // setRelRegsUsedByThisInst() is called to find registers used by each + // MachineInst, and it should not be used for an instruction until + // this is done. This flag just serves as a sanity check. + OperandsColoredMap[MInst] = true; +#endif + + // Now insert caller-saving code before/after the call. + // Do this before inserting spill code since some registers must be + // used by save/restore and spill code should not use those registers. + if (TM.getInstrInfo().isCall(Opcode)) { + AddedInstrns &AI = AddedInstrMap[MInst]; + insertCallerSavingCode(AI.InstrnsBefore, AI.InstrnsAfter, MInst, + MBB.getBasicBlock()); + } + + // Now insert spill code for remaining operands not allocated to + // registers. This must be done even for call return instructions + // since those are not handled by the special code above. + if (instrNeedsSpills) + for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) { + MachineOperand& Op = MInst->getOperand(OpNum); + if (Op.getType() == MachineOperand::MO_VirtualRegister || + Op.getType() == MachineOperand::MO_CCRegister) { + const Value* Val = Op.getVRegValue(); + if (const LiveRange *LR = LRI->getLiveRangeForValue(Val)) + if (LR->isMarkedForSpill()) + insertCode4SpilledLR(LR, MII, MBB, OpNum); + } + } // for each operand +} + +/// Iterate over all the MachineBasicBlocks in the current function and set +/// the allocated registers for each instruction (using updateInstruction()), +/// after register allocation is complete. Then move code out of delay slots. +/// +void PhyRegAlloc::updateMachineCode() +{ + // Insert any instructions needed at method entry + MachineBasicBlock::iterator MII = MF->front().begin(); + PrependInstructions(AddedInstrAtEntry.InstrnsBefore, MF->front(), MII, + "At function entry: \n"); + assert(AddedInstrAtEntry.InstrnsAfter.empty() && + "InstrsAfter should be unnecessary since we are just inserting at " + "the function entry point here."); + + for (MachineFunction::iterator BBI = MF->begin(), BBE = MF->end(); + BBI != BBE; ++BBI) { + MachineBasicBlock &MBB = *BBI; + + // Iterate over all machine instructions in BB and mark operands with + // their assigned registers or insert spill code, as appropriate. + // Also, fix operands of call/return instructions. + for (MachineBasicBlock::iterator MII = MBB.begin(); MII != MBB.end(); ++MII) + if (! TM.getInstrInfo().isDummyPhiInstr((*MII)->getOpCode())) + updateInstruction(MII, MBB); + + // Now, move code out of delay slots of branches and returns if needed. + // (Also, move "after" code from calls to the last delay slot instruction.) + // Moving code out of delay slots is needed in 2 situations: + // (1) If this is a branch and it needs instructions inserted after it, + // move any existing instructions out of the delay slot so that the + // instructions can go into the delay slot. This only supports the + // case that #instrsAfter <= #delay slots. + // + // (2) If any instruction in the delay slot needs + // instructions inserted, move it out of the delay slot and before the + // branch because putting code before or after it would be VERY BAD! + // + // If the annul bit of the branch is set, neither of these is legal! + // If so, we need to handle spill differently but annulling is not yet used. + for (MachineBasicBlock::iterator MII = MBB.begin(); + MII != MBB.end(); ++MII) + if (unsigned delaySlots = + TM.getInstrInfo().getNumDelaySlots((*MII)->getOpCode())) { + MachineInstr *MInst = *MII, *DelaySlotMI = *(MII+1); + + // Check the 2 conditions above: + // (1) Does a branch need instructions added after it? + // (2) O/w does delay slot instr. need instrns before or after? + bool isBranch = (TM.getInstrInfo().isBranch(MInst->getOpCode()) || + TM.getInstrInfo().isReturn(MInst->getOpCode())); + bool cond1 = (isBranch && + AddedInstrMap.count(MInst) && + AddedInstrMap[MInst].InstrnsAfter.size() > 0); + bool cond2 = (AddedInstrMap.count(DelaySlotMI) && + (AddedInstrMap[DelaySlotMI].InstrnsBefore.size() > 0 || + AddedInstrMap[DelaySlotMI].InstrnsAfter.size() > 0)); + + if (cond1 || cond2) { + assert((MInst->getOpCodeFlags() & AnnulFlag) == 0 && + "FIXME: Moving an annulled delay slot instruction!"); + assert(delaySlots==1 && + "InsertBefore does not yet handle >1 delay slots!"); + InsertBefore(DelaySlotMI, MBB, MII); // MII pts back to branch + + // In case (1), delete it and don't replace with anything! + // Otherwise (i.e., case (2) only) replace it with a NOP. + if (cond1) { + DeleteInstruction(MBB, ++MII); // MII now points to next inst. + --MII; // reset MII for ++MII of loop + } + else + SubstituteInPlace(BuildMI(TM.getInstrInfo().getNOPOpCode(),1), + MBB, MII+1); // replace with NOP + + if (DEBUG_RA) { + std::cerr << "\nRegAlloc: Moved instr. with added code: " + << *DelaySlotMI + << " out of delay slots of instr: " << *MInst; + } + } + else + // For non-branch instr with delay slots (probably a call), move + // InstrAfter to the instr. in the last delay slot. + move2DelayedInstr(*MII, *(MII+delaySlots)); + } + + // Finally iterate over all instructions in BB and insert before/after + for (MachineBasicBlock::iterator MII=MBB.begin(); MII != MBB.end(); ++MII) { + MachineInstr *MInst = *MII; + + // do not process Phis + if (TM.getInstrInfo().isDummyPhiInstr(MInst->getOpCode())) + continue; + + // if there are any added instructions... + if (AddedInstrMap.count(MInst)) { + AddedInstrns &CallAI = AddedInstrMap[MInst]; + +#ifndef NDEBUG + bool isBranch = (TM.getInstrInfo().isBranch(MInst->getOpCode()) || + TM.getInstrInfo().isReturn(MInst->getOpCode())); + assert((!isBranch || + AddedInstrMap[MInst].InstrnsAfter.size() <= + TM.getInstrInfo().getNumDelaySlots(MInst->getOpCode())) && + "Cannot put more than #delaySlots instrns after " + "branch or return! Need to handle temps differently."); +#endif + +#ifndef NDEBUG + // Temporary sanity checking code to detect whether the same machine + // instruction is ever inserted twice before/after a call. + // I suspect this is happening but am not sure. --Vikram, 7/1/03. + std::set<const MachineInstr*> instrsSeen; + for (int i = 0, N = CallAI.InstrnsBefore.size(); i < N; ++i) { + assert(instrsSeen.count(CallAI.InstrnsBefore[i]) == 0 && + "Duplicate machine instruction in InstrnsBefore!"); + instrsSeen.insert(CallAI.InstrnsBefore[i]); + } + for (int i = 0, N = CallAI.InstrnsAfter.size(); i < N; ++i) { + assert(instrsSeen.count(CallAI.InstrnsAfter[i]) == 0 && + "Duplicate machine instruction in InstrnsBefore/After!"); + instrsSeen.insert(CallAI.InstrnsAfter[i]); + } +#endif + + // Now add the instructions before/after this MI. + // We do this here to ensure that spill for an instruction is inserted + // as close as possible to an instruction (see above insertCode4Spill) + if (! CallAI.InstrnsBefore.empty()) + PrependInstructions(CallAI.InstrnsBefore, MBB, MII,""); + + if (! CallAI.InstrnsAfter.empty()) + AppendInstructions(CallAI.InstrnsAfter, MBB, MII,""); + + } // if there are any added instructions + } // for each machine instruction + } +} + + +/// Insert spill code for AN operand whose LR was spilled. May be called +/// repeatedly for a single MachineInstr if it has many spilled operands. On +/// each call, it finds a register which is not live at that instruction and +/// also which is not used by other spilled operands of the same +/// instruction. Then it uses this register temporarily to accommodate the +/// spilled value. +/// +void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR, + MachineBasicBlock::iterator& MII, + MachineBasicBlock &MBB, + const unsigned OpNum) { + MachineInstr *MInst = *MII; + const BasicBlock *BB = MBB.getBasicBlock(); + + assert((! TM.getInstrInfo().isCall(MInst->getOpCode()) || OpNum == 0) && + "Outgoing arg of a call must be handled elsewhere (func arg ok)"); + assert(! TM.getInstrInfo().isReturn(MInst->getOpCode()) && + "Return value of a ret must be handled elsewhere"); + + MachineOperand& Op = MInst->getOperand(OpNum); + bool isDef = Op.isDef(); + bool isUse = Op.isUse(); + unsigned RegType = MRI.getRegTypeForLR(LR); + int SpillOff = LR->getSpillOffFromFP(); + RegClass *RC = LR->getRegClass(); + + // Get the live-variable set to find registers free before this instr. + const ValueSet &LVSetBef = LVI->getLiveVarSetBeforeMInst(MInst, BB); + +#ifndef NDEBUG + // If this instr. is in the delay slot of a branch or return, we need to + // include all live variables before that branch or return -- we don't want to + // trample those! Verify that the set is included in the LV set before MInst. + if (MII != MBB.begin()) { + MachineInstr *PredMI = *(MII-1); + if (unsigned DS = TM.getInstrInfo().getNumDelaySlots(PredMI->getOpCode())) + assert(set_difference(LVI->getLiveVarSetBeforeMInst(PredMI), LVSetBef) + .empty() && "Live-var set before branch should be included in " + "live-var set of each delay slot instruction!"); + } +#endif + + MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType)); + + std::vector<MachineInstr*> MIBef, MIAft; + std::vector<MachineInstr*> AdIMid; + + // Choose a register to hold the spilled value, if one was not preallocated. + // This may insert code before and after MInst to free up the value. If so, + // this code should be first/last in the spill sequence before/after MInst. + int TmpRegU=(LR->hasColor() + ? MRI.getUnifiedRegNum(LR->getRegClassID(),LR->getColor()) + : getUsableUniRegAtMI(RegType, &LVSetBef, MInst, MIBef,MIAft)); + + // Set the operand first so that it this register does not get used + // as a scratch register for later calls to getUsableUniRegAtMI below + MInst->SetRegForOperand(OpNum, TmpRegU); + + // get the added instructions for this instruction + AddedInstrns &AI = AddedInstrMap[MInst]; + + // We may need a scratch register to copy the spilled value to/from memory. + // This may itself have to insert code to free up a scratch register. + // Any such code should go before (after) the spill code for a load (store). + // The scratch reg is not marked as used because it is only used + // for the copy and not used across MInst. + int scratchRegType = -1; + int scratchReg = -1; + if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) { + scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef, + MInst, MIBef, MIAft); + assert(scratchReg != MRI.getInvalidRegNum()); + } + + if (isUse) { + // for a USE, we have to load the value of LR from stack to a TmpReg + // and use the TmpReg as one operand of instruction + + // actual loading instruction(s) + MRI.cpMem2RegMI(AdIMid, MRI.getFramePointer(), SpillOff, TmpRegU, + RegType, scratchReg); + + // the actual load should be after the instructions to free up TmpRegU + MIBef.insert(MIBef.end(), AdIMid.begin(), AdIMid.end()); + AdIMid.clear(); + } + + if (isDef) { // if this is a Def + // for a DEF, we have to store the value produced by this instruction + // on the stack position allocated for this LR + + // actual storing instruction(s) + MRI.cpReg2MemMI(AdIMid, TmpRegU, MRI.getFramePointer(), SpillOff, + RegType, scratchReg); + + MIAft.insert(MIAft.begin(), AdIMid.begin(), AdIMid.end()); + } // if !DEF + + // Finally, insert the entire spill code sequences before/after MInst + AI.InstrnsBefore.insert(AI.InstrnsBefore.end(), MIBef.begin(), MIBef.end()); + AI.InstrnsAfter.insert(AI.InstrnsAfter.begin(), MIAft.begin(), MIAft.end()); + + if (DEBUG_RA) { + std::cerr << "\nFor Inst:\n " << *MInst; + std::cerr << "SPILLED LR# " << LR->getUserIGNode()->getIndex(); + std::cerr << "; added Instructions:"; + for_each(MIBef.begin(), MIBef.end(), std::mem_fun(&MachineInstr::dump)); + for_each(MIAft.begin(), MIAft.end(), std::mem_fun(&MachineInstr::dump)); + } +} + + +/// Insert caller saving/restoring instructions before/after a call machine +/// instruction (before or after any other instructions that were inserted for +/// the call). +/// +void +PhyRegAlloc::insertCallerSavingCode(std::vector<MachineInstr*> &instrnsBefore, + std::vector<MachineInstr*> &instrnsAfter, + MachineInstr *CallMI, + const BasicBlock *BB) { + assert(TM.getInstrInfo().isCall(CallMI->getOpCode())); + + // hash set to record which registers were saved/restored + hash_set<unsigned> PushedRegSet; + + CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI); + + // if the call is to a instrumentation function, do not insert save and + // restore instructions the instrumentation function takes care of save + // restore for volatile regs. + // + // FIXME: this should be made general, not specific to the reoptimizer! + const Function *Callee = argDesc->getCallInst()->getCalledFunction(); + bool isLLVMFirstTrigger = Callee && Callee->getName() == "llvm_first_trigger"; + + // Now check if the call has a return value (using argDesc) and if so, + // find the LR of the TmpInstruction representing the return value register. + // (using the last or second-last *implicit operand* of the call MI). + // Insert it to to the PushedRegSet since we must not save that register + // and restore it after the call. + // We do this because, we look at the LV set *after* the instruction + // to determine, which LRs must be saved across calls. The return value + // of the call is live in this set - but we must not save/restore it. + if (const Value *origRetVal = argDesc->getReturnValue()) { + unsigned retValRefNum = (CallMI->getNumImplicitRefs() - + (argDesc->getIndirectFuncPtr()? 1 : 2)); + const TmpInstruction* tmpRetVal = + cast<TmpInstruction>(CallMI->getImplicitRef(retValRefNum)); + assert(tmpRetVal->getOperand(0) == origRetVal && + tmpRetVal->getType() == origRetVal->getType() && + "Wrong implicit ref?"); + LiveRange *RetValLR = LRI->getLiveRangeForValue(tmpRetVal); + assert(RetValLR && "No LR for RetValue of call"); + + if (! RetValLR->isMarkedForSpill()) + PushedRegSet.insert(MRI.getUnifiedRegNum(RetValLR->getRegClassID(), + RetValLR->getColor())); + } + + const ValueSet &LVSetAft = LVI->getLiveVarSetAfterMInst(CallMI, BB); + ValueSet::const_iterator LIt = LVSetAft.begin(); + + // for each live var in live variable set after machine inst + for( ; LIt != LVSetAft.end(); ++LIt) { + // get the live range corresponding to live var + LiveRange *const LR = LRI->getLiveRangeForValue(*LIt); + + // LR can be null if it is a const since a const + // doesn't have a dominating def - see Assumptions above + if (LR) { + if (! LR->isMarkedForSpill()) { + assert(LR->hasColor() && "LR is neither spilled nor colored?"); + unsigned RCID = LR->getRegClassID(); + unsigned Color = LR->getColor(); + + if (MRI.isRegVolatile(RCID, Color) ) { + // if this is a call to the first-level reoptimizer + // instrumentation entry point, and the register is not + // modified by call, don't save and restore it. + if (isLLVMFirstTrigger && !MRI.modifiedByCall(RCID, Color)) + continue; + + // if the value is in both LV sets (i.e., live before and after + // the call machine instruction) + unsigned Reg = MRI.getUnifiedRegNum(RCID, Color); + + // if we haven't already pushed this register... + if( PushedRegSet.find(Reg) == PushedRegSet.end() ) { + unsigned RegType = MRI.getRegTypeForLR(LR); + + // Now get two instructions - to push on stack and pop from stack + // and add them to InstrnsBefore and InstrnsAfter of the + // call instruction + int StackOff = + MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType)); + + //---- Insert code for pushing the reg on stack ---------- + + std::vector<MachineInstr*> AdIBef, AdIAft; + + // We may need a scratch register to copy the saved value + // to/from memory. This may itself have to insert code to + // free up a scratch register. Any such code should go before + // the save code. The scratch register, if any, is by default + // temporary and not "used" by the instruction unless the + // copy code itself decides to keep the value in the scratch reg. + int scratchRegType = -1; + int scratchReg = -1; + if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) + { // Find a register not live in the LVSet before CallMI + const ValueSet &LVSetBef = + LVI->getLiveVarSetBeforeMInst(CallMI, BB); + scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef, + CallMI, AdIBef, AdIAft); + assert(scratchReg != MRI.getInvalidRegNum()); + } + + if (AdIBef.size() > 0) + instrnsBefore.insert(instrnsBefore.end(), + AdIBef.begin(), AdIBef.end()); + + MRI.cpReg2MemMI(instrnsBefore, Reg, MRI.getFramePointer(), + StackOff, RegType, scratchReg); + + if (AdIAft.size() > 0) + instrnsBefore.insert(instrnsBefore.end(), + AdIAft.begin(), AdIAft.end()); + + //---- Insert code for popping the reg from the stack ---------- + AdIBef.clear(); + AdIAft.clear(); + + // We may need a scratch register to copy the saved value + // from memory. This may itself have to insert code to + // free up a scratch register. Any such code should go + // after the save code. As above, scratch is not marked "used". + scratchRegType = -1; + scratchReg = -1; + if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) + { // Find a register not live in the LVSet after CallMI + scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetAft, + CallMI, AdIBef, AdIAft); + assert(scratchReg != MRI.getInvalidRegNum()); + } + + if (AdIBef.size() > 0) + instrnsAfter.insert(instrnsAfter.end(), + AdIBef.begin(), AdIBef.end()); + + MRI.cpMem2RegMI(instrnsAfter, MRI.getFramePointer(), StackOff, + Reg, RegType, scratchReg); + + if (AdIAft.size() > 0) + instrnsAfter.insert(instrnsAfter.end(), + AdIAft.begin(), AdIAft.end()); + + PushedRegSet.insert(Reg); + + if(DEBUG_RA) { + std::cerr << "\nFor call inst:" << *CallMI; + std::cerr << " -inserted caller saving instrs: Before:\n\t "; + for_each(instrnsBefore.begin(), instrnsBefore.end(), + std::mem_fun(&MachineInstr::dump)); + std::cerr << " -and After:\n\t "; + for_each(instrnsAfter.begin(), instrnsAfter.end(), + std::mem_fun(&MachineInstr::dump)); + } + } // if not already pushed + } // if LR has a volatile color + } // if LR has color + } // if there is a LR for Var + } // for each value in the LV set after instruction +} + + +/// Returns the unified register number of a temporary register to be used +/// BEFORE MInst. If no register is available, it will pick one and modify +/// MIBef and MIAft to contain instructions used to free up this returned +/// register. +/// +int PhyRegAlloc::getUsableUniRegAtMI(const int RegType, + const ValueSet *LVSetBef, + MachineInstr *MInst, + std::vector<MachineInstr*>& MIBef, + std::vector<MachineInstr*>& MIAft) { + RegClass* RC = getRegClassByID(MRI.getRegClassIDOfRegType(RegType)); + + int RegU = getUnusedUniRegAtMI(RC, RegType, MInst, LVSetBef); + + if (RegU == -1) { + // we couldn't find an unused register. Generate code to free up a reg by + // saving it on stack and restoring after the instruction + + int TmpOff = MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType)); + + RegU = getUniRegNotUsedByThisInst(RC, RegType, MInst); + + // Check if we need a scratch register to copy this register to memory. + int scratchRegType = -1; + if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) { + int scratchReg = getUsableUniRegAtMI(scratchRegType, LVSetBef, + MInst, MIBef, MIAft); + assert(scratchReg != MRI.getInvalidRegNum()); + + // We may as well hold the value in the scratch register instead + // of copying it to memory and back. But we have to mark the + // register as used by this instruction, so it does not get used + // as a scratch reg. by another operand or anyone else. + ScratchRegsUsed.insert(std::make_pair(MInst, scratchReg)); + MRI.cpReg2RegMI(MIBef, RegU, scratchReg, RegType); + MRI.cpReg2RegMI(MIAft, scratchReg, RegU, RegType); + } else { // the register can be copied directly to/from memory so do it. + MRI.cpReg2MemMI(MIBef, RegU, MRI.getFramePointer(), TmpOff, RegType); + MRI.cpMem2RegMI(MIAft, MRI.getFramePointer(), TmpOff, RegU, RegType); + } + } + + return RegU; +} + + +/// Returns the register-class register number of a new unused register that +/// can be used to accommodate a temporary value. May be called repeatedly +/// for a single MachineInstr. On each call, it finds a register which is not +/// live at that instruction and which is not used by any spilled operands of +/// that instruction. +/// +int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC, const int RegType, + const MachineInstr *MInst, + const ValueSet* LVSetBef) { + RC->clearColorsUsed(); // Reset array + + if (LVSetBef == NULL) { + LVSetBef = &LVI->getLiveVarSetBeforeMInst(MInst); + assert(LVSetBef != NULL && "Unable to get live-var set before MInst?"); + } + + ValueSet::const_iterator LIt = LVSetBef->begin(); + + // for each live var in live variable set after machine inst + for ( ; LIt != LVSetBef->end(); ++LIt) { + // Get the live range corresponding to live var, and its RegClass + LiveRange *const LRofLV = LRI->getLiveRangeForValue(*LIt ); + + // LR can be null if it is a const since a const + // doesn't have a dominating def - see Assumptions above + if (LRofLV && LRofLV->getRegClass() == RC && LRofLV->hasColor()) + RC->markColorsUsed(LRofLV->getColor(), + MRI.getRegTypeForLR(LRofLV), RegType); + } + + // It is possible that one operand of this MInst was already spilled + // and it received some register temporarily. If that's the case, + // it is recorded in machine operand. We must skip such registers. + setRelRegsUsedByThisInst(RC, RegType, MInst); + + int unusedReg = RC->getUnusedColor(RegType); // find first unused color + if (unusedReg >= 0) + return MRI.getUnifiedRegNum(RC->getID(), unusedReg); + + return -1; +} + + +/// Return the unified register number of a register in class RC which is not +/// used by any operands of MInst. +/// +int PhyRegAlloc::getUniRegNotUsedByThisInst(RegClass *RC, + const int RegType, + const MachineInstr *MInst) { + RC->clearColorsUsed(); + + setRelRegsUsedByThisInst(RC, RegType, MInst); + + // find the first unused color + int unusedReg = RC->getUnusedColor(RegType); + assert(unusedReg >= 0 && + "FATAL: No free register could be found in reg class!!"); + + return MRI.getUnifiedRegNum(RC->getID(), unusedReg); +} + + +/// Modify the IsColorUsedArr of register class RC, by setting the bits +/// corresponding to register RegNo. This is a helper method of +/// setRelRegsUsedByThisInst(). +/// +static void markRegisterUsed(int RegNo, RegClass *RC, int RegType, + const TargetRegInfo &TRI) { + unsigned classId = 0; + int classRegNum = TRI.getClassRegNum(RegNo, classId); + if (RC->getID() == classId) + RC->markColorsUsed(classRegNum, RegType, RegType); +} + +void PhyRegAlloc::setRelRegsUsedByThisInst(RegClass *RC, int RegType, + const MachineInstr *MI) { + assert(OperandsColoredMap[MI] == true && + "Illegal to call setRelRegsUsedByThisInst() until colored operands " + "are marked for an instruction."); + + // Add the registers already marked as used by the instruction. Both + // explicit and implicit operands are set. + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) + if (MI->getOperand(i).hasAllocatedReg()) + markRegisterUsed(MI->getOperand(i).getAllocatedRegNum(), RC, RegType,MRI); + + for (unsigned i = 0, e = MI->getNumImplicitRefs(); i != e; ++i) + if (MI->getImplicitOp(i).hasAllocatedReg()) + markRegisterUsed(MI->getImplicitOp(i).getAllocatedRegNum(), RC, + RegType,MRI); + + // Add all of the scratch registers that are used to save values across the + // instruction (e.g., for saving state register values). + std::pair<ScratchRegsUsedTy::iterator, ScratchRegsUsedTy::iterator> + IR = ScratchRegsUsed.equal_range(MI); + for (ScratchRegsUsedTy::iterator I = IR.first; I != IR.second; ++I) + markRegisterUsed(I->second, RC, RegType, MRI); + + // If there are implicit references, mark their allocated regs as well + for (unsigned z=0; z < MI->getNumImplicitRefs(); z++) + if (const LiveRange* + LRofImpRef = LRI->getLiveRangeForValue(MI->getImplicitRef(z))) + if (LRofImpRef->hasColor()) + // this implicit reference is in a LR that received a color + RC->markColorsUsed(LRofImpRef->getColor(), + MRI.getRegTypeForLR(LRofImpRef), RegType); +} + + +/// If there are delay slots for an instruction, the instructions added after +/// it must really go after the delayed instruction(s). So, we Move the +/// InstrAfter of that instruction to the corresponding delayed instruction +/// using the following method. +/// +void PhyRegAlloc::move2DelayedInstr(const MachineInstr *OrigMI, + const MachineInstr *DelayedMI) +{ + // "added after" instructions of the original instr + std::vector<MachineInstr *> &OrigAft = AddedInstrMap[OrigMI].InstrnsAfter; + + if (DEBUG_RA && OrigAft.size() > 0) { + std::cerr << "\nRegAlloc: Moved InstrnsAfter for: " << *OrigMI; + std::cerr << " to last delay slot instrn: " << *DelayedMI; + } + + // "added after" instructions of the delayed instr + std::vector<MachineInstr *> &DelayedAft=AddedInstrMap[DelayedMI].InstrnsAfter; + + // go thru all the "added after instructions" of the original instruction + // and append them to the "added after instructions" of the delayed + // instructions + DelayedAft.insert(DelayedAft.end(), OrigAft.begin(), OrigAft.end()); + + // empty the "added after instructions" of the original instruction + OrigAft.clear(); +} + + +void PhyRegAlloc::colorIncomingArgs() +{ + MRI.colorMethodArgs(Fn, *LRI, AddedInstrAtEntry.InstrnsBefore, + AddedInstrAtEntry.InstrnsAfter); +} + + +/// Determine whether the suggested color of each live range is really usable, +/// and then call its setSuggestedColorUsable() method to record the answer. A +/// suggested color is NOT usable when the suggested color is volatile AND +/// when there are call interferences. +/// +void PhyRegAlloc::markUnusableSugColors() +{ + LiveRangeMapType::const_iterator HMI = (LRI->getLiveRangeMap())->begin(); + LiveRangeMapType::const_iterator HMIEnd = (LRI->getLiveRangeMap())->end(); + + for (; HMI != HMIEnd ; ++HMI ) { + if (HMI->first) { + LiveRange *L = HMI->second; // get the LiveRange + if (L && L->hasSuggestedColor ()) + L->setSuggestedColorUsable + (!(MRI.isRegVolatile (L->getRegClassID (), L->getSuggestedColor ()) + && L->isCallInterference ())); + } + } // for all LR's in hash map +} + + +/// For each live range that is spilled, allocates a new spill position on the +/// stack, and set the stack offsets of the live range that will be spilled to +/// that position. This must be called just after coloring the LRs. +/// +void PhyRegAlloc::allocateStackSpace4SpilledLRs() { + if (DEBUG_RA) std::cerr << "\nSetting LR stack offsets for spills...\n"; + + LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap()->begin(); + LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap()->end(); + + for ( ; HMI != HMIEnd ; ++HMI) { + if (HMI->first && HMI->second) { + LiveRange *L = HMI->second; // get the LiveRange + if (L->isMarkedForSpill()) { // NOTE: allocating size of long Type ** + int stackOffset = MF->getInfo()->allocateSpilledValue(Type::LongTy); + L->setSpillOffFromFP(stackOffset); + if (DEBUG_RA) + std::cerr << " LR# " << L->getUserIGNode()->getIndex() + << ": stack-offset = " << stackOffset << "\n"; + } + } + } // for all LR's in hash map +} + + +void PhyRegAlloc::saveStateForValue (std::vector<AllocInfo> &state, + const Value *V, unsigned Insn, int Opnd) { + LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap ()->find (V); + LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap ()->end (); + AllocInfo::AllocStateTy AllocState = AllocInfo::NotAllocated; + int Placement = -1; + if ((HMI != HMIEnd) && HMI->second) { + LiveRange *L = HMI->second; + assert ((L->hasColor () || L->isMarkedForSpill ()) + && "Live range exists but not colored or spilled"); + if (L->hasColor ()) { + AllocState = AllocInfo::Allocated; + Placement = MRI.getUnifiedRegNum (L->getRegClassID (), + L->getColor ()); + } else if (L->isMarkedForSpill ()) { + AllocState = AllocInfo::Spilled; + assert (L->hasSpillOffset () + && "Live range marked for spill but has no spill offset"); + Placement = L->getSpillOffFromFP (); + } + } + state.push_back (AllocInfo (Insn, Opnd, AllocState, Placement)); +} + + +/// Save the global register allocation decisions made by the register +/// allocator so that they can be accessed later (sort of like "poor man's +/// debug info"). +/// +void PhyRegAlloc::saveState () { + std::vector<AllocInfo> &state = FnAllocState[Fn]; + unsigned Insn = 0; + for (const_inst_iterator II=inst_begin (Fn), IE=inst_end (Fn); II!=IE; ++II){ + saveStateForValue (state, (*II), Insn, -1); + for (unsigned i = 0; i < (*II)->getNumOperands (); ++i) { + const Value *V = (*II)->getOperand (i); + // Don't worry about it unless it's something whose reg. we'll need. + if (!isa<Argument> (V) && !isa<Instruction> (V)) + continue; + saveStateForValue (state, V, Insn, i); + } + ++Insn; + } +} + + +/// Check the saved state filled in by saveState(), and abort if it looks +/// wrong. Only used when debugging. FIXME: Currently it just prints out +/// the state, which isn't quite as useful. +/// +void PhyRegAlloc::verifySavedState () { + std::vector<AllocInfo> &state = FnAllocState[Fn]; + unsigned Insn = 0; + for (const_inst_iterator II=inst_begin (Fn), IE=inst_end (Fn); II!=IE; ++II) { + const Instruction *I = *II; + MachineCodeForInstruction &Instrs = MachineCodeForInstruction::get (I); + std::cerr << "Instruction:\n" << " " << *I << "\n" + << "MachineCodeForInstruction:\n"; + for (unsigned i = 0, n = Instrs.size (); i != n; ++i) + std::cerr << " " << *Instrs[i] << "\n"; + std::cerr << "FnAllocState:\n"; + for (unsigned i = 0; i < state.size (); ++i) { + AllocInfo &S = state[i]; + if (Insn == S.Instruction) { + std::cerr << " (Instruction " << S.Instruction + << ", Operand " << S.Operand + << ", AllocState " << S.allocStateToString () + << ", Placement " << S.Placement << ")\n"; + } + } + std::cerr << "----------\n"; + ++Insn; + } +} + + +/// Finish the job of saveState(), by collapsing FnAllocState into an LLVM +/// Constant and stuffing it inside the Module. (NOTE: Soon, there will be +/// other, better ways of storing the saved state; this one is cumbersome and +/// does not work well with the JIT.) +/// +bool PhyRegAlloc::doFinalization (Module &M) { + if (!SaveRegAllocState) + return false; // Nothing to do here, unless we're saving state. + + // If saving state into the module, just copy new elements to the + // correct global. + if (!SaveStateToModule) { + ExportedFnAllocState = FnAllocState; + // FIXME: should ONLY copy new elements in FnAllocState + return false; + } + + // Convert FnAllocState to a single Constant array and add it + // to the Module. + ArrayType *AT = ArrayType::get (AllocInfo::getConstantType (), 0); + std::vector<const Type *> TV; + TV.push_back (Type::UIntTy); + TV.push_back (AT); + PointerType *PT = PointerType::get (StructType::get (TV)); + + std::vector<Constant *> allstate; + for (Module::iterator I = M.begin (), E = M.end (); I != E; ++I) { + Function *F = I; + if (F->isExternal ()) continue; + if (FnAllocState.find (F) == FnAllocState.end ()) { + allstate.push_back (ConstantPointerNull::get (PT)); + } else { + std::vector<AllocInfo> &state = FnAllocState[F]; + + // Convert state into an LLVM ConstantArray, and put it in a + // ConstantStruct (named S) along with its size. + std::vector<Constant *> stateConstants; + for (unsigned i = 0, s = state.size (); i != s; ++i) + stateConstants.push_back (state[i].toConstant ()); + unsigned Size = stateConstants.size (); + ArrayType *AT = ArrayType::get (AllocInfo::getConstantType (), Size); + std::vector<const Type *> TV; + TV.push_back (Type::UIntTy); + TV.push_back (AT); + StructType *ST = StructType::get (TV); + std::vector<Constant *> CV; + CV.push_back (ConstantUInt::get (Type::UIntTy, Size)); + CV.push_back (ConstantArray::get (AT, stateConstants)); + Constant *S = ConstantStruct::get (ST, CV); + + GlobalVariable *GV = + new GlobalVariable (ST, true, + GlobalValue::InternalLinkage, S, + F->getName () + ".regAllocState", &M); + + // Have: { uint, [Size x { uint, int, uint, int }] } * + // Cast it to: { uint, [0 x { uint, int, uint, int }] } * + Constant *CE = ConstantExpr::getCast (ConstantPointerRef::get (GV), PT); + allstate.push_back (CE); + } + } + + unsigned Size = allstate.size (); + // Final structure type is: + // { uint, [Size x { uint, [0 x { uint, int, uint, int }] } *] } + std::vector<const Type *> TV2; + TV2.push_back (Type::UIntTy); + ArrayType *AT2 = ArrayType::get (PT, Size); + TV2.push_back (AT2); + StructType *ST2 = StructType::get (TV2); + std::vector<Constant *> CV2; + CV2.push_back (ConstantUInt::get (Type::UIntTy, Size)); + CV2.push_back (ConstantArray::get (AT2, allstate)); + new GlobalVariable (ST2, true, GlobalValue::ExternalLinkage, + ConstantStruct::get (ST2, CV2), "_llvm_regAllocState", + &M); + return false; // No error. +} + + +/// Allocate registers for the machine code previously generated for F using +/// the graph-coloring algorithm. +/// +bool PhyRegAlloc::runOnFunction (Function &F) { + if (DEBUG_RA) + std::cerr << "\n********* Function "<< F.getName () << " ***********\n"; + + Fn = &F; + MF = &MachineFunction::get (Fn); + LVI = &getAnalysis<FunctionLiveVarInfo> (); + LRI = new LiveRangeInfo (Fn, TM, RegClassList); + LoopDepthCalc = &getAnalysis<LoopInfo> (); + + // Create each RegClass for the target machine and add it to the + // RegClassList. This must be done before calling constructLiveRanges(). + for (unsigned rc = 0; rc != NumOfRegClasses; ++rc) + RegClassList.push_back (new RegClass (Fn, &TM.getRegInfo (), + MRI.getMachineRegClass (rc))); + + LRI->constructLiveRanges(); // create LR info + if (DEBUG_RA >= RA_DEBUG_LiveRanges) + LRI->printLiveRanges(); + + createIGNodeListsAndIGs(); // create IGNode list and IGs + + buildInterferenceGraphs(); // build IGs in all reg classes + + if (DEBUG_RA >= RA_DEBUG_LiveRanges) { + // print all LRs in all reg classes + for ( unsigned rc=0; rc < NumOfRegClasses ; rc++) + RegClassList[rc]->printIGNodeList(); + + // print IGs in all register classes + for ( unsigned rc=0; rc < NumOfRegClasses ; rc++) + RegClassList[rc]->printIG(); + } + + LRI->coalesceLRs(); // coalesce all live ranges + + if (DEBUG_RA >= RA_DEBUG_LiveRanges) { + // print all LRs in all reg classes + for (unsigned rc=0; rc < NumOfRegClasses; rc++) + RegClassList[rc]->printIGNodeList(); + + // print IGs in all register classes + for (unsigned rc=0; rc < NumOfRegClasses; rc++) + RegClassList[rc]->printIG(); + } + + // mark un-usable suggested color before graph coloring algorithm. + // When this is done, the graph coloring algo will not reserve + // suggested color unnecessarily - they can be used by another LR + markUnusableSugColors(); + + // color all register classes using the graph coloring algo + for (unsigned rc=0; rc < NumOfRegClasses ; rc++) + RegClassList[rc]->colorAllRegs(); + + // After graph coloring, if some LRs did not receive a color (i.e, spilled) + // a position for such spilled LRs + allocateStackSpace4SpilledLRs(); + + // Reset the temp. area on the stack before use by the first instruction. + // This will also happen after updating each instruction. + MF->getInfo()->popAllTempValues(); + + // color incoming args - if the correct color was not received + // insert code to copy to the correct register + colorIncomingArgs(); + + // Save register allocation state for this function in a Constant. + if (SaveRegAllocState) + saveState(); + if (DEBUG_RA) { // Check our work. + verifySavedState (); + } + + // Now update the machine code with register names and add any additional + // code inserted by the register allocator to the instruction stream. + updateMachineCode(); + + if (DEBUG_RA) { + std::cerr << "\n**** Machine Code After Register Allocation:\n\n"; + MF->dump(); + } + + // Tear down temporary data structures + for (unsigned rc = 0; rc < NumOfRegClasses; ++rc) + delete RegClassList[rc]; + RegClassList.clear (); + AddedInstrMap.clear (); + OperandsColoredMap.clear (); + ScratchRegsUsed.clear (); + AddedInstrAtEntry.clear (); + delete LRI; + + if (DEBUG_RA) std::cerr << "\nRegister allocation complete!\n"; + return false; // Function was not modified +} + +} // End llvm namespace |