diff options
Diffstat (limited to 'llvm/docs/tutorial/LangImpl6.rst')
-rw-r--r-- | llvm/docs/tutorial/LangImpl6.rst | 14 |
1 files changed, 7 insertions, 7 deletions
diff --git a/llvm/docs/tutorial/LangImpl6.rst b/llvm/docs/tutorial/LangImpl6.rst index 2b6c2b117e0..c30eaedad12 100644 --- a/llvm/docs/tutorial/LangImpl6.rst +++ b/llvm/docs/tutorial/LangImpl6.rst @@ -546,17 +546,17 @@ converge: # Determine whether the specific location diverges. # Solve for z = z^2 + c in the complex plane. - def mandleconverger(real imag iters creal cimag) + def mandelconverger(real imag iters creal cimag) if iters > 255 | (real*real + imag*imag > 4) then iters else - mandleconverger(real*real - imag*imag + creal, + mandelconverger(real*real - imag*imag + creal, 2*real*imag + cimag, iters+1, creal, cimag); # Return the number of iterations required for the iteration to escape - def mandleconverge(real imag) - mandleconverger(real, imag, 0, real, imag); + def mandelconverge(real imag) + mandelconverger(real, imag, 0, real, imag); This "``z = z2 + c``" function is a beautiful little creature that is the basis for computation of the `Mandelbrot @@ -570,12 +570,12 @@ but we can whip together something using the density plotter above: :: - # Compute and plot the mandlebrot set with the specified 2 dimensional range + # Compute and plot the mandelbrot set with the specified 2 dimensional range # info. def mandelhelp(xmin xmax xstep ymin ymax ystep) for y = ymin, y < ymax, ystep in ( (for x = xmin, x < xmax, xstep in - printdensity(mandleconverge(x,y))) + printdensity(mandelconverge(x,y))) : putchard(10) ) @@ -585,7 +585,7 @@ but we can whip together something using the density plotter above: mandelhelp(realstart, realstart+realmag*78, realmag, imagstart, imagstart+imagmag*40, imagmag); -Given this, we can try plotting out the mandlebrot set! Lets try it out: +Given this, we can try plotting out the mandelbrot set! Lets try it out: :: |