diff options
author | Chris Lattner <sabre@nondot.org> | 2004-01-09 06:17:12 +0000 |
---|---|---|
committer | Chris Lattner <sabre@nondot.org> | 2004-01-09 06:17:12 +0000 |
commit | b9c79998812dc0f9609951d4feb0ce764e538bb0 (patch) | |
tree | 8b4625654199cfeb90af013cd90a9161c5090eee /llvm/lib/Target/Sparc/RegAlloc | |
parent | df3c342a4c254870b63709c7268a575a75e2bafc (diff) | |
download | bcm5719-llvm-b9c79998812dc0f9609951d4feb0ce764e538bb0.tar.gz bcm5719-llvm-b9c79998812dc0f9609951d4feb0ce764e538bb0.zip |
Move lib/Codegen/RegAlloc into lib/Target/Sparc, as it is sparc specific
llvm-svn: 10728
Diffstat (limited to 'llvm/lib/Target/Sparc/RegAlloc')
-rw-r--r-- | llvm/lib/Target/Sparc/RegAlloc/AllocInfo.h | 84 | ||||
-rw-r--r-- | llvm/lib/Target/Sparc/RegAlloc/IGNode.cpp | 62 | ||||
-rw-r--r-- | llvm/lib/Target/Sparc/RegAlloc/IGNode.h | 123 | ||||
-rw-r--r-- | llvm/lib/Target/Sparc/RegAlloc/InterferenceGraph.cpp | 252 | ||||
-rw-r--r-- | llvm/lib/Target/Sparc/RegAlloc/InterferenceGraph.h | 75 | ||||
-rw-r--r-- | llvm/lib/Target/Sparc/RegAlloc/LiveRange.h | 184 | ||||
-rw-r--r-- | llvm/lib/Target/Sparc/RegAlloc/LiveRangeInfo.cpp | 416 | ||||
-rw-r--r-- | llvm/lib/Target/Sparc/RegAlloc/LiveRangeInfo.h | 128 | ||||
-rw-r--r-- | llvm/lib/Target/Sparc/RegAlloc/Makefile | 17 | ||||
-rw-r--r-- | llvm/lib/Target/Sparc/RegAlloc/PhyRegAlloc.cpp | 1397 | ||||
-rw-r--r-- | llvm/lib/Target/Sparc/RegAlloc/PhyRegAlloc.h | 186 | ||||
-rw-r--r-- | llvm/lib/Target/Sparc/RegAlloc/RegAllocCommon.h | 32 | ||||
-rw-r--r-- | llvm/lib/Target/Sparc/RegAlloc/RegClass.cpp | 250 | ||||
-rw-r--r-- | llvm/lib/Target/Sparc/RegAlloc/RegClass.h | 147 |
14 files changed, 3353 insertions, 0 deletions
diff --git a/llvm/lib/Target/Sparc/RegAlloc/AllocInfo.h b/llvm/lib/Target/Sparc/RegAlloc/AllocInfo.h new file mode 100644 index 00000000000..67f58a7ed04 --- /dev/null +++ b/llvm/lib/Target/Sparc/RegAlloc/AllocInfo.h @@ -0,0 +1,84 @@ +//===-- AllocInfo.h - Store info about regalloc decisions -------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This header file contains the data structure used to save the state +// of the global, graph-coloring register allocator. +// +//===----------------------------------------------------------------------===// + +#ifndef ALLOCINFO_H +#define ALLOCINFO_H + +#include "llvm/Type.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Constants.h" + +namespace llvm { + +/// AllocInfo - Structure representing one instruction's operand's-worth of +/// register allocation state. We create tables made out of these data +/// structures to generate mapping information for this register allocator. +/// +struct AllocInfo { + unsigned Instruction; + int Operand; // (-1 if Instruction, or 0...n-1 for an operand.) + enum AllocStateTy { NotAllocated = 0, Allocated, Spilled }; + AllocStateTy AllocState; + int Placement; + + AllocInfo (unsigned Instruction_, unsigned Operand_, + AllocStateTy AllocState_, int Placement_) : + Instruction (Instruction_), Operand (Operand_), + AllocState (AllocState_), Placement (Placement_) { } + + /// getConstantType - Return a StructType representing an AllocInfo object. + /// + static StructType *getConstantType () { + std::vector<const Type *> TV; + TV.push_back (Type::UIntTy); + TV.push_back (Type::IntTy); + TV.push_back (Type::UIntTy); + TV.push_back (Type::IntTy); + return StructType::get (TV); + } + + /// toConstant - Convert this AllocInfo into an LLVM Constant of type + /// getConstantType(), and return the Constant. + /// + Constant *toConstant () const { + StructType *ST = getConstantType (); + std::vector<Constant *> CV; + CV.push_back (ConstantUInt::get (Type::UIntTy, Instruction)); + CV.push_back (ConstantSInt::get (Type::IntTy, Operand)); + CV.push_back (ConstantUInt::get (Type::UIntTy, AllocState)); + CV.push_back (ConstantSInt::get (Type::IntTy, Placement)); + return ConstantStruct::get (ST, CV); + } + + /// AllocInfos compare equal if the allocation placements are equal + /// (i.e., they can be equal even if they refer to operands from two + /// different instructions.) + /// + bool operator== (const AllocInfo &X) const { + return (X.AllocState == AllocState) && (X.Placement == Placement); + } + bool operator!= (const AllocInfo &X) const { return !(*this == X); } + + /// Returns a human-readable string representation of the AllocState member. + /// + const std::string allocStateToString () const { + static const char *AllocStateNames[] = + { "NotAllocated", "Allocated", "Spilled" }; + return std::string (AllocStateNames[AllocState]); + } +}; + +} // End llvm namespace + +#endif // ALLOCINFO_H diff --git a/llvm/lib/Target/Sparc/RegAlloc/IGNode.cpp b/llvm/lib/Target/Sparc/RegAlloc/IGNode.cpp new file mode 100644 index 00000000000..a76fdeaa037 --- /dev/null +++ b/llvm/lib/Target/Sparc/RegAlloc/IGNode.cpp @@ -0,0 +1,62 @@ +//===-- IGNode.cpp --------------------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements an Interference graph node for coloring-based register +// allocation. +// +//===----------------------------------------------------------------------===// + +#include "IGNode.h" +#include <algorithm> +#include <iostream> + +namespace llvm { + +//----------------------------------------------------------------------------- +// Sets this IGNode on stack and reduce the degree of neighbors +//----------------------------------------------------------------------------- + +void IGNode::pushOnStack() { + OnStack = true; + int neighs = AdjList.size(); + + if (neighs < 0) { + std::cerr << "\nAdj List size = " << neighs; + assert(0 && "Invalid adj list size"); + } + + for (int i=0; i < neighs; i++) + AdjList[i]->decCurDegree(); +} + +//----------------------------------------------------------------------------- +// Deletes an adjacency node. IGNodes are deleted when coalescing merges +// two IGNodes together. +//----------------------------------------------------------------------------- + +void IGNode::delAdjIGNode(const IGNode *Node) { + std::vector<IGNode *>::iterator It=find(AdjList.begin(), AdjList.end(), Node); + assert(It != AdjList.end() && "The node must be there!"); + AdjList.erase(It); +} + +//----------------------------------------------------------------------------- +// Get the number of unique neighbors if these two nodes are merged +//----------------------------------------------------------------------------- + +unsigned +IGNode::getCombinedDegree(const IGNode* otherNode) const { + std::vector<IGNode*> nbrs(AdjList); + nbrs.insert(nbrs.end(), otherNode->AdjList.begin(), otherNode->AdjList.end()); + sort(nbrs.begin(), nbrs.end()); + std::vector<IGNode*>::iterator new_end = unique(nbrs.begin(), nbrs.end()); + return new_end - nbrs.begin(); +} + +} // End llvm namespace diff --git a/llvm/lib/Target/Sparc/RegAlloc/IGNode.h b/llvm/lib/Target/Sparc/RegAlloc/IGNode.h new file mode 100644 index 00000000000..9fdc7a6ac07 --- /dev/null +++ b/llvm/lib/Target/Sparc/RegAlloc/IGNode.h @@ -0,0 +1,123 @@ +//===-- IGNode.h - Represent a node in an interference graph ----*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file represents a node in an interference graph. +// +// For efficiency, the AdjList is updated only once - ie. we can add but not +// remove nodes from AdjList. +// +// The removal of nodes from IG is simulated by decrementing the CurDegree. +// If this node is put on stack (that is removed from IG), the CurDegree of all +// the neighbors are decremented and this node is marked OnStack. Hence +// the effective neighbors in the AdjList are the ones that do not have the +// OnStack flag set (therefore, they are in the IG). +// +// The methods that modify/use the CurDegree must be called only +// after all modifications to the IG are over (i.e., all neighbors are fixed). +// +// The vector representation is the most efficient one for adj list. +// Though nodes are removed when coalescing is done, we access it in sequence +// for far many times when coloring (colorNode()). +// +//===----------------------------------------------------------------------===// + +#ifndef IGNODE_H +#define IGNODE_H + +#include "LiveRange.h" +#include <vector> + +namespace llvm { + +class RegClass; + +//---------------------------------------------------------------------------- +// Class IGNode +// +// Represents a node in an interference graph. +//---------------------------------------------------------------------------- + +class IGNode { + const unsigned Index; // index within IGNodeList + bool OnStack; // this has been pushed on to stack for coloring + std::vector<IGNode *> AdjList;// adjacency list for this live range + + int CurDegree; + // + // set by InterferenceGraph::setCurDegreeOfIGNodes() after calculating + // all adjacency lists. + // Decremented when a neighbor is pushed on to the stack. + // After that, never incremented/set again nor used. + + LiveRange *const ParentLR; +public: + + IGNode(LiveRange *LR, unsigned index) : Index(index), ParentLR(LR) { + OnStack = false; + CurDegree = -1; + ParentLR->setUserIGNode(this); + } + + inline unsigned int getIndex() const { return Index; } + + // adjLists must be updated only once. However, the CurDegree can be changed + // + inline void addAdjIGNode(IGNode *AdjNode) { AdjList.push_back(AdjNode); } + + inline IGNode *getAdjIGNode(unsigned ind) const + { assert ( ind < AdjList.size()); return AdjList[ind]; } + + // delete a node in AdjList - node must be in the list + // should not be called often + // + void delAdjIGNode(const IGNode *Node); + + inline unsigned getNumOfNeighbors() const { return AdjList.size(); } + + // Get the number of unique neighbors if these two nodes are merged + unsigned getCombinedDegree(const IGNode* otherNode) const; + + inline bool isOnStack() const { return OnStack; } + + // remove form IG and pushes on to stack (reduce the degree of neighbors) + // + void pushOnStack(); + + // CurDegree is the effective number of neighbors when neighbors are + // pushed on to the stack during the coloring phase. Must be called + // after all modifications to the IG are over (i.e., all neighbors are + // fixed). + // + inline void setCurDegree() { + assert(CurDegree == -1); + CurDegree = AdjList.size(); + } + + inline int getCurDegree() const { return CurDegree; } + + // called when a neigh is pushed on to stack + // + inline void decCurDegree() { assert(CurDegree > 0); --CurDegree; } + + // The following methods call the methods in ParentLR + // They are added to this class for convenience + // If many of these are called within a single scope, + // consider calling the methods directly on LR + inline bool hasColor() const { return ParentLR->hasColor(); } + + inline unsigned int getColor() const { return ParentLR->getColor(); } + + inline void setColor(unsigned Col) { ParentLR->setColor(Col); } + + inline LiveRange *getParentLR() const { return ParentLR; } +}; + +} // End llvm namespace + +#endif diff --git a/llvm/lib/Target/Sparc/RegAlloc/InterferenceGraph.cpp b/llvm/lib/Target/Sparc/RegAlloc/InterferenceGraph.cpp new file mode 100644 index 00000000000..3cef19ea0e0 --- /dev/null +++ b/llvm/lib/Target/Sparc/RegAlloc/InterferenceGraph.cpp @@ -0,0 +1,252 @@ +//===-- InterferenceGraph.cpp ---------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Interference graph for coloring-based register allocation for LLVM. +// +//===----------------------------------------------------------------------===// + +#include "IGNode.h" +#include "InterferenceGraph.h" +#include "RegAllocCommon.h" +#include "Support/STLExtras.h" +#include <algorithm> + +namespace llvm { + +// for asserting this IG node is infact in the IGNodeList of this class +inline static void assertIGNode(const InterferenceGraph *IG, + const IGNode *Node) { + assert(IG->getIGNodeList()[Node->getIndex()] == Node); +} + +//----------------------------------------------------------------------------- +// Constructor: Records the RegClass and initalizes IGNodeList. +// The matrix is NOT yet created by the constructor. Call createGraph() +// to create it after adding all IGNodes to the IGNodeList. +//----------------------------------------------------------------------------- +InterferenceGraph::InterferenceGraph(RegClass *const RC) : RegCl(RC) { + IG = NULL; + Size = 0; + if( DEBUG_RA >= RA_DEBUG_Interference) + std::cerr << "Interference graph created!\n"; +} + + +//----------------------------------------------------------------------------- +// destructor. Deletes the bit matrix and all IGNodes +//----------------------------------------------------------------------------- +InterferenceGraph:: ~InterferenceGraph() { + // delete the matrix + for(unsigned int r=0; r < IGNodeList.size(); ++r) + delete[] IG[r]; + delete[] IG; + + // delete all IGNodes in the IGNodeList + for_each(IGNodeList.begin(), IGNodeList.end(), deleter<IGNode>); +} + + + +//----------------------------------------------------------------------------- +// Creates (dynamically allocates) the bit matrix necessary to hold the +// interference graph. +//----------------------------------------------------------------------------- +void InterferenceGraph::createGraph() +{ + Size = IGNodeList.size(); + IG = new char*[Size]; + for( unsigned int r=0; r < Size; ++r) + IG[r] = new char[Size]; + + // init IG matrix + for(unsigned int i=0; i < Size; i++) + for(unsigned int j=0; j < Size; j++) + IG[i][j] = 0; +} + +//----------------------------------------------------------------------------- +// creates a new IGNode for the given live range and add to IG +//----------------------------------------------------------------------------- +void InterferenceGraph::addLRToIG(LiveRange *const LR) +{ + IGNodeList.push_back(new IGNode(LR, IGNodeList.size())); +} + + +//----------------------------------------------------------------------------- +// set interference for two live ranges +// update both the matrix and AdjLists of nodes. +// If there is already an interference between LR1 and LR2, adj lists +// are not updated. LR1 and LR2 must be distinct since if not, it suggests +// that there is some wrong logic in some other method. +//----------------------------------------------------------------------------- +void InterferenceGraph::setInterference(const LiveRange *const LR1, + const LiveRange *const LR2 ) { + assert(LR1 != LR2); + + IGNode *IGNode1 = LR1->getUserIGNode(); + IGNode *IGNode2 = LR2->getUserIGNode(); + + assertIGNode(this, IGNode1); + assertIGNode(this, IGNode2); + + unsigned row = IGNode1->getIndex(); + unsigned col = IGNode2->getIndex(); + + char *val; + + if( DEBUG_RA >= RA_DEBUG_Interference) + std::cerr << "setting intf for: [" << row << "][" << col << "]\n"; + + ( row > col) ? val = &IG[row][col]: val = &IG[col][row]; + + if( ! (*val) ) { // if this interf is not previously set + *val = 1; // add edges between nodes + IGNode1->addAdjIGNode( IGNode2 ); + IGNode2->addAdjIGNode( IGNode1 ); + } + +} + + +//---------------------------------------------------------------------------- +// return whether two live ranges interfere +//---------------------------------------------------------------------------- +unsigned InterferenceGraph::getInterference(const LiveRange *const LR1, + const LiveRange *const LR2) const { + assert(LR1 != LR2); + assertIGNode(this, LR1->getUserIGNode()); + assertIGNode(this, LR2->getUserIGNode()); + + const unsigned int row = LR1->getUserIGNode()->getIndex(); + const unsigned int col = LR2->getUserIGNode()->getIndex(); + + char ret; + if (row > col) + ret = IG[row][col]; + else + ret = IG[col][row]; + return ret; + +} + + +//---------------------------------------------------------------------------- +// Merge 2 IGNodes. The neighbors of the SrcNode will be added to the DestNode. +// Then the IGNode2L will be deleted. Necessary for coalescing. +// IMPORTANT: The live ranges are NOT merged by this method. Use +// LiveRangeInfo::unionAndUpdateLRs for that purpose. +//---------------------------------------------------------------------------- + +void InterferenceGraph::mergeIGNodesOfLRs(const LiveRange *LR1, + LiveRange *LR2) { + + assert( LR1 != LR2); // cannot merge the same live range + + IGNode *const DestNode = LR1->getUserIGNode(); + IGNode *SrcNode = LR2->getUserIGNode(); + + assertIGNode(this, DestNode); + assertIGNode(this, SrcNode); + + if( DEBUG_RA >= RA_DEBUG_Interference) { + std::cerr << "Merging LRs: \""; printSet(*LR1); + std::cerr << "\" and \""; printSet(*LR2); + std::cerr << "\"\n"; + } + + unsigned SrcDegree = SrcNode->getNumOfNeighbors(); + const unsigned SrcInd = SrcNode->getIndex(); + + + // for all neighs of SrcNode + for(unsigned i=0; i < SrcDegree; i++) { + IGNode *NeighNode = SrcNode->getAdjIGNode(i); + + LiveRange *const LROfNeigh = NeighNode->getParentLR(); + + // delete edge between src and neigh - even neigh == dest + NeighNode->delAdjIGNode(SrcNode); + + // set the matrix posn to 0 betn src and neigh - even neigh == dest + const unsigned NInd = NeighNode->getIndex(); + ( SrcInd > NInd) ? (IG[SrcInd][NInd]=0) : (IG[NInd][SrcInd]=0) ; + + + if( LR1 != LROfNeigh) { // if the neigh != dest + + // add edge betwn Dest and Neigh - if there is no current edge + setInterference(LR1, LROfNeigh ); + } + + } + + IGNodeList[ SrcInd ] = NULL; + + // SrcNode is no longer necessary - LR2 must be deleted by the caller + delete( SrcNode ); + +} + + +//---------------------------------------------------------------------------- +// must be called after modifications to the graph are over but before +// pushing IGNodes on to the stack for coloring. +//---------------------------------------------------------------------------- +void InterferenceGraph::setCurDegreeOfIGNodes() +{ + unsigned Size = IGNodeList.size(); + + for( unsigned i=0; i < Size; i++) { + IGNode *Node = IGNodeList[i]; + if( Node ) + Node->setCurDegree(); + } +} + + + + + +//--------------------- debugging (Printing) methods ----------------------- + +//---------------------------------------------------------------------------- +// Print the IGnodes +//---------------------------------------------------------------------------- +void InterferenceGraph::printIG() const { + for(unsigned i=0; i < Size; i++) { + const IGNode *const Node = IGNodeList[i]; + if(Node) { + std::cerr << " [" << i << "] "; + + for( unsigned int j=0; j < Size; j++) + if(IG[i][j]) + std::cerr << "(" << i << "," << j << ") "; + std::cerr << "\n"; + } + } +} + +//---------------------------------------------------------------------------- +// Print the IGnodes in the IGNode List +//---------------------------------------------------------------------------- +void InterferenceGraph::printIGNodeList() const { + for(unsigned i=0; i < IGNodeList.size() ; ++i) { + const IGNode *const Node = IGNodeList[i]; + + if (Node) { + std::cerr << " [" << Node->getIndex() << "] "; + printSet(*Node->getParentLR()); + //int Deg = Node->getCurDegree(); + std::cerr << "\t <# of Neighs: " << Node->getNumOfNeighbors() << ">\n"; + } + } +} + +} // End llvm namespace diff --git a/llvm/lib/Target/Sparc/RegAlloc/InterferenceGraph.h b/llvm/lib/Target/Sparc/RegAlloc/InterferenceGraph.h new file mode 100644 index 00000000000..79850c1fcf0 --- /dev/null +++ b/llvm/lib/Target/Sparc/RegAlloc/InterferenceGraph.h @@ -0,0 +1,75 @@ +//===-- InterferenceGraph.h - Interference graph for register coloring -*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +/* Title: InterferenceGraph.h -*- C++ -*- + Author: Ruchira Sasanka + Date: July 20, 01 + Purpose: Interference Graph used for register coloring. + + Notes: + Adj Info is stored in the lower trangular matrix (i.e., row > col ) + + This class must be used in the following way: + + * Construct class + * call addLRToIG as many times to add ALL LRs to this IG + * call createGraph to create the actual matrix + * Then setInterference, getInterference, mergeIGNodesOfLRs can be + called as desired to modify the graph. + * Once the modifications to the graph are over, call + setCurDegreeOfIGNodes() before pushing IGNodes on to stack for coloring. +*/ + +#ifndef INTERFERENCEGRAPH_H +#define INTERFERENCEGRAPH_H + +#include <vector> + +namespace llvm { + +class LiveRange; +class RegClass; +class IGNode; + +class InterferenceGraph { + char **IG; // a poiner to the interference graph + unsigned int Size; // size of a side of the IG + RegClass *const RegCl; // RegCl contains this IG + std::vector<IGNode *> IGNodeList; // a list of all IGNodes in a reg class + + public: + // the matrix is not yet created by the constructor. Call createGraph() + // to create it after adding all IGNodes to the IGNodeList + InterferenceGraph(RegClass *RC); + ~InterferenceGraph(); + + void createGraph(); + + void addLRToIG(LiveRange *LR); + + void setInterference(const LiveRange *LR1, + const LiveRange *LR2); + + unsigned getInterference(const LiveRange *LR1, + const LiveRange *LR2) const ; + + void mergeIGNodesOfLRs(const LiveRange *LR1, LiveRange *LR2); + + std::vector<IGNode *> &getIGNodeList() { return IGNodeList; } + const std::vector<IGNode *> &getIGNodeList() const { return IGNodeList; } + + void setCurDegreeOfIGNodes(); + + void printIG() const; + void printIGNodeList() const; +}; + +} // End llvm namespace + +#endif diff --git a/llvm/lib/Target/Sparc/RegAlloc/LiveRange.h b/llvm/lib/Target/Sparc/RegAlloc/LiveRange.h new file mode 100644 index 00000000000..d6e2cf63072 --- /dev/null +++ b/llvm/lib/Target/Sparc/RegAlloc/LiveRange.h @@ -0,0 +1,184 @@ +//===-- LiveRange.h - Store info about a live range -------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Implements a live range using a ValueSet. A LiveRange is a simple set +// of Values. +// +// Since the Value pointed by a use is the same as of its def, it is sufficient +// to keep only defs in a LiveRange. +// +//===----------------------------------------------------------------------===// + +#ifndef LIVERANGE_H +#define LIVERANGE_H + +#include "llvm/Value.h" +#include "llvm/CodeGen/ValueSet.h" + +namespace llvm { + +class RegClass; +class IGNode; + +class LiveRange : public ValueSet { + RegClass *MyRegClass; // register class (e.g., int, FP) for this LR + + /// doesSpanAcrossCalls - Does this live range span across calls? + /// This information is used by graph coloring algo to avoid allocating + /// volatile colors to live ranges that span across calls (since they have to + /// be saved/restored) + /// + bool doesSpanAcrossCalls; + + IGNode *UserIGNode; // IGNode which uses this LR + int Color; // color assigned to this live range + bool mustSpill; // whether this LR must be spilt + + /// mustSaveAcrossCalls - whether this LR must be saved accross calls + /// ***TODO REMOVE this + /// + bool mustSaveAcrossCalls; + + /// SuggestedColor - if this LR has a suggested color, can it be + /// really alloated? A suggested color cannot be allocated when the + /// suggested color is volatile and when there are call + /// interferences. + /// + int SuggestedColor; // The suggested color for this LR + + /// CanUseSuggestedCol - It is possible that a suggested color for + /// this live range is not available before graph coloring (e.g., it + /// can be allocated to another live range which interferes with + /// this) + /// + bool CanUseSuggestedCol; + + /// SpilledStackOffsetFromFP - If this LR is spilled, its stack + /// offset from *FP*. The spilled offsets must always be relative to + /// the FP. + /// + int SpilledStackOffsetFromFP; + + /// HasSpillOffset 0 Whether this live range has a spill offset + /// + bool HasSpillOffset; + + /// The spill cost of this live range. Calculated using loop depth of + /// each reference to each Value in the live range + /// + unsigned SpillCost; + +public: + LiveRange() { + Color = SuggestedColor = -1; // not yet colored + mustSpill = mustSaveAcrossCalls = false; + MyRegClass = 0; + UserIGNode = 0; + doesSpanAcrossCalls = false; + CanUseSuggestedCol = true; + HasSpillOffset = false; + SpillCost = 0; + } + + void setRegClass(RegClass *RC) { MyRegClass = RC; } + + RegClass *getRegClass() const { assert(MyRegClass); return MyRegClass; } + unsigned getRegClassID() const; + + bool hasColor() const { return Color != -1; } + + unsigned getColor() const { assert(Color != -1); return (unsigned)Color; } + + void setColor(unsigned Col) { Color = (int)Col; } + + inline void setCallInterference() { + doesSpanAcrossCalls = 1; + } + inline void clearCallInterference() { + doesSpanAcrossCalls = 0; + } + + inline bool isCallInterference() const { + return doesSpanAcrossCalls == 1; + } + + inline void markForSpill() { mustSpill = true; } + + inline bool isMarkedForSpill() const { return mustSpill; } + + inline void setSpillOffFromFP(int StackOffset) { + assert(mustSpill && "This LR is not spilled"); + SpilledStackOffsetFromFP = StackOffset; + HasSpillOffset = true; + } + + inline void modifySpillOffFromFP(int StackOffset) { + assert(mustSpill && "This LR is not spilled"); + SpilledStackOffsetFromFP = StackOffset; + HasSpillOffset = true; + } + + inline bool hasSpillOffset() const { + return HasSpillOffset; + } + + inline int getSpillOffFromFP() const { + assert(HasSpillOffset && "This LR is not spilled"); + return SpilledStackOffsetFromFP; + } + + inline void markForSaveAcrossCalls() { mustSaveAcrossCalls = true; } + + inline void setUserIGNode(IGNode *IGN) { + assert(!UserIGNode); UserIGNode = IGN; + } + + // getUserIGNode - NULL if the user is not allocated + inline IGNode *getUserIGNode() const { return UserIGNode; } + + inline const Type *getType() const { + return (*begin())->getType(); // set's don't have a front + } + + inline void setSuggestedColor(int Col) { + if (SuggestedColor == -1) + SuggestedColor = Col; + } + + inline unsigned getSuggestedColor() const { + assert(SuggestedColor != -1); // only a valid color is obtained + return (unsigned)SuggestedColor; + } + + inline bool hasSuggestedColor() const { + return SuggestedColor != -1; + } + + inline bool isSuggestedColorUsable() const { + assert(hasSuggestedColor() && "No suggested color"); + return CanUseSuggestedCol; + } + + inline void setSuggestedColorUsable(bool val) { + assert(hasSuggestedColor() && "No suggested color"); + CanUseSuggestedCol = val; + } + + inline void addSpillCost(unsigned cost) { + SpillCost += cost; + } + + inline unsigned getSpillCost() const { + return SpillCost; + } +}; + +} // End llvm namespace + +#endif diff --git a/llvm/lib/Target/Sparc/RegAlloc/LiveRangeInfo.cpp b/llvm/lib/Target/Sparc/RegAlloc/LiveRangeInfo.cpp new file mode 100644 index 00000000000..380680448d3 --- /dev/null +++ b/llvm/lib/Target/Sparc/RegAlloc/LiveRangeInfo.cpp @@ -0,0 +1,416 @@ +//===-- LiveRangeInfo.cpp -------------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Live range construction for coloring-based register allocation for LLVM. +// +//===----------------------------------------------------------------------===// + +#include "IGNode.h" +#include "LiveRangeInfo.h" +#include "RegAllocCommon.h" +#include "RegClass.h" +#include "llvm/Function.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetRegInfo.h" +#include "Support/SetOperations.h" + +namespace llvm { + +unsigned LiveRange::getRegClassID() const { return getRegClass()->getID(); } + +LiveRangeInfo::LiveRangeInfo(const Function *F, const TargetMachine &tm, + std::vector<RegClass *> &RCL) + : Meth(F), TM(tm), RegClassList(RCL), MRI(tm.getRegInfo()) { } + + +LiveRangeInfo::~LiveRangeInfo() { + for (LiveRangeMapType::iterator MI = LiveRangeMap.begin(); + MI != LiveRangeMap.end(); ++MI) { + + if (MI->first && MI->second) { + LiveRange *LR = MI->second; + + // we need to be careful in deleting LiveRanges in LiveRangeMap + // since two/more Values in the live range map can point to the same + // live range. We have to make the other entries NULL when we delete + // a live range. + + for (LiveRange::iterator LI = LR->begin(); LI != LR->end(); ++LI) + LiveRangeMap[*LI] = 0; + + delete LR; + } + } +} + + +//--------------------------------------------------------------------------- +// union two live ranges into one. The 2nd LR is deleted. Used for coalescing. +// Note: the caller must make sure that L1 and L2 are distinct and both +// LRs don't have suggested colors +//--------------------------------------------------------------------------- + +void LiveRangeInfo::unionAndUpdateLRs(LiveRange *L1, LiveRange *L2) { + assert(L1 != L2 && (!L1->hasSuggestedColor() || !L2->hasSuggestedColor())); + assert(! (L1->hasColor() && L2->hasColor()) || + L1->getColor() == L2->getColor()); + + set_union(*L1, *L2); // add elements of L2 to L1 + + for(ValueSet::iterator L2It = L2->begin(); L2It != L2->end(); ++L2It) { + //assert(( L1->getTypeID() == L2->getTypeID()) && "Merge:Different types"); + + L1->insert(*L2It); // add the var in L2 to L1 + LiveRangeMap[*L2It] = L1; // now the elements in L2 should map + //to L1 + } + + // set call interference for L1 from L2 + if (L2->isCallInterference()) + L1->setCallInterference(); + + // add the spill costs + L1->addSpillCost(L2->getSpillCost()); + + // If L2 has a color, give L1 that color. Note that L1 may have had the same + // color or none, but would not have a different color as asserted above. + if (L2->hasColor()) + L1->setColor(L2->getColor()); + + // Similarly, if LROfUse(L2) has a suggested color, the new range + // must have the same color. + if (L2->hasSuggestedColor()) + L1->setSuggestedColor(L2->getSuggestedColor()); + + delete L2; // delete L2 as it is no longer needed +} + + +//--------------------------------------------------------------------------- +// Method for creating a single live range for a definition. +// The definition must be represented by a virtual register (a Value). +// Note: this function does *not* check that no live range exists for def. +//--------------------------------------------------------------------------- + +LiveRange* +LiveRangeInfo::createNewLiveRange(const Value* Def, bool isCC /* = false*/) +{ + LiveRange* DefRange = new LiveRange(); // Create a new live range, + DefRange->insert(Def); // add Def to it, + LiveRangeMap[Def] = DefRange; // and update the map. + + // set the register class of the new live range + DefRange->setRegClass(RegClassList[MRI.getRegClassIDOfType(Def->getType(), + isCC)]); + + if (DEBUG_RA >= RA_DEBUG_LiveRanges) { + std::cerr << " Creating a LR for def "; + if (isCC) std::cerr << " (CC Register!)"; + std::cerr << " : " << RAV(Def) << "\n"; + } + return DefRange; +} + + +LiveRange* +LiveRangeInfo::createOrAddToLiveRange(const Value* Def, bool isCC /* = false*/) +{ + LiveRange *DefRange = LiveRangeMap[Def]; + + // check if the LR is already there (because of multiple defs) + if (!DefRange) { + DefRange = createNewLiveRange(Def, isCC); + } else { // live range already exists + DefRange->insert(Def); // add the operand to the range + LiveRangeMap[Def] = DefRange; // make operand point to merged set + if (DEBUG_RA >= RA_DEBUG_LiveRanges) + std::cerr << " Added to existing LR for def: " << RAV(Def) << "\n"; + } + return DefRange; +} + + +//--------------------------------------------------------------------------- +// Method for constructing all live ranges in a function. It creates live +// ranges for all values defined in the instruction stream. Also, it +// creates live ranges for all incoming arguments of the function. +//--------------------------------------------------------------------------- +void LiveRangeInfo::constructLiveRanges() { + + if (DEBUG_RA >= RA_DEBUG_LiveRanges) + std::cerr << "Constructing Live Ranges ...\n"; + + // first find the live ranges for all incoming args of the function since + // those LRs start from the start of the function + for (Function::const_aiterator AI = Meth->abegin(); AI != Meth->aend(); ++AI) + createNewLiveRange(AI, /*isCC*/ false); + + // Now suggest hardware registers for these function args + MRI.suggestRegs4MethodArgs(Meth, *this); + + // Now create LRs for machine instructions. A new LR will be created + // only for defs in the machine instr since, we assume that all Values are + // defined before they are used. However, there can be multiple defs for + // the same Value in machine instructions. + // + // Also, find CALL and RETURN instructions, which need extra work. + // + MachineFunction &MF = MachineFunction::get(Meth); + for (MachineFunction::iterator BBI = MF.begin(); BBI != MF.end(); ++BBI) { + MachineBasicBlock &MBB = *BBI; + + // iterate over all the machine instructions in BB + for(MachineBasicBlock::iterator MInstIterator = MBB.begin(); + MInstIterator != MBB.end(); ++MInstIterator) { + MachineInstr *MInst = *MInstIterator; + + // If the machine instruction is a call/return instruction, add it to + // CallRetInstrList for processing its args, ret value, and ret addr. + // + if(TM.getInstrInfo().isReturn(MInst->getOpCode()) || + TM.getInstrInfo().isCall(MInst->getOpCode())) + CallRetInstrList.push_back(MInst); + + // iterate over explicit MI operands and create a new LR + // for each operand that is defined by the instruction + for (MachineInstr::val_op_iterator OpI = MInst->begin(), + OpE = MInst->end(); OpI != OpE; ++OpI) + if (OpI.isDef()) { + const Value *Def = *OpI; + bool isCC = (OpI.getMachineOperand().getType() + == MachineOperand::MO_CCRegister); + LiveRange* LR = createOrAddToLiveRange(Def, isCC); + + // If the operand has a pre-assigned register, + // set it directly in the LiveRange + if (OpI.getMachineOperand().hasAllocatedReg()) { + unsigned getClassId; + LR->setColor(MRI.getClassRegNum( + OpI.getMachineOperand().getAllocatedRegNum(), + getClassId)); + } + } + + // iterate over implicit MI operands and create a new LR + // for each operand that is defined by the instruction + for (unsigned i = 0; i < MInst->getNumImplicitRefs(); ++i) + if (MInst->getImplicitOp(i).isDef()) { + const Value *Def = MInst->getImplicitRef(i); + LiveRange* LR = createOrAddToLiveRange(Def, /*isCC*/ false); + + // If the implicit operand has a pre-assigned register, + // set it directly in the LiveRange + if (MInst->getImplicitOp(i).hasAllocatedReg()) { + unsigned getClassId; + LR->setColor(MRI.getClassRegNum( + MInst->getImplicitOp(i).getAllocatedRegNum(), + getClassId)); + } + } + + } // for all machine instructions in the BB + } // for all BBs in function + + // Now we have to suggest clors for call and return arg live ranges. + // Also, if there are implicit defs (e.g., retun value of a call inst) + // they must be added to the live range list + // + suggestRegs4CallRets(); + + if( DEBUG_RA >= RA_DEBUG_LiveRanges) + std::cerr << "Initial Live Ranges constructed!\n"; +} + + +//--------------------------------------------------------------------------- +// If some live ranges must be colored with specific hardware registers +// (e.g., for outgoing call args), suggesting of colors for such live +// ranges is done using target specific function. Those functions are called +// from this function. The target specific methods must: +// 1) suggest colors for call and return args. +// 2) create new LRs for implicit defs in machine instructions +//--------------------------------------------------------------------------- +void LiveRangeInfo::suggestRegs4CallRets() { + std::vector<MachineInstr*>::iterator It = CallRetInstrList.begin(); + for( ; It != CallRetInstrList.end(); ++It) { + MachineInstr *MInst = *It; + MachineOpCode OpCode = MInst->getOpCode(); + + if ((TM.getInstrInfo()).isReturn(OpCode)) + MRI.suggestReg4RetValue(MInst, *this); + else if ((TM.getInstrInfo()).isCall(OpCode)) + MRI.suggestRegs4CallArgs(MInst, *this); + else + assert( 0 && "Non call/ret instr in CallRetInstrList" ); + } +} + + +//-------------------------------------------------------------------------- +// The following method coalesces live ranges when possible. This method +// must be called after the interference graph has been constructed. + + +/* Algorithm: + for each BB in function + for each machine instruction (inst) + for each definition (def) in inst + for each operand (op) of inst that is a use + if the def and op are of the same register type + if the def and op do not interfere //i.e., not simultaneously live + if (degree(LR of def) + degree(LR of op)) <= # avail regs + if both LRs do not have suggested colors + merge2IGNodes(def, op) // i.e., merge 2 LRs + +*/ +//--------------------------------------------------------------------------- + + +// Checks if live range LR interferes with any node assigned or suggested to +// be assigned the specified color +// +inline bool InterferesWithColor(const LiveRange& LR, unsigned color) { + IGNode* lrNode = LR.getUserIGNode(); + for (unsigned n=0, NN = lrNode->getNumOfNeighbors(); n < NN; n++) { + LiveRange *neighLR = lrNode->getAdjIGNode(n)->getParentLR(); + if (neighLR->hasColor() && neighLR->getColor() == color) + return true; + if (neighLR->hasSuggestedColor() && neighLR->getSuggestedColor() == color) + return true; + } + return false; +} + +// Cannot coalesce if any of the following is true: +// (1) Both LRs have suggested colors (should be "different suggested colors"?) +// (2) Both LR1 and LR2 have colors and the colors are different +// (but if the colors are the same, it is definitely safe to coalesce) +// (3) LR1 has color and LR2 interferes with any LR that has the same color +// (4) LR2 has color and LR1 interferes with any LR that has the same color +// +inline bool InterfsPreventCoalescing(const LiveRange& LROfDef, + const LiveRange& LROfUse) { + // (4) if they have different suggested colors, cannot coalesce + if (LROfDef.hasSuggestedColor() && LROfUse.hasSuggestedColor()) + return true; + + // if neither has a color, nothing more to do. + if (! LROfDef.hasColor() && ! LROfUse.hasColor()) + return false; + + // (2, 3) if L1 has color... + if (LROfDef.hasColor()) { + if (LROfUse.hasColor()) + return (LROfUse.getColor() != LROfDef.getColor()); + return InterferesWithColor(LROfUse, LROfDef.getColor()); + } + + // (4) else only LROfUse has a color: check if that could interfere + return InterferesWithColor(LROfDef, LROfUse.getColor()); +} + + +void LiveRangeInfo::coalesceLRs() +{ + if(DEBUG_RA >= RA_DEBUG_LiveRanges) + std::cerr << "\nCoalescing LRs ...\n"; + + MachineFunction &MF = MachineFunction::get(Meth); + for (MachineFunction::iterator BBI = MF.begin(); BBI != MF.end(); ++BBI) { + MachineBasicBlock &MBB = *BBI; + + // iterate over all the machine instructions in BB + for(MachineBasicBlock::iterator MII = MBB.begin(); MII != MBB.end(); ++MII){ + const MachineInstr *MI = *MII; + + if( DEBUG_RA >= RA_DEBUG_LiveRanges) { + std::cerr << " *Iterating over machine instr "; + MI->dump(); + std::cerr << "\n"; + } + + // iterate over MI operands to find defs + for(MachineInstr::const_val_op_iterator DefI = MI->begin(), + DefE = MI->end(); DefI != DefE; ++DefI) { + if (DefI.isDef()) { // this operand is modified + LiveRange *LROfDef = getLiveRangeForValue( *DefI ); + RegClass *RCOfDef = LROfDef->getRegClass(); + + MachineInstr::const_val_op_iterator UseI = MI->begin(), + UseE = MI->end(); + for( ; UseI != UseE; ++UseI) { // for all uses + LiveRange *LROfUse = getLiveRangeForValue( *UseI ); + if (!LROfUse) { // if LR of use is not found + //don't warn about labels + if (!isa<BasicBlock>(*UseI) && DEBUG_RA >= RA_DEBUG_LiveRanges) + std::cerr << " !! Warning: No LR for use " << RAV(*UseI)<< "\n"; + continue; // ignore and continue + } + + if (LROfUse == LROfDef) // nothing to merge if they are same + continue; + + if (MRI.getRegTypeForLR(LROfDef) == + MRI.getRegTypeForLR(LROfUse)) { + // If the two RegTypes are the same + if (!RCOfDef->getInterference(LROfDef, LROfUse) ) { + + unsigned CombinedDegree = + LROfDef->getUserIGNode()->getNumOfNeighbors() + + LROfUse->getUserIGNode()->getNumOfNeighbors(); + + if (CombinedDegree > RCOfDef->getNumOfAvailRegs()) { + // get more precise estimate of combined degree + CombinedDegree = LROfDef->getUserIGNode()-> + getCombinedDegree(LROfUse->getUserIGNode()); + } + + if (CombinedDegree <= RCOfDef->getNumOfAvailRegs()) { + // if both LRs do not have different pre-assigned colors + // and both LRs do not have suggested colors + if (! InterfsPreventCoalescing(*LROfDef, *LROfUse)) { + RCOfDef->mergeIGNodesOfLRs(LROfDef, LROfUse); + unionAndUpdateLRs(LROfDef, LROfUse); + } + + } // if combined degree is less than # of regs + } // if def and use do not interfere + }// if reg classes are the same + } // for all uses + } // if def + } // for all defs + } // for all machine instructions + } // for all BBs + + if (DEBUG_RA >= RA_DEBUG_LiveRanges) + std::cerr << "\nCoalescing Done!\n"; +} + +/*--------------------------- Debug code for printing ---------------*/ + + +void LiveRangeInfo::printLiveRanges() { + LiveRangeMapType::iterator HMI = LiveRangeMap.begin(); // hash map iterator + std::cerr << "\nPrinting Live Ranges from Hash Map:\n"; + for( ; HMI != LiveRangeMap.end(); ++HMI) { + if (HMI->first && HMI->second) { + std::cerr << " Value* " << RAV(HMI->first) << "\t: "; + if (IGNode* igNode = HMI->second->getUserIGNode()) + std::cerr << "LR# " << igNode->getIndex(); + else + std::cerr << "LR# " << "<no-IGNode>"; + std::cerr << "\t:Values = "; printSet(*HMI->second); std::cerr << "\n"; + } + } +} + +} // End llvm namespace diff --git a/llvm/lib/Target/Sparc/RegAlloc/LiveRangeInfo.h b/llvm/lib/Target/Sparc/RegAlloc/LiveRangeInfo.h new file mode 100644 index 00000000000..a8d0e7152f1 --- /dev/null +++ b/llvm/lib/Target/Sparc/RegAlloc/LiveRangeInfo.h @@ -0,0 +1,128 @@ +//===-- LiveRangeInfo.h - Track all LiveRanges for a Function ----*- C++ -*-==// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the class LiveRangeInfo which constructs and keeps +// the LiveRangeMap which contains all the live ranges used in a method. +// +// Assumptions: +// +// All variables (llvm Values) are defined before they are used. However, a +// constant may not be defined in the machine instruction stream if it can be +// used as an immediate value within a machine instruction. However, register +// allocation does not have to worry about immediate constants since they +// do not require registers. +// +// Since an llvm Value has a list of uses associated, it is sufficient to +// record only the defs in a Live Range. +// +//===----------------------------------------------------------------------===// + +#ifndef LIVERANGEINFO_H +#define LIVERANGEINFO_H + +#include "llvm/CodeGen/ValueSet.h" +#include "Support/hash_map" + +namespace llvm { + +class LiveRange; +class MachineInstr; +class RegClass; +class TargetRegInfo; +class TargetMachine; +class Value; +class Function; +class Instruction; + +typedef hash_map<const Value*, LiveRange*> LiveRangeMapType; + +//---------------------------------------------------------------------------- +// Class LiveRangeInfo +// +// Constructs and keeps the LiveRangeMap which contains all the live +// ranges used in a method. Also contain methods to coalesce live ranges. +//---------------------------------------------------------------------------- + +class LiveRangeInfo { + const Function *const Meth; // Func for which live range info is held + LiveRangeMapType LiveRangeMap; // A map from Value * to LiveRange * to + // record all live ranges in a method + // created by constructLiveRanges + + const TargetMachine& TM; // target machine description + + std::vector<RegClass *> & RegClassList;// vector containing register classess + + const TargetRegInfo& MRI; // machine reg info + + std::vector<MachineInstr*> CallRetInstrList; // a list of all call/ret instrs + + + //------------ Private methods (see LiveRangeInfo.cpp for description)------- + + LiveRange* createNewLiveRange (const Value* Def, + bool isCC = false); + + LiveRange* createOrAddToLiveRange (const Value* Def, + bool isCC = false); + + void unionAndUpdateLRs (LiveRange *L1, + LiveRange *L2); + + void addInterference (const Instruction *Inst, + const ValueSet *LVSet); + + void suggestRegs4CallRets (); + + const Function *getMethod () const { return Meth; } + +public: + + LiveRangeInfo(const Function *F, + const TargetMachine& tm, + std::vector<RegClass *> & RCList); + + + /// Destructor to destroy all LiveRanges in the LiveRange Map + /// + ~LiveRangeInfo(); + + // Main entry point for live range construction + // + void constructLiveRanges(); + + /// return the common live range map for this method + /// + inline const LiveRangeMapType *getLiveRangeMap() const + { return &LiveRangeMap; } + + /// Method used to get the live range containing a Value. + /// This may return NULL if no live range exists for a Value (eg, some consts) + /// + inline LiveRange *getLiveRangeForValue(const Value *Val) { + return LiveRangeMap[Val]; + } + inline const LiveRange *getLiveRangeForValue(const Value *Val) const { + LiveRangeMapType::const_iterator I = LiveRangeMap.find(Val); + return I->second; + } + + /// Method for coalescing live ranges. Called only after interference info + /// is calculated. + /// + void coalesceLRs(); + + /// debugging method to print the live ranges + /// + void printLiveRanges(); +}; + +} // End llvm namespace + +#endif diff --git a/llvm/lib/Target/Sparc/RegAlloc/Makefile b/llvm/lib/Target/Sparc/RegAlloc/Makefile new file mode 100644 index 00000000000..374c70f08a0 --- /dev/null +++ b/llvm/lib/Target/Sparc/RegAlloc/Makefile @@ -0,0 +1,17 @@ +##===- lib/CodeGen/RegAlloc/Makefile -----------------------*- Makefile -*-===## +# +# The LLVM Compiler Infrastructure +# +# This file was developed by the LLVM research group and is distributed under +# the University of Illinois Open Source License. See LICENSE.TXT for details. +# +##===----------------------------------------------------------------------===## +LEVEL = ../../../.. + +DIRS = + +LIBRARYNAME = regalloc + +BUILD_ARCHIVE = 1 + +include $(LEVEL)/Makefile.common diff --git a/llvm/lib/Target/Sparc/RegAlloc/PhyRegAlloc.cpp b/llvm/lib/Target/Sparc/RegAlloc/PhyRegAlloc.cpp new file mode 100644 index 00000000000..a9a5f3d7fe7 --- /dev/null +++ b/llvm/lib/Target/Sparc/RegAlloc/PhyRegAlloc.cpp @@ -0,0 +1,1397 @@ +//===-- PhyRegAlloc.cpp ---------------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Traditional graph-coloring global register allocator currently used +// by the SPARC back-end. +// +// NOTE: This register allocator has some special support +// for the Reoptimizer, such as not saving some registers on calls to +// the first-level instrumentation function. +// +// NOTE 2: This register allocator can save its state in a global +// variable in the module it's working on. This feature is not +// thread-safe; if you have doubts, leave it turned off. +// +//===----------------------------------------------------------------------===// + +#include "AllocInfo.h" +#include "IGNode.h" +#include "PhyRegAlloc.h" +#include "RegAllocCommon.h" +#include "RegClass.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/iOther.h" +#include "llvm/Module.h" +#include "llvm/Type.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/CodeGen/FunctionLiveVarInfo.h" +#include "llvm/CodeGen/InstrSelection.h" +#include "llvm/CodeGen/MachineCodeForInstruction.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionInfo.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineInstrAnnot.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/Support/InstIterator.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "Support/CommandLine.h" +#include "Support/SetOperations.h" +#include "Support/STLExtras.h" +#include <cmath> + +namespace llvm { + +RegAllocDebugLevel_t DEBUG_RA; + +/// The reoptimizer wants to be able to grovel through the register +/// allocator's state after it has done its job. This is a hack. +/// +PhyRegAlloc::SavedStateMapTy ExportedFnAllocState; +const bool SaveStateToModule = true; + +static cl::opt<RegAllocDebugLevel_t, true> +DRA_opt("dregalloc", cl::Hidden, cl::location(DEBUG_RA), + cl::desc("enable register allocation debugging information"), + cl::values( + clEnumValN(RA_DEBUG_None , "n", "disable debug output"), + clEnumValN(RA_DEBUG_Results, "y", "debug output for allocation results"), + clEnumValN(RA_DEBUG_Coloring, "c", "debug output for graph coloring step"), + clEnumValN(RA_DEBUG_Interference,"ig","debug output for interference graphs"), + clEnumValN(RA_DEBUG_LiveRanges , "lr","debug output for live ranges"), + clEnumValN(RA_DEBUG_Verbose, "v", "extra debug output"), + 0)); + +static cl::opt<bool> +SaveRegAllocState("save-ra-state", cl::Hidden, + cl::desc("write reg. allocator state into module")); + +FunctionPass *getRegisterAllocator(TargetMachine &T) { + return new PhyRegAlloc (T); +} + +void PhyRegAlloc::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<LoopInfo> (); + AU.addRequired<FunctionLiveVarInfo> (); +} + + +/// Initialize interference graphs (one in each reg class) and IGNodeLists +/// (one in each IG). The actual nodes will be pushed later. +/// +void PhyRegAlloc::createIGNodeListsAndIGs() { + if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "Creating LR lists ...\n"; + + LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap()->begin(); + LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap()->end(); + + for (; HMI != HMIEnd ; ++HMI ) { + if (HMI->first) { + LiveRange *L = HMI->second; // get the LiveRange + if (!L) { + if (DEBUG_RA) + std::cerr << "\n**** ?!?WARNING: NULL LIVE RANGE FOUND FOR: " + << RAV(HMI->first) << "****\n"; + continue; + } + + // if the Value * is not null, and LR is not yet written to the IGNodeList + if (!(L->getUserIGNode()) ) { + RegClass *const RC = // RegClass of first value in the LR + RegClassList[ L->getRegClassID() ]; + RC->addLRToIG(L); // add this LR to an IG + } + } + } + + // init RegClassList + for ( unsigned rc=0; rc < NumOfRegClasses ; rc++) + RegClassList[rc]->createInterferenceGraph(); + + if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "LRLists Created!\n"; +} + + +/// Add all interferences for a given instruction. Interference occurs only +/// if the LR of Def (Inst or Arg) is of the same reg class as that of live +/// var. The live var passed to this function is the LVset AFTER the +/// instruction. +/// +void PhyRegAlloc::addInterference(const Value *Def, const ValueSet *LVSet, + bool isCallInst) { + ValueSet::const_iterator LIt = LVSet->begin(); + + // get the live range of instruction + const LiveRange *const LROfDef = LRI->getLiveRangeForValue( Def ); + + IGNode *const IGNodeOfDef = LROfDef->getUserIGNode(); + assert( IGNodeOfDef ); + + RegClass *const RCOfDef = LROfDef->getRegClass(); + + // for each live var in live variable set + for ( ; LIt != LVSet->end(); ++LIt) { + + if (DEBUG_RA >= RA_DEBUG_Verbose) + std::cerr << "< Def=" << RAV(Def) << ", Lvar=" << RAV(*LIt) << "> "; + + // get the live range corresponding to live var + LiveRange *LROfVar = LRI->getLiveRangeForValue(*LIt); + + // LROfVar can be null if it is a const since a const + // doesn't have a dominating def - see Assumptions above + if (LROfVar) + if (LROfDef != LROfVar) // do not set interf for same LR + if (RCOfDef == LROfVar->getRegClass()) // 2 reg classes are the same + RCOfDef->setInterference( LROfDef, LROfVar); + } +} + + +/// For a call instruction, this method sets the CallInterference flag in +/// the LR of each variable live in the Live Variable Set live after the +/// call instruction (except the return value of the call instruction - since +/// the return value does not interfere with that call itself). +/// +void PhyRegAlloc::setCallInterferences(const MachineInstr *MInst, + const ValueSet *LVSetAft) { + if (DEBUG_RA >= RA_DEBUG_Interference) + std::cerr << "\n For call inst: " << *MInst; + + // for each live var in live variable set after machine inst + for (ValueSet::const_iterator LIt = LVSetAft->begin(), LEnd = LVSetAft->end(); + LIt != LEnd; ++LIt) { + + // get the live range corresponding to live var + LiveRange *const LR = LRI->getLiveRangeForValue(*LIt ); + + // LR can be null if it is a const since a const + // doesn't have a dominating def - see Assumptions above + if (LR ) { + if (DEBUG_RA >= RA_DEBUG_Interference) { + std::cerr << "\n\tLR after Call: "; + printSet(*LR); + } + LR->setCallInterference(); + if (DEBUG_RA >= RA_DEBUG_Interference) { + std::cerr << "\n ++After adding call interference for LR: " ; + printSet(*LR); + } + } + + } + + // Now find the LR of the return value of the call + // We do this because, we look at the LV set *after* the instruction + // to determine, which LRs must be saved across calls. The return value + // of the call is live in this set - but it does not interfere with call + // (i.e., we can allocate a volatile register to the return value) + CallArgsDescriptor* argDesc = CallArgsDescriptor::get(MInst); + + if (const Value *RetVal = argDesc->getReturnValue()) { + LiveRange *RetValLR = LRI->getLiveRangeForValue( RetVal ); + assert( RetValLR && "No LR for RetValue of call"); + RetValLR->clearCallInterference(); + } + + // If the CALL is an indirect call, find the LR of the function pointer. + // That has a call interference because it conflicts with outgoing args. + if (const Value *AddrVal = argDesc->getIndirectFuncPtr()) { + LiveRange *AddrValLR = LRI->getLiveRangeForValue( AddrVal ); + assert( AddrValLR && "No LR for indirect addr val of call"); + AddrValLR->setCallInterference(); + } +} + + +/// Create interferences in the IG of each RegClass, and calculate the spill +/// cost of each Live Range (it is done in this method to save another pass +/// over the code). +/// +void PhyRegAlloc::buildInterferenceGraphs() { + if (DEBUG_RA >= RA_DEBUG_Interference) + std::cerr << "Creating interference graphs ...\n"; + + unsigned BBLoopDepthCost; + for (MachineFunction::iterator BBI = MF->begin(), BBE = MF->end(); + BBI != BBE; ++BBI) { + const MachineBasicBlock &MBB = *BBI; + const BasicBlock *BB = MBB.getBasicBlock(); + + // find the 10^(loop_depth) of this BB + BBLoopDepthCost = (unsigned)pow(10.0, LoopDepthCalc->getLoopDepth(BB)); + + // get the iterator for machine instructions + MachineBasicBlock::const_iterator MII = MBB.begin(); + + // iterate over all the machine instructions in BB + for ( ; MII != MBB.end(); ++MII) { + const MachineInstr *MInst = *MII; + + // get the LV set after the instruction + const ValueSet &LVSetAI = LVI->getLiveVarSetAfterMInst(MInst, BB); + bool isCallInst = TM.getInstrInfo().isCall(MInst->getOpCode()); + + if (isCallInst) { + // set the isCallInterference flag of each live range which extends + // across this call instruction. This information is used by graph + // coloring algorithm to avoid allocating volatile colors to live ranges + // that span across calls (since they have to be saved/restored) + setCallInterferences(MInst, &LVSetAI); + } + + // iterate over all MI operands to find defs + for (MachineInstr::const_val_op_iterator OpI = MInst->begin(), + OpE = MInst->end(); OpI != OpE; ++OpI) { + if (OpI.isDef()) // create a new LR since def + addInterference(*OpI, &LVSetAI, isCallInst); + + // Calculate the spill cost of each live range + LiveRange *LR = LRI->getLiveRangeForValue(*OpI); + if (LR) LR->addSpillCost(BBLoopDepthCost); + } + + // Mark all operands of pseudo-instructions as interfering with one + // another. This must be done because pseudo-instructions may be + // expanded to multiple instructions by the assembler, so all the + // operands must get distinct registers. + if (TM.getInstrInfo().isPseudoInstr(MInst->getOpCode())) + addInterf4PseudoInstr(MInst); + + // Also add interference for any implicit definitions in a machine + // instr (currently, only calls have this). + unsigned NumOfImpRefs = MInst->getNumImplicitRefs(); + for (unsigned z=0; z < NumOfImpRefs; z++) + if (MInst->getImplicitOp(z).isDef()) + addInterference( MInst->getImplicitRef(z), &LVSetAI, isCallInst ); + + } // for all machine instructions in BB + } // for all BBs in function + + // add interferences for function arguments. Since there are no explicit + // defs in the function for args, we have to add them manually + addInterferencesForArgs(); + + if (DEBUG_RA >= RA_DEBUG_Interference) + std::cerr << "Interference graphs calculated!\n"; +} + + +/// Mark all operands of the given MachineInstr as interfering with one +/// another. +/// +void PhyRegAlloc::addInterf4PseudoInstr(const MachineInstr *MInst) { + bool setInterf = false; + + // iterate over MI operands to find defs + for (MachineInstr::const_val_op_iterator It1 = MInst->begin(), + ItE = MInst->end(); It1 != ItE; ++It1) { + const LiveRange *LROfOp1 = LRI->getLiveRangeForValue(*It1); + assert((LROfOp1 || It1.isDef()) && "No LR for Def in PSEUDO insruction"); + + MachineInstr::const_val_op_iterator It2 = It1; + for (++It2; It2 != ItE; ++It2) { + const LiveRange *LROfOp2 = LRI->getLiveRangeForValue(*It2); + + if (LROfOp2) { + RegClass *RCOfOp1 = LROfOp1->getRegClass(); + RegClass *RCOfOp2 = LROfOp2->getRegClass(); + + if (RCOfOp1 == RCOfOp2 ){ + RCOfOp1->setInterference( LROfOp1, LROfOp2 ); + setInterf = true; + } + } // if Op2 has a LR + } // for all other defs in machine instr + } // for all operands in an instruction + + if (!setInterf && MInst->getNumOperands() > 2) { + std::cerr << "\nInterf not set for any operand in pseudo instr:\n"; + std::cerr << *MInst; + assert(0 && "Interf not set for pseudo instr with > 2 operands" ); + } +} + + +/// Add interferences for incoming arguments to a function. +/// +void PhyRegAlloc::addInterferencesForArgs() { + // get the InSet of root BB + const ValueSet &InSet = LVI->getInSetOfBB(&Fn->front()); + + for (Function::const_aiterator AI = Fn->abegin(); AI != Fn->aend(); ++AI) { + // add interferences between args and LVars at start + addInterference(AI, &InSet, false); + + if (DEBUG_RA >= RA_DEBUG_Interference) + std::cerr << " - %% adding interference for argument " << RAV(AI) << "\n"; + } +} + + +/// The following are utility functions used solely by updateMachineCode and +/// the functions that it calls. They should probably be folded back into +/// updateMachineCode at some point. +/// + +// used by: updateMachineCode (1 time), PrependInstructions (1 time) +inline void InsertBefore(MachineInstr* newMI, MachineBasicBlock& MBB, + MachineBasicBlock::iterator& MII) { + MII = MBB.insert(MII, newMI); + ++MII; +} + +// used by: AppendInstructions (1 time) +inline void InsertAfter(MachineInstr* newMI, MachineBasicBlock& MBB, + MachineBasicBlock::iterator& MII) { + ++MII; // insert before the next instruction + MII = MBB.insert(MII, newMI); +} + +// used by: updateMachineCode (1 time) +inline void DeleteInstruction(MachineBasicBlock& MBB, + MachineBasicBlock::iterator& MII) { + MII = MBB.erase(MII); +} + +// used by: updateMachineCode (1 time) +inline void SubstituteInPlace(MachineInstr* newMI, MachineBasicBlock& MBB, + MachineBasicBlock::iterator MII) { + *MII = newMI; +} + +// used by: updateMachineCode (2 times) +inline void PrependInstructions(std::vector<MachineInstr *> &IBef, + MachineBasicBlock& MBB, + MachineBasicBlock::iterator& MII, + const std::string& msg) { + if (!IBef.empty()) { + MachineInstr* OrigMI = *MII; + std::vector<MachineInstr *>::iterator AdIt; + for (AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt) { + if (DEBUG_RA) { + if (OrigMI) std::cerr << "For MInst:\n " << *OrigMI; + std::cerr << msg << "PREPENDed instr:\n " << **AdIt << "\n"; + } + InsertBefore(*AdIt, MBB, MII); + } + } +} + +// used by: updateMachineCode (1 time) +inline void AppendInstructions(std::vector<MachineInstr *> &IAft, + MachineBasicBlock& MBB, + MachineBasicBlock::iterator& MII, + const std::string& msg) { + if (!IAft.empty()) { + MachineInstr* OrigMI = *MII; + std::vector<MachineInstr *>::iterator AdIt; + for ( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt ) { + if (DEBUG_RA) { + if (OrigMI) std::cerr << "For MInst:\n " << *OrigMI; + std::cerr << msg << "APPENDed instr:\n " << **AdIt << "\n"; + } + InsertAfter(*AdIt, MBB, MII); + } + } +} + +/// Set the registers for operands in the given MachineInstr, if a register was +/// successfully allocated. Return true if any of its operands has been marked +/// for spill. +/// +bool PhyRegAlloc::markAllocatedRegs(MachineInstr* MInst) +{ + bool instrNeedsSpills = false; + + // First, set the registers for operands in the machine instruction + // if a register was successfully allocated. Do this first because we + // will need to know which registers are already used by this instr'n. + for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) { + MachineOperand& Op = MInst->getOperand(OpNum); + if (Op.getType() == MachineOperand::MO_VirtualRegister || + Op.getType() == MachineOperand::MO_CCRegister) { + const Value *const Val = Op.getVRegValue(); + if (const LiveRange* LR = LRI->getLiveRangeForValue(Val)) { + // Remember if any operand needs spilling + instrNeedsSpills |= LR->isMarkedForSpill(); + + // An operand may have a color whether or not it needs spilling + if (LR->hasColor()) + MInst->SetRegForOperand(OpNum, + MRI.getUnifiedRegNum(LR->getRegClassID(), + LR->getColor())); + } + } + } // for each operand + + return instrNeedsSpills; +} + +/// Mark allocated registers (using markAllocatedRegs()) on the instruction +/// that MII points to. Then, if it's a call instruction, insert caller-saving +/// code before and after it. Finally, insert spill code before and after it, +/// using insertCode4SpilledLR(). +/// +void PhyRegAlloc::updateInstruction(MachineBasicBlock::iterator& MII, + MachineBasicBlock &MBB) { + MachineInstr* MInst = *MII; + unsigned Opcode = MInst->getOpCode(); + + // Reset tmp stack positions so they can be reused for each machine instr. + MF->getInfo()->popAllTempValues(); + + // Mark the operands for which regs have been allocated. + bool instrNeedsSpills = markAllocatedRegs(*MII); + +#ifndef NDEBUG + // Mark that the operands have been updated. Later, + // setRelRegsUsedByThisInst() is called to find registers used by each + // MachineInst, and it should not be used for an instruction until + // this is done. This flag just serves as a sanity check. + OperandsColoredMap[MInst] = true; +#endif + + // Now insert caller-saving code before/after the call. + // Do this before inserting spill code since some registers must be + // used by save/restore and spill code should not use those registers. + if (TM.getInstrInfo().isCall(Opcode)) { + AddedInstrns &AI = AddedInstrMap[MInst]; + insertCallerSavingCode(AI.InstrnsBefore, AI.InstrnsAfter, MInst, + MBB.getBasicBlock()); + } + + // Now insert spill code for remaining operands not allocated to + // registers. This must be done even for call return instructions + // since those are not handled by the special code above. + if (instrNeedsSpills) + for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) { + MachineOperand& Op = MInst->getOperand(OpNum); + if (Op.getType() == MachineOperand::MO_VirtualRegister || + Op.getType() == MachineOperand::MO_CCRegister) { + const Value* Val = Op.getVRegValue(); + if (const LiveRange *LR = LRI->getLiveRangeForValue(Val)) + if (LR->isMarkedForSpill()) + insertCode4SpilledLR(LR, MII, MBB, OpNum); + } + } // for each operand +} + +/// Iterate over all the MachineBasicBlocks in the current function and set +/// the allocated registers for each instruction (using updateInstruction()), +/// after register allocation is complete. Then move code out of delay slots. +/// +void PhyRegAlloc::updateMachineCode() +{ + // Insert any instructions needed at method entry + MachineBasicBlock::iterator MII = MF->front().begin(); + PrependInstructions(AddedInstrAtEntry.InstrnsBefore, MF->front(), MII, + "At function entry: \n"); + assert(AddedInstrAtEntry.InstrnsAfter.empty() && + "InstrsAfter should be unnecessary since we are just inserting at " + "the function entry point here."); + + for (MachineFunction::iterator BBI = MF->begin(), BBE = MF->end(); + BBI != BBE; ++BBI) { + MachineBasicBlock &MBB = *BBI; + + // Iterate over all machine instructions in BB and mark operands with + // their assigned registers or insert spill code, as appropriate. + // Also, fix operands of call/return instructions. + for (MachineBasicBlock::iterator MII = MBB.begin(); MII != MBB.end(); ++MII) + if (! TM.getInstrInfo().isDummyPhiInstr((*MII)->getOpCode())) + updateInstruction(MII, MBB); + + // Now, move code out of delay slots of branches and returns if needed. + // (Also, move "after" code from calls to the last delay slot instruction.) + // Moving code out of delay slots is needed in 2 situations: + // (1) If this is a branch and it needs instructions inserted after it, + // move any existing instructions out of the delay slot so that the + // instructions can go into the delay slot. This only supports the + // case that #instrsAfter <= #delay slots. + // + // (2) If any instruction in the delay slot needs + // instructions inserted, move it out of the delay slot and before the + // branch because putting code before or after it would be VERY BAD! + // + // If the annul bit of the branch is set, neither of these is legal! + // If so, we need to handle spill differently but annulling is not yet used. + for (MachineBasicBlock::iterator MII = MBB.begin(); + MII != MBB.end(); ++MII) + if (unsigned delaySlots = + TM.getInstrInfo().getNumDelaySlots((*MII)->getOpCode())) { + MachineInstr *MInst = *MII, *DelaySlotMI = *(MII+1); + + // Check the 2 conditions above: + // (1) Does a branch need instructions added after it? + // (2) O/w does delay slot instr. need instrns before or after? + bool isBranch = (TM.getInstrInfo().isBranch(MInst->getOpCode()) || + TM.getInstrInfo().isReturn(MInst->getOpCode())); + bool cond1 = (isBranch && + AddedInstrMap.count(MInst) && + AddedInstrMap[MInst].InstrnsAfter.size() > 0); + bool cond2 = (AddedInstrMap.count(DelaySlotMI) && + (AddedInstrMap[DelaySlotMI].InstrnsBefore.size() > 0 || + AddedInstrMap[DelaySlotMI].InstrnsAfter.size() > 0)); + + if (cond1 || cond2) { + assert((MInst->getOpCodeFlags() & AnnulFlag) == 0 && + "FIXME: Moving an annulled delay slot instruction!"); + assert(delaySlots==1 && + "InsertBefore does not yet handle >1 delay slots!"); + InsertBefore(DelaySlotMI, MBB, MII); // MII pts back to branch + + // In case (1), delete it and don't replace with anything! + // Otherwise (i.e., case (2) only) replace it with a NOP. + if (cond1) { + DeleteInstruction(MBB, ++MII); // MII now points to next inst. + --MII; // reset MII for ++MII of loop + } + else + SubstituteInPlace(BuildMI(TM.getInstrInfo().getNOPOpCode(),1), + MBB, MII+1); // replace with NOP + + if (DEBUG_RA) { + std::cerr << "\nRegAlloc: Moved instr. with added code: " + << *DelaySlotMI + << " out of delay slots of instr: " << *MInst; + } + } + else + // For non-branch instr with delay slots (probably a call), move + // InstrAfter to the instr. in the last delay slot. + move2DelayedInstr(*MII, *(MII+delaySlots)); + } + + // Finally iterate over all instructions in BB and insert before/after + for (MachineBasicBlock::iterator MII=MBB.begin(); MII != MBB.end(); ++MII) { + MachineInstr *MInst = *MII; + + // do not process Phis + if (TM.getInstrInfo().isDummyPhiInstr(MInst->getOpCode())) + continue; + + // if there are any added instructions... + if (AddedInstrMap.count(MInst)) { + AddedInstrns &CallAI = AddedInstrMap[MInst]; + +#ifndef NDEBUG + bool isBranch = (TM.getInstrInfo().isBranch(MInst->getOpCode()) || + TM.getInstrInfo().isReturn(MInst->getOpCode())); + assert((!isBranch || + AddedInstrMap[MInst].InstrnsAfter.size() <= + TM.getInstrInfo().getNumDelaySlots(MInst->getOpCode())) && + "Cannot put more than #delaySlots instrns after " + "branch or return! Need to handle temps differently."); +#endif + +#ifndef NDEBUG + // Temporary sanity checking code to detect whether the same machine + // instruction is ever inserted twice before/after a call. + // I suspect this is happening but am not sure. --Vikram, 7/1/03. + std::set<const MachineInstr*> instrsSeen; + for (int i = 0, N = CallAI.InstrnsBefore.size(); i < N; ++i) { + assert(instrsSeen.count(CallAI.InstrnsBefore[i]) == 0 && + "Duplicate machine instruction in InstrnsBefore!"); + instrsSeen.insert(CallAI.InstrnsBefore[i]); + } + for (int i = 0, N = CallAI.InstrnsAfter.size(); i < N; ++i) { + assert(instrsSeen.count(CallAI.InstrnsAfter[i]) == 0 && + "Duplicate machine instruction in InstrnsBefore/After!"); + instrsSeen.insert(CallAI.InstrnsAfter[i]); + } +#endif + + // Now add the instructions before/after this MI. + // We do this here to ensure that spill for an instruction is inserted + // as close as possible to an instruction (see above insertCode4Spill) + if (! CallAI.InstrnsBefore.empty()) + PrependInstructions(CallAI.InstrnsBefore, MBB, MII,""); + + if (! CallAI.InstrnsAfter.empty()) + AppendInstructions(CallAI.InstrnsAfter, MBB, MII,""); + + } // if there are any added instructions + } // for each machine instruction + } +} + + +/// Insert spill code for AN operand whose LR was spilled. May be called +/// repeatedly for a single MachineInstr if it has many spilled operands. On +/// each call, it finds a register which is not live at that instruction and +/// also which is not used by other spilled operands of the same +/// instruction. Then it uses this register temporarily to accommodate the +/// spilled value. +/// +void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR, + MachineBasicBlock::iterator& MII, + MachineBasicBlock &MBB, + const unsigned OpNum) { + MachineInstr *MInst = *MII; + const BasicBlock *BB = MBB.getBasicBlock(); + + assert((! TM.getInstrInfo().isCall(MInst->getOpCode()) || OpNum == 0) && + "Outgoing arg of a call must be handled elsewhere (func arg ok)"); + assert(! TM.getInstrInfo().isReturn(MInst->getOpCode()) && + "Return value of a ret must be handled elsewhere"); + + MachineOperand& Op = MInst->getOperand(OpNum); + bool isDef = Op.isDef(); + bool isUse = Op.isUse(); + unsigned RegType = MRI.getRegTypeForLR(LR); + int SpillOff = LR->getSpillOffFromFP(); + RegClass *RC = LR->getRegClass(); + + // Get the live-variable set to find registers free before this instr. + const ValueSet &LVSetBef = LVI->getLiveVarSetBeforeMInst(MInst, BB); + +#ifndef NDEBUG + // If this instr. is in the delay slot of a branch or return, we need to + // include all live variables before that branch or return -- we don't want to + // trample those! Verify that the set is included in the LV set before MInst. + if (MII != MBB.begin()) { + MachineInstr *PredMI = *(MII-1); + if (unsigned DS = TM.getInstrInfo().getNumDelaySlots(PredMI->getOpCode())) + assert(set_difference(LVI->getLiveVarSetBeforeMInst(PredMI), LVSetBef) + .empty() && "Live-var set before branch should be included in " + "live-var set of each delay slot instruction!"); + } +#endif + + MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType)); + + std::vector<MachineInstr*> MIBef, MIAft; + std::vector<MachineInstr*> AdIMid; + + // Choose a register to hold the spilled value, if one was not preallocated. + // This may insert code before and after MInst to free up the value. If so, + // this code should be first/last in the spill sequence before/after MInst. + int TmpRegU=(LR->hasColor() + ? MRI.getUnifiedRegNum(LR->getRegClassID(),LR->getColor()) + : getUsableUniRegAtMI(RegType, &LVSetBef, MInst, MIBef,MIAft)); + + // Set the operand first so that it this register does not get used + // as a scratch register for later calls to getUsableUniRegAtMI below + MInst->SetRegForOperand(OpNum, TmpRegU); + + // get the added instructions for this instruction + AddedInstrns &AI = AddedInstrMap[MInst]; + + // We may need a scratch register to copy the spilled value to/from memory. + // This may itself have to insert code to free up a scratch register. + // Any such code should go before (after) the spill code for a load (store). + // The scratch reg is not marked as used because it is only used + // for the copy and not used across MInst. + int scratchRegType = -1; + int scratchReg = -1; + if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) { + scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef, + MInst, MIBef, MIAft); + assert(scratchReg != MRI.getInvalidRegNum()); + } + + if (isUse) { + // for a USE, we have to load the value of LR from stack to a TmpReg + // and use the TmpReg as one operand of instruction + + // actual loading instruction(s) + MRI.cpMem2RegMI(AdIMid, MRI.getFramePointer(), SpillOff, TmpRegU, + RegType, scratchReg); + + // the actual load should be after the instructions to free up TmpRegU + MIBef.insert(MIBef.end(), AdIMid.begin(), AdIMid.end()); + AdIMid.clear(); + } + + if (isDef) { // if this is a Def + // for a DEF, we have to store the value produced by this instruction + // on the stack position allocated for this LR + + // actual storing instruction(s) + MRI.cpReg2MemMI(AdIMid, TmpRegU, MRI.getFramePointer(), SpillOff, + RegType, scratchReg); + + MIAft.insert(MIAft.begin(), AdIMid.begin(), AdIMid.end()); + } // if !DEF + + // Finally, insert the entire spill code sequences before/after MInst + AI.InstrnsBefore.insert(AI.InstrnsBefore.end(), MIBef.begin(), MIBef.end()); + AI.InstrnsAfter.insert(AI.InstrnsAfter.begin(), MIAft.begin(), MIAft.end()); + + if (DEBUG_RA) { + std::cerr << "\nFor Inst:\n " << *MInst; + std::cerr << "SPILLED LR# " << LR->getUserIGNode()->getIndex(); + std::cerr << "; added Instructions:"; + for_each(MIBef.begin(), MIBef.end(), std::mem_fun(&MachineInstr::dump)); + for_each(MIAft.begin(), MIAft.end(), std::mem_fun(&MachineInstr::dump)); + } +} + + +/// Insert caller saving/restoring instructions before/after a call machine +/// instruction (before or after any other instructions that were inserted for +/// the call). +/// +void +PhyRegAlloc::insertCallerSavingCode(std::vector<MachineInstr*> &instrnsBefore, + std::vector<MachineInstr*> &instrnsAfter, + MachineInstr *CallMI, + const BasicBlock *BB) { + assert(TM.getInstrInfo().isCall(CallMI->getOpCode())); + + // hash set to record which registers were saved/restored + hash_set<unsigned> PushedRegSet; + + CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI); + + // if the call is to a instrumentation function, do not insert save and + // restore instructions the instrumentation function takes care of save + // restore for volatile regs. + // + // FIXME: this should be made general, not specific to the reoptimizer! + const Function *Callee = argDesc->getCallInst()->getCalledFunction(); + bool isLLVMFirstTrigger = Callee && Callee->getName() == "llvm_first_trigger"; + + // Now check if the call has a return value (using argDesc) and if so, + // find the LR of the TmpInstruction representing the return value register. + // (using the last or second-last *implicit operand* of the call MI). + // Insert it to to the PushedRegSet since we must not save that register + // and restore it after the call. + // We do this because, we look at the LV set *after* the instruction + // to determine, which LRs must be saved across calls. The return value + // of the call is live in this set - but we must not save/restore it. + if (const Value *origRetVal = argDesc->getReturnValue()) { + unsigned retValRefNum = (CallMI->getNumImplicitRefs() - + (argDesc->getIndirectFuncPtr()? 1 : 2)); + const TmpInstruction* tmpRetVal = + cast<TmpInstruction>(CallMI->getImplicitRef(retValRefNum)); + assert(tmpRetVal->getOperand(0) == origRetVal && + tmpRetVal->getType() == origRetVal->getType() && + "Wrong implicit ref?"); + LiveRange *RetValLR = LRI->getLiveRangeForValue(tmpRetVal); + assert(RetValLR && "No LR for RetValue of call"); + + if (! RetValLR->isMarkedForSpill()) + PushedRegSet.insert(MRI.getUnifiedRegNum(RetValLR->getRegClassID(), + RetValLR->getColor())); + } + + const ValueSet &LVSetAft = LVI->getLiveVarSetAfterMInst(CallMI, BB); + ValueSet::const_iterator LIt = LVSetAft.begin(); + + // for each live var in live variable set after machine inst + for( ; LIt != LVSetAft.end(); ++LIt) { + // get the live range corresponding to live var + LiveRange *const LR = LRI->getLiveRangeForValue(*LIt); + + // LR can be null if it is a const since a const + // doesn't have a dominating def - see Assumptions above + if (LR) { + if (! LR->isMarkedForSpill()) { + assert(LR->hasColor() && "LR is neither spilled nor colored?"); + unsigned RCID = LR->getRegClassID(); + unsigned Color = LR->getColor(); + + if (MRI.isRegVolatile(RCID, Color) ) { + // if this is a call to the first-level reoptimizer + // instrumentation entry point, and the register is not + // modified by call, don't save and restore it. + if (isLLVMFirstTrigger && !MRI.modifiedByCall(RCID, Color)) + continue; + + // if the value is in both LV sets (i.e., live before and after + // the call machine instruction) + unsigned Reg = MRI.getUnifiedRegNum(RCID, Color); + + // if we haven't already pushed this register... + if( PushedRegSet.find(Reg) == PushedRegSet.end() ) { + unsigned RegType = MRI.getRegTypeForLR(LR); + + // Now get two instructions - to push on stack and pop from stack + // and add them to InstrnsBefore and InstrnsAfter of the + // call instruction + int StackOff = + MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType)); + + //---- Insert code for pushing the reg on stack ---------- + + std::vector<MachineInstr*> AdIBef, AdIAft; + + // We may need a scratch register to copy the saved value + // to/from memory. This may itself have to insert code to + // free up a scratch register. Any such code should go before + // the save code. The scratch register, if any, is by default + // temporary and not "used" by the instruction unless the + // copy code itself decides to keep the value in the scratch reg. + int scratchRegType = -1; + int scratchReg = -1; + if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) + { // Find a register not live in the LVSet before CallMI + const ValueSet &LVSetBef = + LVI->getLiveVarSetBeforeMInst(CallMI, BB); + scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef, + CallMI, AdIBef, AdIAft); + assert(scratchReg != MRI.getInvalidRegNum()); + } + + if (AdIBef.size() > 0) + instrnsBefore.insert(instrnsBefore.end(), + AdIBef.begin(), AdIBef.end()); + + MRI.cpReg2MemMI(instrnsBefore, Reg, MRI.getFramePointer(), + StackOff, RegType, scratchReg); + + if (AdIAft.size() > 0) + instrnsBefore.insert(instrnsBefore.end(), + AdIAft.begin(), AdIAft.end()); + + //---- Insert code for popping the reg from the stack ---------- + AdIBef.clear(); + AdIAft.clear(); + + // We may need a scratch register to copy the saved value + // from memory. This may itself have to insert code to + // free up a scratch register. Any such code should go + // after the save code. As above, scratch is not marked "used". + scratchRegType = -1; + scratchReg = -1; + if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) + { // Find a register not live in the LVSet after CallMI + scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetAft, + CallMI, AdIBef, AdIAft); + assert(scratchReg != MRI.getInvalidRegNum()); + } + + if (AdIBef.size() > 0) + instrnsAfter.insert(instrnsAfter.end(), + AdIBef.begin(), AdIBef.end()); + + MRI.cpMem2RegMI(instrnsAfter, MRI.getFramePointer(), StackOff, + Reg, RegType, scratchReg); + + if (AdIAft.size() > 0) + instrnsAfter.insert(instrnsAfter.end(), + AdIAft.begin(), AdIAft.end()); + + PushedRegSet.insert(Reg); + + if(DEBUG_RA) { + std::cerr << "\nFor call inst:" << *CallMI; + std::cerr << " -inserted caller saving instrs: Before:\n\t "; + for_each(instrnsBefore.begin(), instrnsBefore.end(), + std::mem_fun(&MachineInstr::dump)); + std::cerr << " -and After:\n\t "; + for_each(instrnsAfter.begin(), instrnsAfter.end(), + std::mem_fun(&MachineInstr::dump)); + } + } // if not already pushed + } // if LR has a volatile color + } // if LR has color + } // if there is a LR for Var + } // for each value in the LV set after instruction +} + + +/// Returns the unified register number of a temporary register to be used +/// BEFORE MInst. If no register is available, it will pick one and modify +/// MIBef and MIAft to contain instructions used to free up this returned +/// register. +/// +int PhyRegAlloc::getUsableUniRegAtMI(const int RegType, + const ValueSet *LVSetBef, + MachineInstr *MInst, + std::vector<MachineInstr*>& MIBef, + std::vector<MachineInstr*>& MIAft) { + RegClass* RC = getRegClassByID(MRI.getRegClassIDOfRegType(RegType)); + + int RegU = getUnusedUniRegAtMI(RC, RegType, MInst, LVSetBef); + + if (RegU == -1) { + // we couldn't find an unused register. Generate code to free up a reg by + // saving it on stack and restoring after the instruction + + int TmpOff = MF->getInfo()->pushTempValue(MRI.getSpilledRegSize(RegType)); + + RegU = getUniRegNotUsedByThisInst(RC, RegType, MInst); + + // Check if we need a scratch register to copy this register to memory. + int scratchRegType = -1; + if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) { + int scratchReg = getUsableUniRegAtMI(scratchRegType, LVSetBef, + MInst, MIBef, MIAft); + assert(scratchReg != MRI.getInvalidRegNum()); + + // We may as well hold the value in the scratch register instead + // of copying it to memory and back. But we have to mark the + // register as used by this instruction, so it does not get used + // as a scratch reg. by another operand or anyone else. + ScratchRegsUsed.insert(std::make_pair(MInst, scratchReg)); + MRI.cpReg2RegMI(MIBef, RegU, scratchReg, RegType); + MRI.cpReg2RegMI(MIAft, scratchReg, RegU, RegType); + } else { // the register can be copied directly to/from memory so do it. + MRI.cpReg2MemMI(MIBef, RegU, MRI.getFramePointer(), TmpOff, RegType); + MRI.cpMem2RegMI(MIAft, MRI.getFramePointer(), TmpOff, RegU, RegType); + } + } + + return RegU; +} + + +/// Returns the register-class register number of a new unused register that +/// can be used to accommodate a temporary value. May be called repeatedly +/// for a single MachineInstr. On each call, it finds a register which is not +/// live at that instruction and which is not used by any spilled operands of +/// that instruction. +/// +int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC, const int RegType, + const MachineInstr *MInst, + const ValueSet* LVSetBef) { + RC->clearColorsUsed(); // Reset array + + if (LVSetBef == NULL) { + LVSetBef = &LVI->getLiveVarSetBeforeMInst(MInst); + assert(LVSetBef != NULL && "Unable to get live-var set before MInst?"); + } + + ValueSet::const_iterator LIt = LVSetBef->begin(); + + // for each live var in live variable set after machine inst + for ( ; LIt != LVSetBef->end(); ++LIt) { + // Get the live range corresponding to live var, and its RegClass + LiveRange *const LRofLV = LRI->getLiveRangeForValue(*LIt ); + + // LR can be null if it is a const since a const + // doesn't have a dominating def - see Assumptions above + if (LRofLV && LRofLV->getRegClass() == RC && LRofLV->hasColor()) + RC->markColorsUsed(LRofLV->getColor(), + MRI.getRegTypeForLR(LRofLV), RegType); + } + + // It is possible that one operand of this MInst was already spilled + // and it received some register temporarily. If that's the case, + // it is recorded in machine operand. We must skip such registers. + setRelRegsUsedByThisInst(RC, RegType, MInst); + + int unusedReg = RC->getUnusedColor(RegType); // find first unused color + if (unusedReg >= 0) + return MRI.getUnifiedRegNum(RC->getID(), unusedReg); + + return -1; +} + + +/// Return the unified register number of a register in class RC which is not +/// used by any operands of MInst. +/// +int PhyRegAlloc::getUniRegNotUsedByThisInst(RegClass *RC, + const int RegType, + const MachineInstr *MInst) { + RC->clearColorsUsed(); + + setRelRegsUsedByThisInst(RC, RegType, MInst); + + // find the first unused color + int unusedReg = RC->getUnusedColor(RegType); + assert(unusedReg >= 0 && + "FATAL: No free register could be found in reg class!!"); + + return MRI.getUnifiedRegNum(RC->getID(), unusedReg); +} + + +/// Modify the IsColorUsedArr of register class RC, by setting the bits +/// corresponding to register RegNo. This is a helper method of +/// setRelRegsUsedByThisInst(). +/// +static void markRegisterUsed(int RegNo, RegClass *RC, int RegType, + const TargetRegInfo &TRI) { + unsigned classId = 0; + int classRegNum = TRI.getClassRegNum(RegNo, classId); + if (RC->getID() == classId) + RC->markColorsUsed(classRegNum, RegType, RegType); +} + +void PhyRegAlloc::setRelRegsUsedByThisInst(RegClass *RC, int RegType, + const MachineInstr *MI) { + assert(OperandsColoredMap[MI] == true && + "Illegal to call setRelRegsUsedByThisInst() until colored operands " + "are marked for an instruction."); + + // Add the registers already marked as used by the instruction. Both + // explicit and implicit operands are set. + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) + if (MI->getOperand(i).hasAllocatedReg()) + markRegisterUsed(MI->getOperand(i).getAllocatedRegNum(), RC, RegType,MRI); + + for (unsigned i = 0, e = MI->getNumImplicitRefs(); i != e; ++i) + if (MI->getImplicitOp(i).hasAllocatedReg()) + markRegisterUsed(MI->getImplicitOp(i).getAllocatedRegNum(), RC, + RegType,MRI); + + // Add all of the scratch registers that are used to save values across the + // instruction (e.g., for saving state register values). + std::pair<ScratchRegsUsedTy::iterator, ScratchRegsUsedTy::iterator> + IR = ScratchRegsUsed.equal_range(MI); + for (ScratchRegsUsedTy::iterator I = IR.first; I != IR.second; ++I) + markRegisterUsed(I->second, RC, RegType, MRI); + + // If there are implicit references, mark their allocated regs as well + for (unsigned z=0; z < MI->getNumImplicitRefs(); z++) + if (const LiveRange* + LRofImpRef = LRI->getLiveRangeForValue(MI->getImplicitRef(z))) + if (LRofImpRef->hasColor()) + // this implicit reference is in a LR that received a color + RC->markColorsUsed(LRofImpRef->getColor(), + MRI.getRegTypeForLR(LRofImpRef), RegType); +} + + +/// If there are delay slots for an instruction, the instructions added after +/// it must really go after the delayed instruction(s). So, we Move the +/// InstrAfter of that instruction to the corresponding delayed instruction +/// using the following method. +/// +void PhyRegAlloc::move2DelayedInstr(const MachineInstr *OrigMI, + const MachineInstr *DelayedMI) +{ + // "added after" instructions of the original instr + std::vector<MachineInstr *> &OrigAft = AddedInstrMap[OrigMI].InstrnsAfter; + + if (DEBUG_RA && OrigAft.size() > 0) { + std::cerr << "\nRegAlloc: Moved InstrnsAfter for: " << *OrigMI; + std::cerr << " to last delay slot instrn: " << *DelayedMI; + } + + // "added after" instructions of the delayed instr + std::vector<MachineInstr *> &DelayedAft=AddedInstrMap[DelayedMI].InstrnsAfter; + + // go thru all the "added after instructions" of the original instruction + // and append them to the "added after instructions" of the delayed + // instructions + DelayedAft.insert(DelayedAft.end(), OrigAft.begin(), OrigAft.end()); + + // empty the "added after instructions" of the original instruction + OrigAft.clear(); +} + + +void PhyRegAlloc::colorIncomingArgs() +{ + MRI.colorMethodArgs(Fn, *LRI, AddedInstrAtEntry.InstrnsBefore, + AddedInstrAtEntry.InstrnsAfter); +} + + +/// Determine whether the suggested color of each live range is really usable, +/// and then call its setSuggestedColorUsable() method to record the answer. A +/// suggested color is NOT usable when the suggested color is volatile AND +/// when there are call interferences. +/// +void PhyRegAlloc::markUnusableSugColors() +{ + LiveRangeMapType::const_iterator HMI = (LRI->getLiveRangeMap())->begin(); + LiveRangeMapType::const_iterator HMIEnd = (LRI->getLiveRangeMap())->end(); + + for (; HMI != HMIEnd ; ++HMI ) { + if (HMI->first) { + LiveRange *L = HMI->second; // get the LiveRange + if (L && L->hasSuggestedColor ()) + L->setSuggestedColorUsable + (!(MRI.isRegVolatile (L->getRegClassID (), L->getSuggestedColor ()) + && L->isCallInterference ())); + } + } // for all LR's in hash map +} + + +/// For each live range that is spilled, allocates a new spill position on the +/// stack, and set the stack offsets of the live range that will be spilled to +/// that position. This must be called just after coloring the LRs. +/// +void PhyRegAlloc::allocateStackSpace4SpilledLRs() { + if (DEBUG_RA) std::cerr << "\nSetting LR stack offsets for spills...\n"; + + LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap()->begin(); + LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap()->end(); + + for ( ; HMI != HMIEnd ; ++HMI) { + if (HMI->first && HMI->second) { + LiveRange *L = HMI->second; // get the LiveRange + if (L->isMarkedForSpill()) { // NOTE: allocating size of long Type ** + int stackOffset = MF->getInfo()->allocateSpilledValue(Type::LongTy); + L->setSpillOffFromFP(stackOffset); + if (DEBUG_RA) + std::cerr << " LR# " << L->getUserIGNode()->getIndex() + << ": stack-offset = " << stackOffset << "\n"; + } + } + } // for all LR's in hash map +} + + +void PhyRegAlloc::saveStateForValue (std::vector<AllocInfo> &state, + const Value *V, unsigned Insn, int Opnd) { + LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap ()->find (V); + LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap ()->end (); + AllocInfo::AllocStateTy AllocState = AllocInfo::NotAllocated; + int Placement = -1; + if ((HMI != HMIEnd) && HMI->second) { + LiveRange *L = HMI->second; + assert ((L->hasColor () || L->isMarkedForSpill ()) + && "Live range exists but not colored or spilled"); + if (L->hasColor ()) { + AllocState = AllocInfo::Allocated; + Placement = MRI.getUnifiedRegNum (L->getRegClassID (), + L->getColor ()); + } else if (L->isMarkedForSpill ()) { + AllocState = AllocInfo::Spilled; + assert (L->hasSpillOffset () + && "Live range marked for spill but has no spill offset"); + Placement = L->getSpillOffFromFP (); + } + } + state.push_back (AllocInfo (Insn, Opnd, AllocState, Placement)); +} + + +/// Save the global register allocation decisions made by the register +/// allocator so that they can be accessed later (sort of like "poor man's +/// debug info"). +/// +void PhyRegAlloc::saveState () { + std::vector<AllocInfo> &state = FnAllocState[Fn]; + unsigned Insn = 0; + for (const_inst_iterator II=inst_begin (Fn), IE=inst_end (Fn); II!=IE; ++II){ + saveStateForValue (state, (*II), Insn, -1); + for (unsigned i = 0; i < (*II)->getNumOperands (); ++i) { + const Value *V = (*II)->getOperand (i); + // Don't worry about it unless it's something whose reg. we'll need. + if (!isa<Argument> (V) && !isa<Instruction> (V)) + continue; + saveStateForValue (state, V, Insn, i); + } + ++Insn; + } +} + + +/// Check the saved state filled in by saveState(), and abort if it looks +/// wrong. Only used when debugging. FIXME: Currently it just prints out +/// the state, which isn't quite as useful. +/// +void PhyRegAlloc::verifySavedState () { + std::vector<AllocInfo> &state = FnAllocState[Fn]; + unsigned Insn = 0; + for (const_inst_iterator II=inst_begin (Fn), IE=inst_end (Fn); II!=IE; ++II) { + const Instruction *I = *II; + MachineCodeForInstruction &Instrs = MachineCodeForInstruction::get (I); + std::cerr << "Instruction:\n" << " " << *I << "\n" + << "MachineCodeForInstruction:\n"; + for (unsigned i = 0, n = Instrs.size (); i != n; ++i) + std::cerr << " " << *Instrs[i] << "\n"; + std::cerr << "FnAllocState:\n"; + for (unsigned i = 0; i < state.size (); ++i) { + AllocInfo &S = state[i]; + if (Insn == S.Instruction) { + std::cerr << " (Instruction " << S.Instruction + << ", Operand " << S.Operand + << ", AllocState " << S.allocStateToString () + << ", Placement " << S.Placement << ")\n"; + } + } + std::cerr << "----------\n"; + ++Insn; + } +} + + +/// Finish the job of saveState(), by collapsing FnAllocState into an LLVM +/// Constant and stuffing it inside the Module. (NOTE: Soon, there will be +/// other, better ways of storing the saved state; this one is cumbersome and +/// does not work well with the JIT.) +/// +bool PhyRegAlloc::doFinalization (Module &M) { + if (!SaveRegAllocState) + return false; // Nothing to do here, unless we're saving state. + + // If saving state into the module, just copy new elements to the + // correct global. + if (!SaveStateToModule) { + ExportedFnAllocState = FnAllocState; + // FIXME: should ONLY copy new elements in FnAllocState + return false; + } + + // Convert FnAllocState to a single Constant array and add it + // to the Module. + ArrayType *AT = ArrayType::get (AllocInfo::getConstantType (), 0); + std::vector<const Type *> TV; + TV.push_back (Type::UIntTy); + TV.push_back (AT); + PointerType *PT = PointerType::get (StructType::get (TV)); + + std::vector<Constant *> allstate; + for (Module::iterator I = M.begin (), E = M.end (); I != E; ++I) { + Function *F = I; + if (F->isExternal ()) continue; + if (FnAllocState.find (F) == FnAllocState.end ()) { + allstate.push_back (ConstantPointerNull::get (PT)); + } else { + std::vector<AllocInfo> &state = FnAllocState[F]; + + // Convert state into an LLVM ConstantArray, and put it in a + // ConstantStruct (named S) along with its size. + std::vector<Constant *> stateConstants; + for (unsigned i = 0, s = state.size (); i != s; ++i) + stateConstants.push_back (state[i].toConstant ()); + unsigned Size = stateConstants.size (); + ArrayType *AT = ArrayType::get (AllocInfo::getConstantType (), Size); + std::vector<const Type *> TV; + TV.push_back (Type::UIntTy); + TV.push_back (AT); + StructType *ST = StructType::get (TV); + std::vector<Constant *> CV; + CV.push_back (ConstantUInt::get (Type::UIntTy, Size)); + CV.push_back (ConstantArray::get (AT, stateConstants)); + Constant *S = ConstantStruct::get (ST, CV); + + GlobalVariable *GV = + new GlobalVariable (ST, true, + GlobalValue::InternalLinkage, S, + F->getName () + ".regAllocState", &M); + + // Have: { uint, [Size x { uint, int, uint, int }] } * + // Cast it to: { uint, [0 x { uint, int, uint, int }] } * + Constant *CE = ConstantExpr::getCast (ConstantPointerRef::get (GV), PT); + allstate.push_back (CE); + } + } + + unsigned Size = allstate.size (); + // Final structure type is: + // { uint, [Size x { uint, [0 x { uint, int, uint, int }] } *] } + std::vector<const Type *> TV2; + TV2.push_back (Type::UIntTy); + ArrayType *AT2 = ArrayType::get (PT, Size); + TV2.push_back (AT2); + StructType *ST2 = StructType::get (TV2); + std::vector<Constant *> CV2; + CV2.push_back (ConstantUInt::get (Type::UIntTy, Size)); + CV2.push_back (ConstantArray::get (AT2, allstate)); + new GlobalVariable (ST2, true, GlobalValue::ExternalLinkage, + ConstantStruct::get (ST2, CV2), "_llvm_regAllocState", + &M); + return false; // No error. +} + + +/// Allocate registers for the machine code previously generated for F using +/// the graph-coloring algorithm. +/// +bool PhyRegAlloc::runOnFunction (Function &F) { + if (DEBUG_RA) + std::cerr << "\n********* Function "<< F.getName () << " ***********\n"; + + Fn = &F; + MF = &MachineFunction::get (Fn); + LVI = &getAnalysis<FunctionLiveVarInfo> (); + LRI = new LiveRangeInfo (Fn, TM, RegClassList); + LoopDepthCalc = &getAnalysis<LoopInfo> (); + + // Create each RegClass for the target machine and add it to the + // RegClassList. This must be done before calling constructLiveRanges(). + for (unsigned rc = 0; rc != NumOfRegClasses; ++rc) + RegClassList.push_back (new RegClass (Fn, &TM.getRegInfo (), + MRI.getMachineRegClass (rc))); + + LRI->constructLiveRanges(); // create LR info + if (DEBUG_RA >= RA_DEBUG_LiveRanges) + LRI->printLiveRanges(); + + createIGNodeListsAndIGs(); // create IGNode list and IGs + + buildInterferenceGraphs(); // build IGs in all reg classes + + if (DEBUG_RA >= RA_DEBUG_LiveRanges) { + // print all LRs in all reg classes + for ( unsigned rc=0; rc < NumOfRegClasses ; rc++) + RegClassList[rc]->printIGNodeList(); + + // print IGs in all register classes + for ( unsigned rc=0; rc < NumOfRegClasses ; rc++) + RegClassList[rc]->printIG(); + } + + LRI->coalesceLRs(); // coalesce all live ranges + + if (DEBUG_RA >= RA_DEBUG_LiveRanges) { + // print all LRs in all reg classes + for (unsigned rc=0; rc < NumOfRegClasses; rc++) + RegClassList[rc]->printIGNodeList(); + + // print IGs in all register classes + for (unsigned rc=0; rc < NumOfRegClasses; rc++) + RegClassList[rc]->printIG(); + } + + // mark un-usable suggested color before graph coloring algorithm. + // When this is done, the graph coloring algo will not reserve + // suggested color unnecessarily - they can be used by another LR + markUnusableSugColors(); + + // color all register classes using the graph coloring algo + for (unsigned rc=0; rc < NumOfRegClasses ; rc++) + RegClassList[rc]->colorAllRegs(); + + // After graph coloring, if some LRs did not receive a color (i.e, spilled) + // a position for such spilled LRs + allocateStackSpace4SpilledLRs(); + + // Reset the temp. area on the stack before use by the first instruction. + // This will also happen after updating each instruction. + MF->getInfo()->popAllTempValues(); + + // color incoming args - if the correct color was not received + // insert code to copy to the correct register + colorIncomingArgs(); + + // Save register allocation state for this function in a Constant. + if (SaveRegAllocState) + saveState(); + if (DEBUG_RA) { // Check our work. + verifySavedState (); + } + + // Now update the machine code with register names and add any additional + // code inserted by the register allocator to the instruction stream. + updateMachineCode(); + + if (DEBUG_RA) { + std::cerr << "\n**** Machine Code After Register Allocation:\n\n"; + MF->dump(); + } + + // Tear down temporary data structures + for (unsigned rc = 0; rc < NumOfRegClasses; ++rc) + delete RegClassList[rc]; + RegClassList.clear (); + AddedInstrMap.clear (); + OperandsColoredMap.clear (); + ScratchRegsUsed.clear (); + AddedInstrAtEntry.clear (); + delete LRI; + + if (DEBUG_RA) std::cerr << "\nRegister allocation complete!\n"; + return false; // Function was not modified +} + +} // End llvm namespace diff --git a/llvm/lib/Target/Sparc/RegAlloc/PhyRegAlloc.h b/llvm/lib/Target/Sparc/RegAlloc/PhyRegAlloc.h new file mode 100644 index 00000000000..4ec083c8ea3 --- /dev/null +++ b/llvm/lib/Target/Sparc/RegAlloc/PhyRegAlloc.h @@ -0,0 +1,186 @@ +//===-- PhyRegAlloc.h - Graph Coloring Register Allocator -------*- c++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This is the main entry point for register allocation. +// +// Notes: +// * RegisterClasses: Each RegClass accepts a +// TargetRegClass which contains machine specific info about that register +// class. The code in the RegClass is machine independent and they use +// access functions in the TargetRegClass object passed into it to get +// machine specific info. +// +// * Machine dependent work: All parts of the register coloring algorithm +// except coloring of an individual node are machine independent. +// +//===----------------------------------------------------------------------===// + +#ifndef PHYREGALLOC_H +#define PHYREGALLOC_H + +#include "LiveRangeInfo.h" +#include "llvm/Pass.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetRegInfo.h" +#include <map> + +namespace llvm { + +class MachineFunction; +class FunctionLiveVarInfo; +class MachineInstr; +class LoopInfo; +class RegClass; +class Constant; + +//---------------------------------------------------------------------------- +// Class AddedInstrns: +// When register allocator inserts new instructions in to the existing +// instruction stream, it does NOT directly modify the instruction stream. +// Rather, it creates an object of AddedInstrns and stick it in the +// AddedInstrMap for an existing instruction. This class contains two vectors +// to store such instructions added before and after an existing instruction. +//---------------------------------------------------------------------------- + +struct AddedInstrns { + std::vector<MachineInstr*> InstrnsBefore;//Insts added BEFORE an existing inst + std::vector<MachineInstr*> InstrnsAfter; //Insts added AFTER an existing inst + inline void clear () { InstrnsBefore.clear (); InstrnsAfter.clear (); } +}; + +//---------------------------------------------------------------------------- +// class PhyRegAlloc: +// Main class the register allocator. Call runOnFunction() to allocate +// registers for a Function. +//---------------------------------------------------------------------------- + +class PhyRegAlloc : public FunctionPass { + std::vector<RegClass *> RegClassList; // vector of register classes + const TargetMachine &TM; // target machine + const Function *Fn; // name of the function we work on + MachineFunction *MF; // descriptor for method's native code + FunctionLiveVarInfo *LVI; // LV information for this method + // (already computed for BBs) + LiveRangeInfo *LRI; // LR info (will be computed) + const TargetRegInfo &MRI; // Machine Register information + const unsigned NumOfRegClasses; // recorded here for efficiency + + // Map to indicate whether operands of each MachineInstr have been + // updated according to their assigned colors. This is only used in + // assertion checking (debug builds). + std::map<const MachineInstr *, bool> OperandsColoredMap; + + // AddedInstrMap - Used to store instrns added in this phase + std::map<const MachineInstr *, AddedInstrns> AddedInstrMap; + + // ScratchRegsUsed - Contains scratch register uses for a particular MI. + typedef std::multimap<const MachineInstr*, int> ScratchRegsUsedTy; + ScratchRegsUsedTy ScratchRegsUsed; + + AddedInstrns AddedInstrAtEntry; // to store instrns added at entry + const LoopInfo *LoopDepthCalc; // to calculate loop depths + + PhyRegAlloc(const PhyRegAlloc&); // DO NOT IMPLEMENT + void operator=(const PhyRegAlloc&); // DO NOT IMPLEMENT +public: + typedef std::map<const Function *, std::vector<AllocInfo> > SavedStateMapTy; + + inline PhyRegAlloc (const TargetMachine &TM_) : + TM (TM_), MRI (TM.getRegInfo ()), + NumOfRegClasses (MRI.getNumOfRegClasses ()) { } + virtual ~PhyRegAlloc() { } + + /// runOnFunction - Main method called for allocating registers. + /// + virtual bool runOnFunction (Function &F); + + virtual bool doFinalization (Module &M); + + virtual void getAnalysisUsage (AnalysisUsage &AU) const; + + const char *getPassName () const { + return "Traditional graph-coloring reg. allocator"; + } + + inline const RegClass* getRegClassByID(unsigned id) const { + return RegClassList[id]; + } + inline RegClass *getRegClassByID(unsigned id) { return RegClassList[id]; } + +private: + SavedStateMapTy FnAllocState; + + void addInterference(const Value *Def, const ValueSet *LVSet, + bool isCallInst); + bool markAllocatedRegs(MachineInstr* MInst); + + void addInterferencesForArgs(); + void createIGNodeListsAndIGs(); + void buildInterferenceGraphs(); + + void saveStateForValue (std::vector<AllocInfo> &state, + const Value *V, unsigned Insn, int Opnd); + void saveState(); + void verifySavedState(); + + void setCallInterferences(const MachineInstr *MI, + const ValueSet *LVSetAft); + + void move2DelayedInstr(const MachineInstr *OrigMI, + const MachineInstr *DelayedMI); + + void markUnusableSugColors(); + void allocateStackSpace4SpilledLRs(); + + void insertCode4SpilledLR(const LiveRange *LR, + MachineBasicBlock::iterator& MII, + MachineBasicBlock &MBB, unsigned OpNum); + + /// Method for inserting caller saving code. The caller must save all the + /// volatile registers live across a call. + /// + void insertCallerSavingCode(std::vector<MachineInstr*>& instrnsBefore, + std::vector<MachineInstr*>& instrnsAfter, + MachineInstr *CallMI, + const BasicBlock *BB); + + void colorIncomingArgs(); + void colorCallRetArgs(); + void updateMachineCode(); + void updateInstruction(MachineBasicBlock::iterator& MII, + MachineBasicBlock &MBB); + + int getUsableUniRegAtMI(int RegType, const ValueSet *LVSetBef, + MachineInstr *MI, + std::vector<MachineInstr*>& MIBef, + std::vector<MachineInstr*>& MIAft); + + /// Callback method used to find unused registers. + /// LVSetBef is the live variable set to search for an unused register. + /// If it is not specified, the LV set before the current MI is used. + /// This is sufficient as long as no new copy instructions are generated + /// to copy the free register to memory. + /// + int getUnusedUniRegAtMI(RegClass *RC, int RegType, + const MachineInstr *MI, + const ValueSet *LVSetBef = 0); + + void setRelRegsUsedByThisInst(RegClass *RC, int RegType, + const MachineInstr *MI); + + int getUniRegNotUsedByThisInst(RegClass *RC, int RegType, + const MachineInstr *MI); + + void addInterf4PseudoInstr(const MachineInstr *MI); +}; + +} // End llvm namespace + +#endif diff --git a/llvm/lib/Target/Sparc/RegAlloc/RegAllocCommon.h b/llvm/lib/Target/Sparc/RegAlloc/RegAllocCommon.h new file mode 100644 index 00000000000..7dd86b205af --- /dev/null +++ b/llvm/lib/Target/Sparc/RegAlloc/RegAllocCommon.h @@ -0,0 +1,32 @@ +//===-- RegAllocCommon.h --------------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Shared declarations for register allocation. +// +//===----------------------------------------------------------------------===// + +#ifndef REGALLOCCOMMON_H +#define REGALLOCCOMMON_H + +namespace llvm { + +enum RegAllocDebugLevel_t { + RA_DEBUG_None = 0, + RA_DEBUG_Results = 1, + RA_DEBUG_Coloring = 2, + RA_DEBUG_Interference = 3, + RA_DEBUG_LiveRanges = 4, + RA_DEBUG_Verbose = 5 +}; + +extern RegAllocDebugLevel_t DEBUG_RA; + +} // End llvm namespace + +#endif diff --git a/llvm/lib/Target/Sparc/RegAlloc/RegClass.cpp b/llvm/lib/Target/Sparc/RegAlloc/RegClass.cpp new file mode 100644 index 00000000000..9af87ba0e86 --- /dev/null +++ b/llvm/lib/Target/Sparc/RegAlloc/RegClass.cpp @@ -0,0 +1,250 @@ +//===-- RegClass.cpp -----------------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// class RegClass for coloring-based register allocation for LLVM. +// +//===----------------------------------------------------------------------===// + +#include "IGNode.h" +#include "RegAllocCommon.h" +#include "RegClass.h" +#include "llvm/Target/TargetRegInfo.h" + +namespace llvm { + +//---------------------------------------------------------------------------- +// This constructor inits IG. The actual matrix is created by a call to +// createInterferenceGraph() above. +//---------------------------------------------------------------------------- +RegClass::RegClass(const Function *M, + const TargetRegInfo *_MRI_, + const TargetRegClassInfo *_MRC_) + : Meth(M), MRI(_MRI_), MRC(_MRC_), + RegClassID( _MRC_->getRegClassID() ), + IG(this), IGNodeStack() { + if (DEBUG_RA >= RA_DEBUG_Interference) + std::cerr << "Created Reg Class: " << RegClassID << "\n"; + + IsColorUsedArr.resize(MRC->getNumOfAllRegs()); +} + + + +//---------------------------------------------------------------------------- +// Main entry point for coloring a register class. +//---------------------------------------------------------------------------- +void RegClass::colorAllRegs() +{ + if (DEBUG_RA >= RA_DEBUG_Coloring) + std::cerr << "Coloring IG of reg class " << RegClassID << " ...\n"; + // pre-color IGNodes + pushAllIGNodes(); // push all IG Nodes + + unsigned int StackSize = IGNodeStack.size(); + IGNode *CurIGNode; + // for all LRs on stack + for (unsigned int IGN=0; IGN < StackSize; IGN++) { + CurIGNode = IGNodeStack.top(); // pop the IGNode on top of stack + IGNodeStack.pop(); + colorIGNode (CurIGNode); // color it + } +} + + + +//---------------------------------------------------------------------------- +// The method for pushing all IGNodes on to the stack. +//---------------------------------------------------------------------------- +void RegClass::pushAllIGNodes() +{ + bool NeedMoreSpills; + + + IG.setCurDegreeOfIGNodes(); // calculate degree of IGNodes + + // push non-constrained IGNodes + bool PushedAll = pushUnconstrainedIGNodes(); + + if (DEBUG_RA >= RA_DEBUG_Coloring) { + std::cerr << " Puhsed all-unconstrained IGNodes. "; + if( PushedAll ) std::cerr << " No constrained nodes left."; + std::cerr << "\n"; + } + + if (PushedAll) // if NO constrained nodes left + return; + + + // now, we have constrained nodes. So, push one of them (the one with min + // spill cost) and try to push the others as unConstrained nodes. + // Repeat this. + + do { + //get node with min spill cost + IGNode *IGNodeSpill = getIGNodeWithMinSpillCost(); + // push that node on to stack + IGNodeStack.push(IGNodeSpill); + // set its OnStack flag and decrement degree of neighs + IGNodeSpill->pushOnStack(); + // now push NON-constrained ones, if any + NeedMoreSpills = !pushUnconstrainedIGNodes(); + if (DEBUG_RA >= RA_DEBUG_Coloring) + std::cerr << "\nConstrained IG Node found !@!" << IGNodeSpill->getIndex(); + } while(NeedMoreSpills); // repeat until we have pushed all + +} + + + + +//-------------------------------------------------------------------------- +// This method goes thru all IG nodes in the IGNodeList of an IG of a +// register class and push any unconstrained IG node left (that is not +// already pushed) +//-------------------------------------------------------------------------- + +bool RegClass::pushUnconstrainedIGNodes() +{ + // # of LRs for this reg class + unsigned int IGNodeListSize = IG.getIGNodeList().size(); + bool pushedall = true; + + // a pass over IGNodeList + for (unsigned i =0; i < IGNodeListSize; i++) { + + // get IGNode i from IGNodeList + IGNode *IGNode = IG.getIGNodeList()[i]; + + if (!IGNode ) // can be null due to merging + continue; + + // if already pushed on stack, continue. This can happen since this + // method can be called repeatedly until all constrained nodes are + // pushed + if (IGNode->isOnStack() ) + continue; + // if the degree of IGNode is lower + if ((unsigned) IGNode->getCurDegree() < MRC->getNumOfAvailRegs()) { + IGNodeStack.push( IGNode ); // push IGNode on to the stack + IGNode->pushOnStack(); // set OnStack and dec deg of neighs + + if (DEBUG_RA >= RA_DEBUG_Coloring) { + std::cerr << " pushed un-constrained IGNode " << IGNode->getIndex() + << " on to stack\n"; + } + } + else pushedall = false; // we didn't push all live ranges + + } // for + + // returns true if we pushed all live ranges - else false + return pushedall; +} + + + +//---------------------------------------------------------------------------- +// Get the IGNode with the minimum spill cost +//---------------------------------------------------------------------------- +IGNode * RegClass::getIGNodeWithMinSpillCost() { + unsigned int IGNodeListSize = IG.getIGNodeList().size(); + double MinSpillCost = 0; + IGNode *MinCostIGNode = NULL; + bool isFirstNode = true; + + // pass over IGNodeList to find the IGNode with minimum spill cost + // among all IGNodes that are not yet pushed on to the stack + for (unsigned int i =0; i < IGNodeListSize; i++) { + IGNode *IGNode = IG.getIGNodeList()[i]; + + if (!IGNode) // can be null due to merging + continue; + + if (!IGNode->isOnStack()) { + double SpillCost = (double) IGNode->getParentLR()->getSpillCost() / + (double) (IGNode->getCurDegree() + 1); + + if (isFirstNode) { // for the first IG node + MinSpillCost = SpillCost; + MinCostIGNode = IGNode; + isFirstNode = false; + } else if (MinSpillCost > SpillCost) { + MinSpillCost = SpillCost; + MinCostIGNode = IGNode; + } + } + } + + assert (MinCostIGNode && "No IGNode to spill"); + return MinCostIGNode; +} + + +//---------------------------------------------------------------------------- +// Color the IGNode using the machine specific code. +//---------------------------------------------------------------------------- +void RegClass::colorIGNode(IGNode *const Node) { + if (! Node->hasColor()) { // not colored as an arg etc. + + // init all elements of to IsColorUsedAr false; + clearColorsUsed(); + + // initialize all colors used by neighbors of this node to true + LiveRange *LR = Node->getParentLR(); + unsigned NumNeighbors = Node->getNumOfNeighbors(); + for (unsigned n=0; n < NumNeighbors; n++) { + IGNode *NeighIGNode = Node->getAdjIGNode(n); + LiveRange *NeighLR = NeighIGNode->getParentLR(); + + // Don't use a color if it is in use by the neighbor, + // or is suggested for use by the neighbor, + // markColorsUsed() should be given the color and the reg type for + // LR, not for NeighLR, because it should mark registers used based on + // the type we are looking for, not on the regType for the neighbour. + if (NeighLR->hasColor()) + this->markColorsUsed(NeighLR->getColor(), + MRI->getRegTypeForLR(NeighLR), + MRI->getRegTypeForLR(LR)); // use LR, not NeighLR + else if (NeighLR->hasSuggestedColor() && + NeighLR->isSuggestedColorUsable()) + this->markColorsUsed(NeighLR->getSuggestedColor(), + MRI->getRegTypeForLR(NeighLR), + MRI->getRegTypeForLR(LR)); // use LR, not NeighLR + } + + // call the target specific code for coloring + // + MRC->colorIGNode(Node, IsColorUsedArr); + } else { + if (DEBUG_RA >= RA_DEBUG_Coloring) { + std::cerr << " Node " << Node->getIndex(); + std::cerr << " already colored with color " << Node->getColor() << "\n"; + } + } + + + if (!Node->hasColor() ) { + if (DEBUG_RA >= RA_DEBUG_Coloring) { + std::cerr << " Node " << Node->getIndex(); + std::cerr << " - could not find a color (needs spilling)\n"; + } + } +} + +void RegClass::printIGNodeList() const { + std::cerr << "IG Nodes for Register Class " << RegClassID << ":" << "\n"; + IG.printIGNodeList(); +} + +void RegClass::printIG() { + std::cerr << "IG for Register Class " << RegClassID << ":" << "\n"; + IG.printIG(); +} + +} // End llvm namespace diff --git a/llvm/lib/Target/Sparc/RegAlloc/RegClass.h b/llvm/lib/Target/Sparc/RegAlloc/RegClass.h new file mode 100644 index 00000000000..0071f7c2129 --- /dev/null +++ b/llvm/lib/Target/Sparc/RegAlloc/RegClass.h @@ -0,0 +1,147 @@ +//===-- RegClass.h - Machine Independent register coloring ------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +/* Title: RegClass.h -*- C++ -*- + Author: Ruchira Sasanka + Date: Aug 20, 01 + Purpose: Contains machine independent methods for register coloring. + +*/ + +#ifndef REGCLASS_H +#define REGCLASS_H + +#include "llvm/Target/TargetRegInfo.h" +#include "InterferenceGraph.h" +#include <stack> + +namespace llvm { + +class TargetRegClassInfo; + + +//----------------------------------------------------------------------------- +// Class RegClass +// +// Implements a machine independent register class. +// +// This is the class that contains all data structures and common algos +// for coloring a particular register class (e.g., int class, fp class). +// This class is hardware independent. This class accepts a hardware +// dependent description of machine registers (TargetRegInfo class) to +// get hardware specific info and to color an individual IG node. +// +// This class contains the InterferenceGraph (IG). +// Also it contains an IGNode stack that can be used for coloring. +// The class provides some easy access methods to the IG methods, since these +// methods are called thru a register class. +// +//----------------------------------------------------------------------------- +class RegClass { + const Function *const Meth; // Function we are working on + const TargetRegInfo *MRI; // Machine register information + const TargetRegClassInfo *const MRC; // Machine reg. class for this RegClass + const unsigned RegClassID; // my int ID + + InterferenceGraph IG; // Interference graph - constructed by + // buildInterferenceGraph + std::stack<IGNode *> IGNodeStack; // the stack used for coloring + + // IsColorUsedArr - An array used for coloring each node. This array must be + // of size MRC->getNumOfAllRegs(). Allocated once in the constructor for + // efficiency. + // + std::vector<bool> IsColorUsedArr; + + + + //--------------------------- private methods ------------------------------ + + void pushAllIGNodes(); + + bool pushUnconstrainedIGNodes(); + + IGNode * getIGNodeWithMinSpillCost(); + + void colorIGNode(IGNode *const Node); + + // This directly marks the colors used by a particular register number + // within the register class. External users should use the public + // versions of this function below. + inline void markColorUsed(unsigned classRegNum) { + assert(classRegNum < IsColorUsedArr.size() && "Invalid register used?"); + IsColorUsedArr[classRegNum] = true; + } + + inline bool isColorUsed(unsigned regNum) const { + assert(regNum < IsColorUsedArr.size() && "Invalid register used?"); + return IsColorUsedArr[regNum]; + } + + public: + + RegClass(const Function *M, + const TargetRegInfo *_MRI_, + const TargetRegClassInfo *_MRC_); + + inline void createInterferenceGraph() { IG.createGraph(); } + + inline InterferenceGraph &getIG() { return IG; } + + inline const unsigned getID() const { return RegClassID; } + + inline const TargetRegClassInfo* getTargetRegClass() const { return MRC; } + + // main method called for coloring regs + // + void colorAllRegs(); + + inline unsigned getNumOfAvailRegs() const + { return MRC->getNumOfAvailRegs(); } + + + // --- following methods are provided to access the IG contained within this + // ---- RegClass easilly. + + inline void addLRToIG(LiveRange *const LR) + { IG.addLRToIG(LR); } + + inline void setInterference(const LiveRange *const LR1, + const LiveRange *const LR2) + { IG.setInterference(LR1, LR2); } + + inline unsigned getInterference(const LiveRange *const LR1, + const LiveRange *const LR2) const + { return IG.getInterference(LR1, LR2); } + + inline void mergeIGNodesOfLRs(const LiveRange *const LR1, + LiveRange *const LR2) + { IG.mergeIGNodesOfLRs(LR1, LR2); } + + + inline void clearColorsUsed() { + IsColorUsedArr.clear(); + IsColorUsedArr.resize(MRC->getNumOfAllRegs()); + } + inline void markColorsUsed(unsigned ClassRegNum, + int UserRegType, + int RegTypeWanted) { + MRC->markColorsUsed(ClassRegNum, UserRegType, RegTypeWanted,IsColorUsedArr); + } + inline int getUnusedColor(int machineRegType) const { + return MRC->findUnusedColor(machineRegType, IsColorUsedArr); + } + + void printIGNodeList() const; + void printIG(); +}; + +} // End llvm namespace + +#endif |