summaryrefslogtreecommitdiffstats
path: root/hw/ast-bmc/ast-sf-ctrl.c
blob: 06287a865d32427965fefd59f41a0ad8444a2a70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
/* Copyright 2013-2014 IBM Corp.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * 	http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>

#include <libflash/libflash.h>
#include <libflash/libflash-priv.h>

#include "ast.h"

#ifndef __unused
#define __unused __attribute__((unused))
#endif

#define CALIBRATE_BUF_SIZE	16384

struct ast_sf_ctrl {
	/* We have 2 controllers, one for the BMC flash, one for the PNOR */
	uint8_t			type;

	/* Address and previous value of the ctrl register */
	uint32_t		ctl_reg;

	/* Control register value for normal commands */
	uint32_t		ctl_val;

	/* Control register value for (fast) reads */
	uint32_t		ctl_read_val;

	/* Flash read timing register  */
	uint32_t		fread_timing_reg;
	uint32_t		fread_timing_val;

	/* Address of the flash mapping */
	uint32_t		flash;

	/* Current 4b mode */
	bool			mode_4b;

	/* Callbacks */
	struct spi_flash_ctrl	ops;
};

static uint32_t ast_ahb_freq;

static const uint32_t ast_ct_hclk_divs[] = {
	0xf, /* HCLK */
	0x7, /* HCLK/2 */
	0xe, /* HCLK/3 */
	0x6, /* HCLK/4 */
	0xd, /* HCLK/5 */
};

static int ast_sf_start_cmd(struct ast_sf_ctrl *ct, uint8_t cmd)
{
	/* Switch to user mode, CE# dropped */
	ast_ahb_writel(ct->ctl_val | 7, ct->ctl_reg);

	/* user mode, CE# active */
	ast_ahb_writel(ct->ctl_val | 3, ct->ctl_reg);

	/* write cmd */
	return ast_copy_to_ahb(ct->flash, &cmd, 1);
}

static void ast_sf_end_cmd(struct ast_sf_ctrl *ct)
{
	/* clear CE# */
	ast_ahb_writel(ct->ctl_val | 7, ct->ctl_reg);

	/* Switch back to read mode */
	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
}

static int ast_sf_send_addr(struct ast_sf_ctrl *ct, uint32_t addr)
{
	const void *ap;

	/* Layout address MSB first in memory */
	addr = cpu_to_be32(addr);

	/* Send the right amount of bytes */
	ap = (char *)&addr;

	if (ct->mode_4b)
		return ast_copy_to_ahb(ct->flash, ap, 4);
	else
		return ast_copy_to_ahb(ct->flash, ap + 1, 3);
}

static int ast_sf_cmd_rd(struct spi_flash_ctrl *ctrl, uint8_t cmd,
			 bool has_addr, uint32_t addr, void *buffer,
			 uint32_t size)
{
	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
	int rc;

	rc = ast_sf_start_cmd(ct, cmd);
	if (rc)
		goto bail;
	if (has_addr) {
		rc = ast_sf_send_addr(ct, addr);
		if (rc)
			goto bail;
	}
	if (buffer && size)
		rc = ast_copy_from_ahb(buffer, ct->flash, size);
 bail:
	ast_sf_end_cmd(ct);
	return rc;
}

static int ast_sf_cmd_wr(struct spi_flash_ctrl *ctrl, uint8_t cmd,
			 bool has_addr, uint32_t addr, const void *buffer,
			 uint32_t size)
{
	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);
	int rc;

	rc = ast_sf_start_cmd(ct, cmd);
	if (rc)
		goto bail;
	if (has_addr) {
		rc = ast_sf_send_addr(ct, addr);
		if (rc)
			goto bail;
	}
	if (buffer && size)
		rc = ast_copy_to_ahb(ct->flash, buffer, size);
 bail:
	ast_sf_end_cmd(ct);
	return rc;
}

static int ast_sf_set_4b(struct spi_flash_ctrl *ctrl, bool enable)
{
	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);

	if (ct->type != AST_SF_TYPE_PNOR)
		return enable ? FLASH_ERR_4B_NOT_SUPPORTED : 0;

	/*
	 * We update the "old" value as well since when quitting
	 * we don't restore the mode of the flash itself so we need
	 * to leave the controller in a compatible setup
	 */
	if (enable) {
		ct->ctl_val |= 0x2000;
		ct->ctl_read_val |= 0x2000;
	} else {
		ct->ctl_val &= ~0x2000;
		ct->ctl_read_val &= ~0x2000;
	}
	ct->mode_4b = enable;

	/* Update read mode */
	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

	return 0;
}

static int ast_sf_read(struct spi_flash_ctrl *ctrl, uint32_t pos,
		       void *buf, uint32_t len)
{
	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);

	/*
	 * We are in read mode by default. We don't yet support fancy
	 * things like fast read or X2 mode
	 */
	return ast_copy_from_ahb(buf, ct->flash + pos, len);
}

static void ast_get_ahb_freq(void)
{
	static const uint32_t cpu_freqs_24_48[] = {
		384000000,
		360000000,
		336000000,
		408000000
	};
	static const uint32_t cpu_freqs_25[] = {
		400000000,
		375000000,
		350000000,
		425000000
	};
	static const uint32_t ahb_div[] = { 1, 2, 4, 3 };
	uint32_t strap, cpu_clk, div;

	if (ast_ahb_freq)
		return;

	/* HW strapping gives us the CPU freq and AHB divisor */
	strap = ast_ahb_readl(SCU_HW_STRAPPING);
	if (strap & 0x00800000) {
		FL_DBG("AST: CLKIN 25Mhz\n");
		cpu_clk = cpu_freqs_25[(strap >> 8) & 3];
	} else {
		FL_DBG("AST: CLKIN 24/48Mhz\n");
		cpu_clk = cpu_freqs_24_48[(strap >> 8) & 3];
	}
	FL_DBG("AST: CPU frequency: %d Mhz\n", cpu_clk / 1000000);
	div = ahb_div[(strap >> 10) & 3];
	ast_ahb_freq = cpu_clk / div;
	FL_DBG("AST: AHB frequency: %d Mhz\n", ast_ahb_freq / 1000000);
}

static int ast_sf_check_reads(struct ast_sf_ctrl *ct,
			      const uint8_t *golden_buf, uint8_t *test_buf)
{
	int i, rc;

	for (i = 0; i < 10; i++) {
		rc = ast_copy_from_ahb(test_buf, ct->flash, CALIBRATE_BUF_SIZE);
		if (rc)
			return rc;
		if (memcmp(test_buf, golden_buf, CALIBRATE_BUF_SIZE) != 0)
			return FLASH_ERR_VERIFY_FAILURE;
	}
	return 0;
}

static int ast_sf_calibrate_reads(struct ast_sf_ctrl *ct, uint32_t hdiv,
				  const uint8_t *golden_buf, uint8_t *test_buf)
{
	int i, rc;
	int good_pass = -1, pass_count = 0;
	uint32_t shift = (hdiv - 1) << 2;
	uint32_t mask = ~(0xfu << shift);

#define FREAD_TPASS(i)	(((i) / 2) | (((i) & 1) ? 0 : 8))

	/* Try HCLK delay 0..5, each one with/without delay and look for a
	 * good pair.
	 */
	for (i = 0; i < 12; i++) {
		bool pass;

		ct->fread_timing_val &= mask;
		ct->fread_timing_val |= FREAD_TPASS(i) << shift;
		ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);
		rc = ast_sf_check_reads(ct, golden_buf, test_buf);
		if (rc && rc != FLASH_ERR_VERIFY_FAILURE)
			return rc;
		pass = (rc == 0);
		FL_DBG("  * [%08x] %d HCLK delay, %dns DI delay : %s\n",
		       ct->fread_timing_val, i/2, (i & 1) ? 0 : 4, pass ? "PASS" : "FAIL");
		if (pass) {
			pass_count++;
			if (pass_count == 3) {
				good_pass = i - 1;
				break;
			}
		} else
			pass_count = 0;
	}

	/* No good setting for this frequency */
	if (good_pass < 0)
		return FLASH_ERR_VERIFY_FAILURE;

	/* We have at least one pass of margin, let's use first pass */
	ct->fread_timing_val &= mask;
	ct->fread_timing_val |= FREAD_TPASS(good_pass) << shift;
	ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);
	FL_DBG("AST:  * -> good is pass %d [0x%08x]\n",
	       good_pass, ct->fread_timing_val);
	return 0;
}

static bool ast_calib_data_usable(const uint8_t *test_buf, uint32_t size)
{
	const uint32_t *tb32 = (const uint32_t *)test_buf;
	uint32_t i, cnt = 0;

	/* We check if we have enough words that are neither all 0
	 * nor all 1's so the calibration can be considered valid.
	 *
	 * I use an arbitrary threshold for now of 64
	 */
	size >>= 2;
	for (i = 0; i < size; i++) {
		if (tb32[i] != 0 && tb32[i] != 0xffffffff)
			cnt++;
	}
	return cnt >= 64;
}

static int ast_sf_optimize_reads(struct ast_sf_ctrl *ct,
				 struct flash_info *info __unused,
				 uint32_t max_freq)
{
	uint8_t *golden_buf, *test_buf;
	int i, rc, best_div = -1;
	uint32_t save_read_val = ct->ctl_read_val;

	test_buf = malloc(CALIBRATE_BUF_SIZE * 2);
	golden_buf = test_buf + CALIBRATE_BUF_SIZE;

	/* We start with the dumbest setting and read some data */
	ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
		(0x00 << 28) | /* Single bit */
		(0x00 << 24) | /* CE# max */
		(0x03 << 16) | /* use normal reads */
		(0x00 <<  8) | /* HCLK/16 */
		(0x00 <<  6) | /* no dummy cycle */
		(0x00);        /* normal read */
	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

	rc = ast_copy_from_ahb(golden_buf, ct->flash, CALIBRATE_BUF_SIZE);
	if (rc) {
		free(test_buf);
		return rc;
	}

	/* Establish our read mode with freq field set to 0 */
	ct->ctl_read_val = save_read_val & 0xfffff0ff;

	/* Check if calibration data is suitable */
	if (!ast_calib_data_usable(golden_buf, CALIBRATE_BUF_SIZE)) {
		FL_INF("AST: Calibration area too uniform, "
		       "using low speed\n");
		ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
		free(test_buf);
		return 0;
	}

	/* Now we iterate the HCLK dividers until we find our breaking point */
	for (i = 5; i > 0; i--) {
		uint32_t tv, freq;

		/* Compare timing to max */
		freq = ast_ahb_freq / i;
		if (freq >= max_freq)
			continue;

		/* Set the timing */
		tv = ct->ctl_read_val | (ast_ct_hclk_divs[i - 1] << 8);
		ast_ahb_writel(tv, ct->ctl_reg);
		FL_DBG("AST: Trying HCLK/%d...\n", i);
		rc = ast_sf_calibrate_reads(ct, i, golden_buf, test_buf);

		/* Some other error occurred, bail out */
		if (rc && rc != FLASH_ERR_VERIFY_FAILURE) {
			free(test_buf);
			return rc;
		}
		if (rc == 0)
			best_div = i;
	}
	free(test_buf);

	/* Nothing found ? */
	if (best_div < 0)
		FL_ERR("AST: No good frequency, using dumb slow\n");
	else {
		FL_DBG("AST: Found good read timings at HCLK/%d\n", best_div);
		ct->ctl_read_val |= (ast_ct_hclk_divs[best_div - 1] << 8);
	}
	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

	return 0;
}

static int ast_sf_get_hclk(uint32_t *ctl_val, uint32_t max_freq)
{
	int i;

	/* It appears that running commands at HCLK/2 on some micron
	 * chips results in occasionally reads of bogus status (that
	 * or unrelated chip hangs).
	 *
	 * Since we cannot calibrate properly the reads for commands,
	 * instead, let's limit our SPI frequency to HCLK/4 to stay
	 * on the safe side of things
	 */
#define MIN_CMD_FREQ	4
	for (i = MIN_CMD_FREQ; i <= 5; i++) {
		uint32_t freq = ast_ahb_freq / i;
		if (freq >= max_freq)
			continue;
		*ctl_val |= (ast_ct_hclk_divs[i - 1] << 8);
		return i;
	}
	return 0;
}

static int ast_sf_setup_macronix(struct ast_sf_ctrl *ct, struct flash_info *info)
{
	int rc, div __unused;
	uint8_t srcr[2];

	/*
	 * Those Macronix chips support dual reads at 104Mhz
	 * and dual IO at 84Mhz with 4 dummies.
	 *
	 * Our calibration algo should give us something along
	 * the lines of HCLK/3 (HCLK/2 seems to work sometimes
	 * but appears to be fairly unreliable) which is 64Mhz
	 *
	 * So we chose dual IO mode.
	 *
	 * The CE# inactive width for reads must be 7ns, we set it
	 * to 3T which is about 15ns at the fastest speed we support
	 * HCLK/2) as I've had issue with smaller values.
	 *
	 * For write and program it's 30ns so let's set the value
	 * for normal ops to 6T.
	 *
	 * Preserve the current 4b mode.
	 */
	FL_DBG("AST: Setting up Macronix...\n");

	/*
	 * Read the status and config registers
	 */
	rc = ast_sf_cmd_rd(&ct->ops, CMD_RDSR, false, 0, &srcr[0], 1);
	if (rc != 0) {
		FL_ERR("AST: Failed to read status\n");
		return rc;
	}
	rc = ast_sf_cmd_rd(&ct->ops, CMD_RDCR, false, 0, &srcr[1], 1);
	if (rc != 0) {
		FL_ERR("AST: Failed to read configuration\n");
		return rc;
	}

	FL_DBG("AST: Macronix SR:CR: 0x%02x:%02x\n", srcr[0], srcr[1]);

	/* Switch to 8 dummy cycles to enable 104Mhz operations */
	srcr[1] = (srcr[1] & 0x3f) | 0x80;

	rc = fl_wren(&ct->ops);
	if (rc) {
		FL_ERR("AST: Failed to WREN for Macronix config\n");
		return rc;
	}

	rc = ast_sf_cmd_wr(&ct->ops, CMD_WRSR, false, 0, srcr, 2);
	if (rc != 0) {
		FL_ERR("AST: Failed to write Macronix config\n");
		return rc;
	}
	rc = fl_sync_wait_idle(&ct->ops);;
	if (rc != 0) {
		FL_ERR("AST: Failed waiting for config write\n");
		return rc;
	}

	FL_DBG("AST: Macronix SR:CR: 0x%02x:%02x\n", srcr[0], srcr[1]);

	/* Use 2READ */
	ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
		(0x03 << 28) | /* Dual IO */
		(0x0d << 24) | /* CE# width 3T */
		(0xbb << 16) | /* 2READ command */
		(0x00 <<  8) | /* HCLK/16 (optimize later) */
		(0x02 <<  6) | /* 2 bytes dummy cycle (8 clocks) */
		(0x01);	       /* fast read */

	/* Configure SPI flash read timing */
	rc = ast_sf_optimize_reads(ct, info, 104000000);
	if (rc) {
		FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);
		return rc;
	}

	/*
	 * For other commands and writes also increase the SPI clock
	 * to HCLK/2 since the chip supports up to 133Mhz and set
	 * CE# inactive to 6T. We request a timing that is 20% below
	 * the limit of the chip, so about 106Mhz which should fit.
	 */
	ct->ctl_val = (ct->ctl_val & 0x2000) |
		(0x00 << 28) | /* Single bit */
		(0x0a << 24) | /* CE# width 6T (b1010) */
		(0x00 << 16) | /* no command */
		(0x00 <<  8) | /* HCLK/16 (done later) */
		(0x00 <<  6) | /* no dummy cycle */
		(0x00);	       /* normal read */

	div = ast_sf_get_hclk(&ct->ctl_val, 106000000);
	FL_DBG("AST: Command timing set to HCLK/%d\n", div);

	/* Update chip with current read config */
	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
	return 0;
}

static int ast_sf_setup_winbond(struct ast_sf_ctrl *ct, struct flash_info *info)
{
	int rc, div __unused;

	FL_DBG("AST: Setting up Windbond...\n");

	/*
	 * This Windbond chip support dual reads at 104Mhz
	 * with 8 dummy cycles.
	 *
	 * The CE# inactive width for reads must be 10ns, we set it
	 * to 3T which is about 15.6ns.
	 */
	ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
		(0x02 << 28) | /* Dual bit data only */
		(0x0e << 24) | /* CE# width 2T (b1110) */
		(0x3b << 16) | /* DREAD command */
		(0x00 <<  8) | /* HCLK/16 */
		(0x01 <<  6) | /* 1-byte dummy cycle */
		(0x01);	       /* fast read */

	/* Configure SPI flash read timing */
	rc = ast_sf_optimize_reads(ct, info, 104000000);
	if (rc) {
		FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);
		return rc;
	}

	/*
	 * For other commands and writes also increase the SPI clock
	 * to HCLK/2 since the chip supports up to 133Mhz. CE# inactive
	 * for write and erase is 50ns so let's set it to 10T.
	 */
	ct->ctl_val = (ct->ctl_read_val & 0x2000) |
		(0x00 << 28) | /* Single bit */
		(0x06 << 24) | /* CE# width 10T (b0110) */
		(0x00 << 16) | /* no command */
		(0x00 <<  8) | /* HCLK/16 */
		(0x00 <<  6) | /* no dummy cycle */
		(0x01);	       /* fast read */

	div = ast_sf_get_hclk(&ct->ctl_val, 106000000);
	FL_DBG("AST: Command timing set to HCLK/%d\n", div);

	/* Update chip with current read config */
	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
	return 0;
}

static int ast_sf_setup_micron(struct ast_sf_ctrl *ct, struct flash_info *info)
{
	uint8_t	vconf, ext_id[6];
	int rc, div __unused;

	FL_DBG("AST: Setting up Micron...\n");

	/*
	 * Read the extended chip ID to try to detect old vs. new
	 * flashes since old Micron flashes have a lot of issues
	 */
	rc = ast_sf_cmd_rd(&ct->ops, CMD_RDID, false, 0, ext_id, 6);
	if (rc != 0) {
		FL_ERR("AST: Failed to read Micron ext ID, sticking to dumb speed\n");
		return 0;
	}
	/* Check ID matches expectations */
	if (ext_id[0] != ((info->id >> 16) & 0xff) ||
	    ext_id[1] != ((info->id >>  8) & 0xff) ||
	    ext_id[2] != ((info->id      ) & 0xff)) {
		FL_ERR("AST: Micron ext ID mismatch, sticking to dumb speed\n");
		return 0;
	}
	FL_DBG("AST: Micron ext ID byte: 0x%02x\n", ext_id[4]);

	/* Check for old (<45nm) chips, don't try to be fancy on those */
	if (!(ext_id[4] & 0x40)) {
		FL_DBG("AST: Old chip, using dumb timings\n");
		goto dumb;
	}

	/*
	 * Read the micron specific volatile configuration reg
	 */
	rc = ast_sf_cmd_rd(&ct->ops, CMD_MIC_RDVCONF, false, 0, &vconf, 1);
	if (rc != 0) {
		FL_ERR("AST: Failed to read Micron vconf, sticking to dumb speed\n");
		goto dumb;
	}
	FL_DBG("AST: Micron VCONF: 0x%02x\n", vconf);

	/* Switch to 8 dummy cycles (we might be able to operate with 4
	 * but let's keep some margin
	 */
	vconf = (vconf & 0x0f) | 0x80;

	rc = ast_sf_cmd_wr(&ct->ops, CMD_MIC_WRVCONF, false, 0, &vconf, 1);
	if (rc != 0) {
		FL_ERR("AST: Failed to write Micron vconf, "
		       " sticking to dumb speed\n");
		goto dumb;
	}
	rc = fl_sync_wait_idle(&ct->ops);;
	if (rc != 0) {
		FL_ERR("AST: Failed waiting for config write\n");
		return rc;
	}
	FL_DBG("AST: Updated to  : 0x%02x\n", vconf);

	/*
	 * Try to do full dual IO, with 8 dummy cycles it supports 133Mhz
	 *
	 * The CE# inactive width for reads must be 20ns, we set it
	 * to 4T which is about 20.8ns.
	 */
	ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
		(0x03 << 28) | /* Single bit */
		(0x0c << 24) | /* CE# 4T */
		(0xbb << 16) | /* 2READ command */
		(0x00 <<  8) | /* HCLK/16 (optimize later) */
		(0x02 <<  6) | /* 8 dummy cycles (2 bytes) */
		(0x01);	       /* fast read */

	/* Configure SPI flash read timing */
	rc = ast_sf_optimize_reads(ct, info, 133000000);
	if (rc) {
		FL_ERR("AST: Failed to setup proper read timings, rc=%d\n", rc);
		return rc;
	}

	/*
	 * For other commands and writes also increase the SPI clock
	 * to HCLK/2 since the chip supports up to 133Mhz. CE# inactive
	 * for write and erase is 50ns so let's set it to 10T.
	 */
	ct->ctl_val = (ct->ctl_read_val & 0x2000) |
		(0x00 << 28) | /* Single bit */
		(0x06 << 24) | /* CE# width 10T (b0110) */
		(0x00 << 16) | /* no command */
		(0x00 <<  8) | /* HCLK/16 */
		(0x00 <<  6) | /* no dummy cycle */
		(0x00);	       /* norm read */

	div = ast_sf_get_hclk(&ct->ctl_val, 133000000);
	FL_DBG("AST: Command timing set to HCLK/%d\n", div);

	/* Update chip with current read config */
	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

	return 0;

 dumb:
	ct->ctl_val = ct->ctl_read_val = (ct->ctl_read_val & 0x2000) |
		(0x00 << 28) | /* Single bit */
		(0x00 << 24) | /* CE# max */
		(0x03 << 16) | /* use normal reads */
		(0x06 <<  8) | /* HCLK/4 */
		(0x00 <<  6) | /* no dummy cycle */
		(0x00);	       /* normal read */

	/* Update chip with current read config */
	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

	return 0;
}

static int ast_sf_setup(struct spi_flash_ctrl *ctrl, uint32_t *tsize)
{
	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);	
	struct flash_info *info = ctrl->finfo;

	(void)tsize;

	/*
	 * Configure better timings and read mode for known
	 * flash chips
	 */
	switch(info->id) {		
	case 0xc22019: /* MX25L25635F */
	case 0xc2201a: /* MX66L51235F */
		return ast_sf_setup_macronix(ct, info);
	case 0xef4018: /* W25Q128BV */
		return ast_sf_setup_winbond(ct, info);
	case 0x20ba20: /* MT25Qx512xx */
		return ast_sf_setup_micron(ct, info);
	}
	/* No special tuning */
	return 0;
}

static bool ast_sf_init_pnor(struct ast_sf_ctrl *ct)
{
	uint32_t reg;

	ct->ctl_reg = PNOR_SPI_FCTL_CTRL;
	ct->fread_timing_reg = PNOR_SPI_FREAD_TIMING;
	ct->flash = PNOR_FLASH_BASE;

	/* Enable writing to the controller */
	reg = ast_ahb_readl(PNOR_SPI_FCTL_CONF);
	if (reg == 0xffffffff) {
		FL_ERR("AST_SF: Failed read from controller config\n");
		return false;
	}
	ast_ahb_writel(reg | 1, PNOR_SPI_FCTL_CONF);

	/*
	 * Snapshot control reg and sanitize it for our
	 * use, switching to 1-bit mode, clearing user
	 * mode if set, etc...
	 *
	 * Also configure SPI clock to something safe
	 * like HCLK/8 (24Mhz)
	 */
	ct->ctl_val = ast_ahb_readl(ct->ctl_reg);
	if (ct->ctl_val == 0xffffffff) {
		FL_ERR("AST_SF: Failed read from controller control\n");
		return false;
	}

	ct->ctl_val = (ct->ctl_val & 0x2000) |
		(0x00 << 28) | /* Single bit */
		(0x00 << 24) | /* CE# width 16T */
		(0x00 << 16) | /* no command */
		(0x04 <<  8) | /* HCLK/8 */
		(0x00 <<  6) | /* no dummy cycle */
		(0x00);	       /* normal read */

	/* Initial read mode is default */
	ct->ctl_read_val = ct->ctl_val;

	/* Initial read timings all 0 */
	ct->fread_timing_val = 0;

	/* Configure for read */
	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
	ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);

	if (ct->ctl_val & 0x2000)
		ct->mode_4b = true;
	else
		ct->mode_4b = false;

	return true;
}

static bool ast_sf_init_bmc(struct ast_sf_ctrl *ct)
{
	ct->ctl_reg = BMC_SPI_FCTL_CTRL;
	ct->fread_timing_reg = BMC_SPI_FREAD_TIMING;
	ct->flash = BMC_FLASH_BASE;

	/*
	 * Snapshot control reg and sanitize it for our
	 * use, switching to 1-bit mode, clearing user
	 * mode if set, etc...
	 *
	 * Also configure SPI clock to something safe
	 * like HCLK/8 (24Mhz)
	 */
	ct->ctl_val =
		(0x00 << 28) | /* Single bit */
		(0x00 << 24) | /* CE# width 16T */
		(0x00 << 16) | /* no command */
		(0x04 <<  8) | /* HCLK/8 */
		(0x00 <<  6) | /* no dummy cycle */
		(0x00);	       /* normal read */

	/* Initial read mode is default */
	ct->ctl_read_val = ct->ctl_val;

	/* Initial read timings all 0 */
	ct->fread_timing_val = 0;

	/* Configure for read */
	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);
	ast_ahb_writel(ct->fread_timing_val, ct->fread_timing_reg);

	ct->mode_4b = false;

	return true;
}

int ast_sf_open(uint8_t type, struct spi_flash_ctrl **ctrl)
{
	struct ast_sf_ctrl *ct;

	if (type != AST_SF_TYPE_PNOR && type != AST_SF_TYPE_BMC)
		return -EINVAL;

	*ctrl = NULL;
	ct = malloc(sizeof(*ct));
	if (!ct) {
		FL_ERR("AST_SF: Failed to allocate\n");
		return -ENOMEM;
	}
	memset(ct, 0, sizeof(*ct));
	ct->type = type;
	ct->ops.cmd_wr = ast_sf_cmd_wr;
	ct->ops.cmd_rd = ast_sf_cmd_rd;
	ct->ops.set_4b = ast_sf_set_4b;
	ct->ops.read = ast_sf_read;
	ct->ops.setup = ast_sf_setup;

	ast_get_ahb_freq();

	if (type == AST_SF_TYPE_PNOR) {
		if (!ast_sf_init_pnor(ct))
			goto fail;
	} else {
		if (!ast_sf_init_bmc(ct))
			goto fail;
	}

	*ctrl = &ct->ops;

	return 0;
 fail:
	free(ct);
	return -EIO;
}

void ast_sf_close(struct spi_flash_ctrl *ctrl)
{
	struct ast_sf_ctrl *ct = container_of(ctrl, struct ast_sf_ctrl, ops);

	/* Restore control reg to read */
	ast_ahb_writel(ct->ctl_read_val, ct->ctl_reg);

	/* Additional cleanup */
	if (ct->type == AST_SF_TYPE_PNOR) {
		uint32_t reg = ast_ahb_readl(PNOR_SPI_FCTL_CONF);
		if (reg != 0xffffffff)
			ast_ahb_writel(reg & ~1, PNOR_SPI_FCTL_CONF);
	}

	/* Free the whole lot */
	free(ct);
}

OpenPOWER on IntegriCloud