summaryrefslogtreecommitdiffstats
path: root/llvm/docs/tutorial
diff options
context:
space:
mode:
authorHans Wennborg <hans@hanshq.net>2016-06-14 16:05:12 +0000
committerHans Wennborg <hans@hanshq.net>2016-06-14 16:05:12 +0000
commit1d8b31b6d206be0b8e2dfa24fa965e71e1512ac1 (patch)
tree0f6a4e67053e316856981f69452619f42a39a3ac /llvm/docs/tutorial
parentaf914fa2dbcd817e326e7937ed50963bd13c5f94 (diff)
downloadbcm5719-llvm-1d8b31b6d206be0b8e2dfa24fa965e71e1512ac1.tar.gz
bcm5719-llvm-1d8b31b6d206be0b8e2dfa24fa965e71e1512ac1.zip
Fix some typos in the Kaleidoscope tutorial (PR28120)
llvm-svn: 272681
Diffstat (limited to 'llvm/docs/tutorial')
-rw-r--r--llvm/docs/tutorial/LangImpl1.rst2
-rw-r--r--llvm/docs/tutorial/LangImpl6.rst14
-rw-r--r--llvm/docs/tutorial/OCamlLangImpl6.rst14
3 files changed, 15 insertions, 15 deletions
diff --git a/llvm/docs/tutorial/LangImpl1.rst b/llvm/docs/tutorial/LangImpl1.rst
index b04cde10274..0b8ed7b1b6c 100644
--- a/llvm/docs/tutorial/LangImpl1.rst
+++ b/llvm/docs/tutorial/LangImpl1.rst
@@ -80,7 +80,7 @@ in the various pieces. The structure of the tutorial is:
information will allow you to set breakpoints in Kaleidoscope
functions, print out argument variables, and call functions - all
from within the debugger!
-- `Chapter #9 <LangImpl8.html>`_: Conclusion and other useful LLVM
+- `Chapter #9 <LangImpl9.html>`_: Conclusion and other useful LLVM
tidbits - This chapter wraps up the series by talking about
potential ways to extend the language, but also includes a bunch of
pointers to info about "special topics" like adding garbage
diff --git a/llvm/docs/tutorial/LangImpl6.rst b/llvm/docs/tutorial/LangImpl6.rst
index 2b6c2b117e0..c30eaedad12 100644
--- a/llvm/docs/tutorial/LangImpl6.rst
+++ b/llvm/docs/tutorial/LangImpl6.rst
@@ -546,17 +546,17 @@ converge:
# Determine whether the specific location diverges.
# Solve for z = z^2 + c in the complex plane.
- def mandleconverger(real imag iters creal cimag)
+ def mandelconverger(real imag iters creal cimag)
if iters > 255 | (real*real + imag*imag > 4) then
iters
else
- mandleconverger(real*real - imag*imag + creal,
+ mandelconverger(real*real - imag*imag + creal,
2*real*imag + cimag,
iters+1, creal, cimag);
# Return the number of iterations required for the iteration to escape
- def mandleconverge(real imag)
- mandleconverger(real, imag, 0, real, imag);
+ def mandelconverge(real imag)
+ mandelconverger(real, imag, 0, real, imag);
This "``z = z2 + c``" function is a beautiful little creature that is
the basis for computation of the `Mandelbrot
@@ -570,12 +570,12 @@ but we can whip together something using the density plotter above:
::
- # Compute and plot the mandlebrot set with the specified 2 dimensional range
+ # Compute and plot the mandelbrot set with the specified 2 dimensional range
# info.
def mandelhelp(xmin xmax xstep ymin ymax ystep)
for y = ymin, y < ymax, ystep in (
(for x = xmin, x < xmax, xstep in
- printdensity(mandleconverge(x,y)))
+ printdensity(mandelconverge(x,y)))
: putchard(10)
)
@@ -585,7 +585,7 @@ but we can whip together something using the density plotter above:
mandelhelp(realstart, realstart+realmag*78, realmag,
imagstart, imagstart+imagmag*40, imagmag);
-Given this, we can try plotting out the mandlebrot set! Lets try it out:
+Given this, we can try plotting out the mandelbrot set! Lets try it out:
::
diff --git a/llvm/docs/tutorial/OCamlLangImpl6.rst b/llvm/docs/tutorial/OCamlLangImpl6.rst
index a3ae11fd7e5..2fa25f5c22f 100644
--- a/llvm/docs/tutorial/OCamlLangImpl6.rst
+++ b/llvm/docs/tutorial/OCamlLangImpl6.rst
@@ -496,17 +496,17 @@ converge:
# determine whether the specific location diverges.
# Solve for z = z^2 + c in the complex plane.
- def mandleconverger(real imag iters creal cimag)
+ def mandelconverger(real imag iters creal cimag)
if iters > 255 | (real*real + imag*imag > 4) then
iters
else
- mandleconverger(real*real - imag*imag + creal,
+ mandelconverger(real*real - imag*imag + creal,
2*real*imag + cimag,
iters+1, creal, cimag);
# return the number of iterations required for the iteration to escape
- def mandleconverge(real imag)
- mandleconverger(real, imag, 0, real, imag);
+ def mandelconverge(real imag)
+ mandelconverger(real, imag, 0, real, imag);
This "z = z\ :sup:`2`\ + c" function is a beautiful little creature
that is the basis for computation of the `Mandelbrot
@@ -520,12 +520,12 @@ but we can whip together something using the density plotter above:
::
- # compute and plot the mandlebrot set with the specified 2 dimensional range
+ # compute and plot the mandelbrot set with the specified 2 dimensional range
# info.
def mandelhelp(xmin xmax xstep ymin ymax ystep)
for y = ymin, y < ymax, ystep in (
(for x = xmin, x < xmax, xstep in
- printdensity(mandleconverge(x,y)))
+ printdensity(mandelconverge(x,y)))
: putchard(10)
)
@@ -535,7 +535,7 @@ but we can whip together something using the density plotter above:
mandelhelp(realstart, realstart+realmag*78, realmag,
imagstart, imagstart+imagmag*40, imagmag);
-Given this, we can try plotting out the mandlebrot set! Lets try it out:
+Given this, we can try plotting out the mandelbrot set! Lets try it out:
::
OpenPOWER on IntegriCloud