1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
/// \file ppe42_mulhw.S
/// \brief PPC405 word multiplication instructions implemented by PPE ISA
///
/// This file includes implementation for the following PPC405 instructions
/// mulhw
///
/// Note: PPE ISA specific "fused compare and branch" instructions are used
///
/// Revision History:
/// 09-15-2014: Initial Version by daviddu
///
.file "ppe42_mulhw.S"
.section ".text"
/*
** Code comment notation:
**
** msw = most-significant (high-order) word, i.e. bits 0..31
** lsw = least-significant (low-order) word, i.e. bits 32..63
** msh = most-significant (high-order) halfword, i.e. bits 0..15
** lsh = least-significant (low-order) halfword, i.e. bits 16..63
** LZ = Leading Zeroes
** SD = Significant Digits
** OW = Register is overwritten, previous value is lost,
** correct if previous value is no longer needed.
** FU = Register is not overwritten, but its value is no longer needed,
** in another word, the register is "free for use".
**
** PPE GPR Registers are: R0-R10, R13, R28-R31
** Volatile Registers are: R0, R3-R10
** Non-volatile registers are R28-R31
*/
/*
** Caling Convention
**
** R2 and R13 are never saved or restored. In ABI or EABI application
** these registers are constant. The other touched volatile registers
** will be saved and restored by the subroutines. Note the caller
** wont be saving those registers because these subroutines will be
** instrumented into caller's body without compiler knowledge.
**
** Note R3 is not saved and restored because it will be changed for
** return value anyways, the p2p script will make sure to restore it.
** Also CR is hanlded because of compare and branch, but XER/CTR/LR
** are not hanlded because they are untouched by the instructions used.
**
** Stack layout:
**
** 0x00 -- R1, Dedicated for Stack Pointer
** 0x04 -- slot reserved for LR
** 0x08 -- R4, Volatile, Private
** 0x0c -- R5, Volatile, Private
** 0x10 -- R6, Volatile, Private
** 0x14 -- R7, Volatile, Private
** 0x18 -- R8, Volatile, Private
** 0x1c -- R9, Volatile, Private
** 0x20 -- CR, Condition Register
** 0x24 --
**
** 0x28 -- Stack Size, Must be 8-byte aligned
*/
/*
** Multiplication Procedures:
**
** __ppe42_mulhwu(U,V)
** __ppe42_mulhw(U,V)
** __ppe42_mullw(U,V)
**
** R3:R4 = Input parameter, multipliers: U, V.
** R3 = Output parameter, either product.msh or product.lsh.
** R5-R9 = Temporary registers
**
** General Algorithm
**
** Using PPC405 ISA instruction 'mullhw' to emulate
** Note: U,V,A,B,C,D,Product are all 32-bit integers(with msh and lsh)
**
** U.msh U.lsh
** X V.msh V.lsh
** ------------------------
** A.msh A.lsh
** B.msh B.lsh
** C.msh C.lsh
** D.msh D.lsh
** ------------------------
** Product.msw Product.lsw
**
** __ppe42_mulhwu: Return Product.msh (unsigned)
** __ppe42_mulhw: Return Product.msh (signed)
** __ppe42_mullw: Return Product.lsh
**
** Precondition Check:
**
** if( U == 0 || V == 0 ) return P=0;
*/
/*****************************************************************************/
/*
** Multiply High Word Signed (__ppe42_mulhw)
**
** Using Multiply High Word Unsigned(mulhwu) to emulate
**
** u = absolute(U);
** v = absolute(V);
** p = __ppe42_mulhwu(u, v);
** if( U[0] xor V[0] )
** p = -p
*/
.align 2
.global __ppe42_mulhw
.type __ppe42_mulhw, @function
__ppe42_mulhw:
stwu %r1, -0x28(%r1) // allocate stack frame
stvd %d4, 0x08(%r1) // save off r4 & r5 in stack
stvd %d6, 0x10(%r1) // save off r6 & r7 in stack
stvd %d8, 0x18(%r1) // save off r8 & r9 in stack
mfcr %r5 // save off cr
stw %r5, 0x20(%r1) // store cr in stack
li %r5, 0 // r5 = 0
cmpwibc 1, 2, %r3, 0, __ppe42_mulhw_ret // U=0 -> ret
cmpwibc 1, 2, %r4, 0, __ppe42_mulhw_ret // V=0 -> ret
cmpwibc 1, 1, %r3, 0, __ppe42_mulhw_csc // U>0 -> csc
neg %r3, %r3 // absolute(U)
li %r5, 1 // U<0 -> r5 = 1
__ppe42_mulhw_csc: // <<continue sign check>>
li %r6, 0 // V>0 -> r6 = 0
cmpwibc 1, 1, %r4, 0, __ppe42_mulhw_uns // V>0 -> uns
neg %r4, %r4 // absolute(V)
li %r6, 1 // V<0 -> r6 = 1
__ppe42_mulhw_uns: // <<unsigned multiplication>>
xor %r9, %r5, %r6 // remember sign difference
extrwi %r5, %r3, 16, 16
srwi %r3, %r3, 16
extrwi %r6, %r4, 16, 16
srwi %r4, %r4, 16
mullhwu %r7, %r5, %r6
srwi %r7, %r7, 16
mullhwu %r6, %r3, %r6
extrwi %r8, %r6, 16, 16
srwi %r6, %r6, 16
add %r7, %r8, %r7
mullhwu %r5, %r5, %r4
extrwi %r8, %r5, 16, 16
srwi %r5, %r5, 16
add %r7, %r8, %r7
srwi %r7, %r7, 16
add %r7, %r7, %r6
add %r7, %r7, %r5
mullhwu %r3, %r3, %r4
add %r5, %r3, %r7
cmpwibc 1, 2, %r9, 0, __ppe42_mulhw_ret // if same sign, r5 stays +
neg %r5, %r5 // otherwise, neg(r5)
__ppe42_mulhw_ret:
mr %r3, %r5 // put return value to r3
lwz %r5, 0x20(%r1) // load cr from stack
mtcr0 %r5 // restore cr
lvd %d4, 0x08(%r1) // restore r4 & r5 from stack
lvd %d6, 0x10(%r1) // restore r6 & r7 from stack
lvd %d8, 0x18(%r1) // restore r8 & r9 from stack
lwz %r1, 0(%r1) // restore stack pointer
blr
.size __ppe42_mulhw, .-__ppe42_mulhw
|