1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
|
/* Copyright 2013-2014 IBM Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
* implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <skiboot.h>
#include <fsp.h>
#include <fsp-sysparam.h>
#include <psi.h>
#include <memory.h>
#include <chiptod.h>
#include <nx.h>
#include <cpu.h>
#include <processor.h>
#include <xscom.h>
#include <device_tree.h>
#include <opal.h>
#include <opal-msg.h>
#include <elf.h>
#include <io.h>
#include <cec.h>
#include <device.h>
#include <pci.h>
#include <lpc.h>
#include <chip.h>
#include <interrupts.h>
#include <mem_region.h>
#include <trace.h>
#include <console.h>
#include <fsi-master.h>
#include <centaur.h>
#include <libfdt/libfdt.h>
#include <hostservices.h>
/*
* Boot semaphore, incremented by each CPU calling in
*
* Forced into data section as it will be used before BSS is initialized
*/
enum ipl_state ipl_state = ipl_initial;
enum proc_gen proc_gen;
static uint64_t kernel_entry;
static bool kernel_32bit;
static void *fdt;
struct debug_descriptor debug_descriptor = {
.eye_catcher = "OPALdbug",
.version = DEBUG_DESC_VERSION,
.memcons_phys = (uint64_t)&memcons,
.trace_mask = 0, /* All traces disabled by default */
.console_log_levels = (PR_DEBUG << 4) | PR_NOTICE,
};
static bool try_load_elf64_le(struct elf_hdr *header)
{
struct elf64_hdr *kh = (struct elf64_hdr *)header;
uint64_t load_base = (uint64_t)kh;
struct elf64_phdr *ph;
unsigned int i;
printf("INIT: 64-bit LE kernel discovered\n");
/* Look for a loadable program header that has our entry in it
*
* Note that we execute the kernel in-place, we don't actually
* obey the load informations in the headers. This is expected
* to work for the Linux Kernel because it's a fairly dumb ELF
* but it will not work for any ELF binary.
*/
ph = (struct elf64_phdr *)(load_base + le64_to_cpu(kh->e_phoff));
for (i = 0; i < le16_to_cpu(kh->e_phnum); i++, ph++) {
if (le32_to_cpu(ph->p_type) != ELF_PTYPE_LOAD)
continue;
if (le64_to_cpu(ph->p_vaddr) > le64_to_cpu(kh->e_entry) ||
(le64_to_cpu(ph->p_vaddr) + le64_to_cpu(ph->p_memsz)) <
le64_to_cpu(kh->e_entry))
continue;
/* Get our entry */
kernel_entry = le64_to_cpu(kh->e_entry) -
le64_to_cpu(ph->p_vaddr) + le64_to_cpu(ph->p_offset);
break;
}
if (!kernel_entry) {
prerror("INIT: Failed to find kernel entry !\n");
return false;
}
kernel_entry += load_base;
kernel_32bit = false;
printf("INIT: 64-bit kernel entry at 0x%llx\n", kernel_entry);
return true;
}
static bool try_load_elf64(struct elf_hdr *header)
{
struct elf64_hdr *kh = (struct elf64_hdr *)header;
uint64_t load_base = (uint64_t)kh;
struct elf64_phdr *ph;
unsigned int i;
/* Check it's a ppc64 LE ELF */
if (kh->ei_ident == ELF_IDENT &&
kh->ei_data == ELF_DATA_LSB &&
kh->e_machine == le16_to_cpu(ELF_MACH_PPC64)) {
return try_load_elf64_le(header);
}
/* Check it's a ppc64 ELF */
if (kh->ei_ident != ELF_IDENT ||
kh->ei_data != ELF_DATA_MSB ||
kh->e_machine != ELF_MACH_PPC64) {
prerror("INIT: Kernel doesn't look like an ppc64 ELF\n");
return false;
}
/* Look for a loadable program header that has our entry in it
*
* Note that we execute the kernel in-place, we don't actually
* obey the load informations in the headers. This is expected
* to work for the Linux Kernel because it's a fairly dumb ELF
* but it will not work for any ELF binary.
*/
ph = (struct elf64_phdr *)(load_base + kh->e_phoff);
for (i = 0; i < kh->e_phnum; i++, ph++) {
if (ph->p_type != ELF_PTYPE_LOAD)
continue;
if (ph->p_vaddr > kh->e_entry ||
(ph->p_vaddr + ph->p_memsz) < kh->e_entry)
continue;
/* Get our entry */
kernel_entry = kh->e_entry - ph->p_vaddr + ph->p_offset;
break;
}
if (!kernel_entry) {
prerror("INIT: Failed to find kernel entry !\n");
return false;
}
kernel_entry += load_base;
kernel_32bit = false;
printf("INIT: 64-bit kernel entry at 0x%llx\n", kernel_entry);
return true;
}
static bool try_load_elf32_le(struct elf_hdr *header)
{
struct elf32_hdr *kh = (struct elf32_hdr *)header;
uint64_t load_base = (uint64_t)kh;
struct elf32_phdr *ph;
unsigned int i;
printf("INIT: 32-bit LE kernel discovered\n");
/* Look for a loadable program header that has our entry in it
*
* Note that we execute the kernel in-place, we don't actually
* obey the load informations in the headers. This is expected
* to work for the Linux Kernel because it's a fairly dumb ELF
* but it will not work for any ELF binary.
*/
ph = (struct elf32_phdr *)(load_base + le32_to_cpu(kh->e_phoff));
for (i = 0; i < le16_to_cpu(kh->e_phnum); i++, ph++) {
if (le32_to_cpu(ph->p_type) != ELF_PTYPE_LOAD)
continue;
if (le32_to_cpu(ph->p_vaddr) > le32_to_cpu(kh->e_entry) ||
(le32_to_cpu(ph->p_vaddr) + le32_to_cpu(ph->p_memsz)) <
le32_to_cpu(kh->e_entry))
continue;
/* Get our entry */
kernel_entry = le32_to_cpu(kh->e_entry) -
le32_to_cpu(ph->p_vaddr) + le32_to_cpu(ph->p_offset);
break;
}
if (!kernel_entry) {
prerror("INIT: Failed to find kernel entry !\n");
return false;
}
kernel_entry += load_base;
kernel_32bit = true;
printf("INIT: 32-bit kernel entry at 0x%llx\n", kernel_entry);
return true;
}
static bool try_load_elf32(struct elf_hdr *header)
{
struct elf32_hdr *kh = (struct elf32_hdr *)header;
uint64_t load_base = (uint64_t)kh;
struct elf32_phdr *ph;
unsigned int i;
/* Check it's a ppc32 LE ELF */
if (header->ei_ident == ELF_IDENT &&
header->ei_data == ELF_DATA_LSB &&
header->e_machine == le16_to_cpu(ELF_MACH_PPC32)) {
return try_load_elf32_le(header);
}
/* Check it's a ppc32 ELF */
if (header->ei_ident != ELF_IDENT ||
header->ei_data != ELF_DATA_MSB ||
header->e_machine != ELF_MACH_PPC32) {
prerror("INIT: Kernel doesn't look like an ppc32 ELF\n");
return false;
}
/* Look for a loadable program header that has our entry in it
*
* Note that we execute the kernel in-place, we don't actually
* obey the load informations in the headers. This is expected
* to work for the Linux Kernel because it's a fairly dumb ELF
* but it will not work for any ELF binary.
*/
ph = (struct elf32_phdr *)(load_base + kh->e_phoff);
for (i = 0; i < kh->e_phnum; i++, ph++) {
if (ph->p_type != ELF_PTYPE_LOAD)
continue;
if (ph->p_vaddr > kh->e_entry ||
(ph->p_vaddr + ph->p_memsz) < kh->e_entry)
continue;
/* Get our entry */
kernel_entry = kh->e_entry - ph->p_vaddr + ph->p_offset;
break;
}
if (!kernel_entry) {
prerror("INIT: Failed to find kernel entry !\n");
return false;
}
kernel_entry += load_base;
kernel_32bit = true;
printf("INIT: 32-bit kernel entry at 0x%llx\n", kernel_entry);
return true;
}
/* LID numbers. For now we hijack some of pHyp's own until i figure
* out the whole business with the MasterLID
*/
#define KERNEL_LID_PHYP 0x80a00701
#define KERNEL_LID_OPAL 0x80f00101
extern char __builtin_kernel_start[];
extern char __builtin_kernel_end[];
extern uint64_t boot_offset;
static bool load_kernel(void)
{
struct elf_hdr *kh;
uint32_t lid;
size_t ksize;
const char *ltype;
ltype = dt_prop_get_def(dt_root, "lid-type", NULL);
/* No lid-type, assume stradale, currently pre-loaded at fixed
* address
*/
if (!ltype) {
printf("No lid-type property, assuming FSP-less setup\n");
ksize = __builtin_kernel_end - __builtin_kernel_start;
if (ksize) {
/* Move the built-in kernel up */
uint64_t builtin_base =
((uint64_t)__builtin_kernel_start) -
SKIBOOT_BASE + boot_offset;
printf("Using built-in kernel\n");
memmove(KERNEL_LOAD_BASE, (void*)builtin_base, ksize);
} else
printf("Assuming kernel at 0x%p\n", KERNEL_LOAD_BASE);
} else {
ksize = KERNEL_LOAD_SIZE;
/* First try to load an OPAL secondary LID always */
lid = fsp_adjust_lid_side(KERNEL_LID_OPAL);
printf("Trying to load OPAL secondary LID...\n");
if (fsp_fetch_data(0, FSP_DATASET_NONSP_LID, lid, 0,
KERNEL_LOAD_BASE, &ksize) != 0) {
if (!strcmp(ltype, "opal")) {
prerror("Failed to load in OPAL mode...\n");
return false;
}
printf("Trying to load as PHYP LID...\n");
lid = fsp_adjust_lid_side(KERNEL_LID_PHYP);
ksize = KERNEL_LOAD_SIZE;
if (fsp_fetch_data(0, FSP_DATASET_NONSP_LID, lid, 0,
KERNEL_LOAD_BASE, &ksize) != 0) {
prerror("Failed to load kernel\n");
return false;
}
}
}
printf("INIT: Kernel loaded, size: %zu bytes (0 = unknown preload)\n",
ksize);
kh = (struct elf_hdr *)KERNEL_LOAD_BASE;
if (kh->ei_class == ELF_CLASS_64)
return try_load_elf64(kh);
else if (kh->ei_class == ELF_CLASS_32)
return try_load_elf32(kh);
printf("INIT: Neither ELF32 not ELF64 ?\n");
return false;
}
void __noreturn load_and_boot_kernel(bool is_reboot)
{
const struct dt_property *memprop;
uint64_t mem_top;
memprop = dt_find_property(dt_root, DT_PRIVATE "maxmem");
if (memprop)
mem_top = (u64)dt_property_get_cell(memprop, 0) << 32
| dt_property_get_cell(memprop, 1);
else /* XXX HB hack, might want to calc it */
mem_top = 0x40000000;
op_display(OP_LOG, OP_MOD_INIT, 0x000A);
/* Load kernel LID */
if (!load_kernel()) {
op_display(OP_FATAL, OP_MOD_INIT, 1);
abort();
}
if (!is_reboot) {
/* We wait for the nvram read to complete here so we can
* grab stuff from there such as the kernel arguments
*/
fsp_nvram_wait_open();
/* Wait for FW VPD data read to complete */
fsp_code_update_wait_vpd(true);
}
fsp_console_select_stdout();
/*
* OCC takes few secs to boot. Call this as late as
* as possible to avoid delay.
*/
occ_pstates_init();
/* Set kernel command line argument if specified */
#ifdef KERNEL_COMMAND_LINE
dt_add_property_string(dt_chosen, "bootargs", KERNEL_COMMAND_LINE);
#endif
op_display(OP_LOG, OP_MOD_INIT, 0x000B);
/* Create the device tree blob to boot OS. */
fdt = create_dtb(dt_root);
if (!fdt) {
op_display(OP_FATAL, OP_MOD_INIT, 2);
abort();
}
op_display(OP_LOG, OP_MOD_INIT, 0x000C);
/* Start the kernel */
if (!is_reboot)
op_panel_disable_src_echo();
/* Clear SRCs on the op-panel when Linux starts */
op_panel_clear_src();
cpu_give_self_os();
printf("INIT: Starting kernel at 0x%llx, fdt at %p (size 0x%x)\n",
kernel_entry, fdt, fdt_totalsize(fdt));
fdt_set_boot_cpuid_phys(fdt, this_cpu()->pir);
if (kernel_32bit)
start_kernel32(kernel_entry, fdt, mem_top);
start_kernel(kernel_entry, fdt, mem_top);
}
static void dt_fixups(void)
{
struct dt_node *n;
struct dt_node *primary_lpc = NULL;
/* lpc node missing #address/size cells. Also pick one as
* primary for now (TBD: How to convey that from HB)
*/
dt_for_each_compatible(dt_root, n, "ibm,power8-lpc") {
if (!primary_lpc || dt_has_node_property(n, "primary", NULL))
primary_lpc = n;
if (dt_has_node_property(n, "#address-cells", NULL))
break;
dt_add_property_cells(n, "#address-cells", 2);
dt_add_property_cells(n, "#size-cells", 1);
dt_add_property_strings(n, "status", "ok");
}
/* Missing "primary" property in LPC bus */
if (primary_lpc && !dt_has_node_property(primary_lpc, "primary", NULL))
dt_add_property(primary_lpc, "primary", NULL, 0);
/* Missing "scom-controller" */
dt_for_each_compatible(dt_root, n, "ibm,xscom") {
if (!dt_has_node_property(n, "scom-controller", NULL))
dt_add_property(n, "scom-controller", NULL, 0);
}
}
static void add_arch_vector(void)
{
/**
* vec5 = a PVR-list : Number-of-option-vectors :
* option-vectors[Number-of-option-vectors + 1]
*/
uint8_t vec5[] = {0x05, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00};
if (dt_has_node_property(dt_chosen, "ibm,architecture-vec-5", NULL))
return;
dt_add_property(dt_chosen, "ibm,architecture-vec-5",
vec5, sizeof(vec5));
}
static void dt_init_misc(void)
{
/* Check if there's a /chosen node, if not, add one */
dt_chosen = dt_find_by_path(dt_root, "/chosen");
if (!dt_chosen)
dt_chosen = dt_new(dt_root, "chosen");
assert(dt_chosen);
/* Add IBM architecture vectors if needed */
add_arch_vector();
/* Add the "OPAL virtual ICS*/
add_ics_node();
/* Additional fixups. TODO: Move into platform */
dt_fixups();
}
/* Called from head.S, thus no prototype. */
void main_cpu_entry(const void *fdt, u32 master_cpu);
void __noreturn main_cpu_entry(const void *fdt, u32 master_cpu)
{
/*
* WARNING: At this point. the timebases have
* *not* been synchronized yet. Do not use any timebase
* related functions for timeouts etc... unless you can cope
* with the speed being some random core clock divider and
* the value jumping backward when the synchronization actually
* happens (in chiptod_init() below).
*
* Also the current cpu_thread() struct is not initialized
* either so we need to clear it out first thing first (without
* putting any other useful info in there jus yet) otherwise
* printf an locks are going to play funny games with "con_suspend"
*/
pre_init_boot_cpu();
/*
* Before first printk, ensure console buffer is clear or
* reading tools might think it has wrapped
*/
clear_console();
printf("SkiBoot %s starting...\n", gitid);
printf("initial console log level: memory %d, driver %d\n",
(debug_descriptor.console_log_levels >> 4),
(debug_descriptor.console_log_levels & 0x0f));
prlog(PR_TRACE, "You will not see this\n");
/* Initialize boot cpu's cpu_thread struct */
init_boot_cpu();
/* Now locks can be used */
init_locks();
/* Create the OPAL call table early on, entries can be overridden
* later on (FSP console code for example)
*/
opal_table_init();
/*
* If we are coming in with a flat device-tree, we expand it
* now. Else look for HDAT and create a device-tree from them
*
* Hack alert: When entering via the OPAL entry point, fdt
* is set to -1, we record that and pass it to parse_hdat
*/
if (fdt == (void *)-1ul)
parse_hdat(true, master_cpu);
else if (fdt == NULL)
parse_hdat(false, master_cpu);
else {
dt_expand(fdt);
}
/*
* From there, we follow a fairly strict initialization order.
*
* First we need to build up our chip data structures and initialize
* XSCOM which will be needed for a number of susbequent things.
*
* We want XSCOM available as early as the platform probe in case the
* probe requires some HW accesses.
*
* We also initialize the FSI master at that point in case we need
* to access chips via that path early on.
*/
init_chips();
xscom_init();
mfsi_init();
/*
* Put various bits & pieces in device-tree that might not
* already be there such as the /chosen node if not there yet,
* the ICS node, etc... This can potentially use XSCOM
*/
dt_init_misc();
/*
* Initialize LPC (P8 only) so we can get to UART, BMC and
* other system controller. This is done before probe_platform
* so that the platform probing code can access an external
* BMC if needed.
*/
lpc_init();
/*
* Now, we init our memory map from the device-tree, and immediately
* reserve areas which we know might contain data coming from
* HostBoot. We need to do these things before we start doing
* allocations outside of our heap, such as chip local allocs,
* otherwise we might clobber those data.
*/
mem_region_init();
/* Reserve HOMER and OCC area */
homer_init();
/* Initialize host services. */
hservices_init();
/*
* We probe the platform now. This means the platform probe gets
* the opportunity to reserve additional areas of memory if needed.
*
* Note: Timebases still not synchronized.
*/
probe_platform();
/* Initialize the rest of the cpu thread structs */
init_all_cpus();
/* Add the /opal node to the device-tree */
add_opal_node();
/* Allocate our split trace buffers now. Depends add_opal_node() */
init_trace_buffers();
/* Get the ICPs and make sure they are in a sane state */
init_interrupts();
/* Grab centaurs from device-tree if present (only on FSP-less) */
centaur_init();
/* Initialize PSI (depends on probe_platform being called) */
psi_init();
/* Call in secondary CPUs */
cpu_bringup();
/*
* Sycnhronize time bases. Thi resets all the TB values to a small
* value (so they appear to go backward at this point), and synchronize
* all core timebases to the global ChipTOD network
*/
chiptod_init(master_cpu);
/*
* We have initialized the basic HW, we can now call into the
* platform to perform subsequent inits, such as establishing
* communication with the FSP.
*/
if (platform.init)
platform.init();
/* Init SLW related stuff, including fastsleep */
slw_init();
op_display(OP_LOG, OP_MOD_INIT, 0x0002);
/* Read in NVRAM and set it up */
nvram_init();
/* NX init */
nx_init();
/* Initialize the opal messaging */
opal_init_msg();
/* Probe IO hubs */
probe_p5ioc2();
probe_p7ioc();
/* Probe PHB3 on P8 */
probe_phb3();
/* Initialize PCI */
pci_init_slots();
/*
* These last few things must be done as late as possible
* because they rely on various other things having been setup,
* for example, add_opal_interrupts() will add all the interrupt
* sources that are going to the firmware. We can't add a new one
* after that call. Similarily, the mem_region calls will construct
* the reserve maps in the DT so we shouldn't affect the memory
* regions after that
*/
/* Add the list of interrupts going to OPAL */
add_opal_interrupts();
/* Now release parts of memory nodes we haven't used ourselves... */
mem_region_release_unused();
/* ... and add remaining reservations to the DT */
mem_region_add_dt_reserved();
load_and_boot_kernel(false);
}
void __noreturn __secondary_cpu_entry(void)
{
struct cpu_thread *cpu = this_cpu();
/* Secondary CPU called in */
cpu_callin(cpu);
/* Wait for work to do */
while(true) {
int i;
/* Process pending jobs on this processor */
cpu_process_jobs();
/* Relax a bit to give the simulator some breathing space */
i = 1000;
while (--i)
smt_very_low();
smt_low();
}
}
/* Called from head.S, thus no prototype. */
void secondary_cpu_entry(void);
void __noreturn secondary_cpu_entry(void)
{
struct cpu_thread *cpu = this_cpu();
printf("INIT: CPU PIR 0x%04x called in\n", cpu->pir);
__secondary_cpu_entry();
}
|