summaryrefslogtreecommitdiffstats
path: root/src/import/chips/p9/procedures/hwp/nest/p9_sbe_check_quiesce.C
blob: 3b134c4d30954442742055f4db7aeb2bf07cf36d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/import/chips/p9/procedures/hwp/nest/p9_sbe_check_quiesce.C $ */
/*                                                                        */
/* OpenPOWER sbe Project                                                  */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2016,2018                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */
//--------------------------------------------------------------------------
//
//
/// @file p9_sbe_check_quiesce.C
/// @brief Check quiesce state for all units on the powerbus
///
// *HWP HWP Owner: Joe McGill <jmcgill@us.ibm.com>
// *HWP FW Owner: Thi Tran thi@us.ibm.com
// *HWP Team: Nest
// *HWP Level: 3
// *HWP Consumed by: SBE
//
//--------------------------------------------------------------------------

//--------------------------------------------------------------------------
// Includes
//--------------------------------------------------------------------------
#include <p9_sbe_check_quiesce.H>
#include <p9_quad_scom_addresses.H>
#include <p9_misc_scom_addresses_fld.H>
#include <p9_misc_scom_addresses.H>
#include <p9_perv_scom_addresses_fld.H>
#include <p9_perv_scom_addresses.H>
#include <p9_suspend_io.H>
#include <p9n2_misc_scom_addresses.H>

//Needed for SW reset of XIVE unit
#include <p9_thread_control.H>
#include <p9_fbc_utils.H>
#include <p9_adu_setup.H>
#include <p9_adu_access.H>
#include <p9_adu_coherent_utils.H>

extern "C" {

//-----------------------------------------------------------------------------------
// Constant definitions
//-----------------------------------------------------------------------------------
    //This is how many times each unit will try to do the quiesce if it has a wait for some cycles
    const uint32_t C_NUM_TRIES_QUIESCE_STATE = 10000;
    //These are the delays for the units that need them
    const uint32_t C_CAPP_DELAY_NS = 168000000 / C_NUM_TRIES_QUIESCE_STATE; //168 ms
    const uint32_t C_CAPP_DELAY_CYCLES = 336000000 / C_NUM_TRIES_QUIESCE_STATE; //2GHz * 168 ms
    const uint32_t C_NPU_DELAY_NS = 150000 / C_NUM_TRIES_QUIESCE_STATE; //150 microseconds
    const uint32_t C_NPU_DELAY_CYCLES = 300000 / C_NUM_TRIES_QUIESCE_STATE; //2GHz * 150 microseconds
    const uint32_t C_DELAY_NS_396      = 396000000 / C_NUM_TRIES_QUIESCE_STATE; //396 ms
    const uint32_t C_DELAY_CYCLES_396 = 792000000 / C_NUM_TRIES_QUIESCE_STATE; //2GHz * 396 ms
    const uint32_t C_INTP_DELAY_NS = 10000 / C_NUM_TRIES_QUIESCE_STATE; //10 microseconds
    const uint32_t C_INTP_DELAY_CYCLES = 20000 / C_NUM_TRIES_QUIESCE_STATE; //2GHz * 10 microseconds

    const uint32_t PHB_HV_IND_ADDR_VALID_BIT = 0;
    const uint32_t PHB_HV_IND_ADDR_START_BIT = 52;
    const uint32_t PHB_HV_IND_ADDR_LEN = 12;

//--------------------------------------------------------------------------
//  HWP entry point
//--------------------------------------------------------------------------
    fapi2::ReturnCode p9_sbe_check_quiesce(
        const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target)
    {
        FAPI_DBG("p9_sbe_check_quiesce: Entering..");

        // SBE will check quiesce state for all units on the powerbus on its chip
        FAPI_TRY(p9_capp_check_quiesce(i_target), "Error from p9_capp_check_quiesce");
        FAPI_TRY(p9_phb_check_quiesce(i_target), "Error from p9_phb_check_quiesce");
        FAPI_TRY(p9_npu_check_quiesce(i_target), "Error from p9_npu_check_quiesce");
        FAPI_TRY(p9_vas_check_quiesce(i_target), "Error from p9_vas_check_quiesce");
        FAPI_TRY(p9_nx_check_quiesce(i_target), "Error from p9_nx_check_quiesce");
        FAPI_TRY(p9_psihb_check_quiesce(i_target), "Error from p9_psihb_check_quiesce");
        FAPI_TRY(p9_intp_check_quiesce(i_target), "Error from p9_intp_check_quiesce");

        //We also need to clean up any active special wakeups, and redirect
        //special wakeups to the SGPE
        FAPI_TRY(p9_pm_check_quiesce(i_target), " Error from p9_pm_check_quiesce");

    fapi_try_exit:
        fapi2::ReturnCode saveError = fapi2::current_err;
        fapi2::buffer<uint64_t> l_data(0);

        //If the quiesce fails then checkstop the system
        if (fapi2::current_err)
        {
            //Checkstop the system
            l_data.setBit<34>();
            fapi2::ReturnCode rc = fapi2::putScom(i_target, PERV_N3_LOCAL_FIR_OR, l_data);

            if (rc)
            {
                FAPI_INF("ERROR: There was an error doing the checkstop, "
                         "it may not have gone through");
            }
        }

        FAPI_DBG("p9_sbe_check_quiesce: Exiting..");
        return saveError;
    }

//---------------------------------------------------------------------------
//  Helper Functions
//---------------------------------------------------------------------------

    //---------------------------------------------------------------------------------
    // NOTE: description in header
    //---------------------------------------------------------------------------------
    fapi2::ReturnCode p9_capp_check_quiesce(
        const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target)
    {
        FAPI_DBG("p9_capp_check_quiesce: Entering ....");

        fapi2::buffer<uint64_t> l_data(0);

        FAPI_TRY(fapi2::getScom(i_target, CAPP_FLUSHSHUE, l_data));

        if (l_data != 0x0ull)
        {

            // read the value of CAPP Error status and control register so we don't
            // write over something
            FAPI_TRY(fapi2::getScom(i_target, CAPP_CAPP_ERR_STATUS_CONTROL, l_data));

            // Write the Force Quiesce bit
            l_data.setBit<CAPP_CAPP_ERR_STATUS_CONTROL_FORCE_QUIESCE>();
            FAPI_TRY(fapi2::putScom(i_target, CAPP_CAPP_ERR_STATUS_CONTROL, l_data));

            // Poll the Quiesce done bit
            for (uint32_t i = 0; i < C_NUM_TRIES_QUIESCE_STATE; i++)
            {
                FAPI_TRY(fapi2::getScom(i_target, CAPP_CAPP_ERR_STATUS_CONTROL, l_data));

                if (!l_data.getBit<CAPP_CAPP_ERR_STATUS_CONTROL_QUIESCE_DONE>())
                {
                    break;
                }

                FAPI_TRY(fapi2::delay(C_CAPP_DELAY_NS, C_CAPP_DELAY_CYCLES));
            }

            FAPI_ASSERT(!l_data.getBit<CAPP_CAPP_ERR_STATUS_CONTROL_QUIESCE_DONE>(),
                        fapi2::P9_CAPP_QUIESCE_TIMEOUT()
                        .set_TARGET(i_target)
                        .set_DATA(l_data),
                        "CAPP quiesce timed out");
        }

    fapi_try_exit:
        FAPI_DBG("p9_capp_check_quiesce: Exiting ....");
        return fapi2::current_err;
    }

    //---------------------------------------------------------------------------------
    // NOTE: description in header
    //---------------------------------------------------------------------------------
    fapi2::ReturnCode p9_phb_check_quiesce(
        const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target)
    {
        FAPI_DBG("p9_phb_check_quiesce: Entering ...");
        fapi2::buffer<uint64_t> l_data(0);

        // If ETU is not already in reset, use indirect register to quiesce DMAs
        // The address of the PHB Quiesce DMA Register is 0x0888 (found in PHB spec)
        auto l_phb_chiplets_vec = i_target.getChildren<fapi2::TARGET_TYPE_PHB>();

        for (auto& l_phb_chiplet : l_phb_chiplets_vec)
        {
            FAPI_TRY(fapi2::getScom(l_phb_chiplet, PHB_PHBRESET_REG, l_data));

            if (!l_data.getBit<PHB_PHBRESET_REG_PE_ETU_RESET>())
            {
                //Clear contents of PHB HV Indirect Address Register
                l_data.flush<0>();
                FAPI_TRY(fapi2::putScom(l_phb_chiplet , PHB_PHB4_SCOM_HVIAR, l_data));
                //Setup the PHB HV registers for the write
                l_data.insertFromRight<PHB_HV_IND_ADDR_START_BIT, PHB_HV_IND_ADDR_LEN>(0x888);
                l_data.setBit<PHB_HV_IND_ADDR_VALID_BIT>();
                FAPI_TRY(fapi2::putScom(l_phb_chiplet, PHB_PHB4_SCOM_HVIAR, l_data));
                //Setup PHB HV Indirect for write access
                l_data.flush<0>().insertFromRight<0, 63>(0x8000000000000000);
                FAPI_TRY(fapi2::putScom(l_phb_chiplet, PHB_PHB4_SCOM_HVIDR, l_data));
                //Clear contents of PHB HV Indirect Address Register
                l_data.flush<0>();
                FAPI_TRY(fapi2::putScom(l_phb_chiplet, PHB_PHB4_SCOM_HVIAR, l_data));
            }
        }

        FAPI_TRY(p9_suspend_io(i_target, true), "ERROR suspending IO");

    fapi_try_exit:
        FAPI_DBG("p9_phb_check_quiesce: Exiting ...");
        return fapi2::current_err;
    }

    //---------------------------------------------------------------------------------
    // NOTE: description in header
    //---------------------------------------------------------------------------------
    fapi2::ReturnCode p9_npu_check_quiesce(const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target)
    {
        FAPI_DBG("p9_npu_check_quiesce: Entering...");
        const uint32_t l_numNTLs = 6;

        fapi2::buffer<uint64_t> l_data(0);
        const uint32_t CQ_fence_status_regs[l_numNTLs] =
        {
            0x00090500, 0x000B0500, 0x00190500,
            0x001B0500, 0x00290500, 0x002B0500
        };
#ifndef DD2
        const uint32_t C_GPU_MEMORY_BARS_SIZE = 12;
        const uint32_t C_MEMORY_BARS_SIZE = 36;
        const uint64_t l_GPU_Memory_BARs[C_GPU_MEMORY_BARS_SIZE] =
        {
            PU_NPU0_SM0_GPU_BAR, PU_NPU0_SM1_GPU_BAR, PU_NPU0_SM2_GPU_BAR, PU_NPU0_SM3_GPU_BAR,
            PU_NPU1_SM0_GPU_BAR, PU_NPU1_SM1_GPU_BAR, PU_NPU1_SM2_GPU_BAR, PU_NPU1_SM3_GPU_BAR,
            PU_NPU2_SM0_GPU_BAR, PU_NPU2_SM1_GPU_BAR, PU_NPU2_SM2_GPU_BAR, PU_NPU2_SM3_GPU_BAR
        };
        const uint64_t l_memory_bars[C_MEMORY_BARS_SIZE] =
        {
            PU_NPU0_SM0_NDT0_BAR, PU_NPU0_SM1_NDT0_BAR, PU_NPU0_SM2_NDT0_BAR, PU_NPU0_SM3_NDT0_BAR,
            PU_NPU1_SM0_NDT0_BAR, PU_NPU1_SM1_NDT0_BAR, PU_NPU1_SM2_NDT0_BAR, PU_NPU1_SM3_NDT0_BAR,
            PU_NPU2_SM0_NDT0_BAR, PU_NPU2_SM1_NDT0_BAR, PU_NPU2_SM2_NDT0_BAR, PU_NPU2_SM3_NDT0_BAR,
            PU_NPU0_SM0_NDT1_BAR, PU_NPU0_SM1_NDT1_BAR, PU_NPU0_SM2_NDT1_BAR, PU_NPU0_SM3_NDT1_BAR,
            PU_NPU1_SM0_NDT1_BAR, PU_NPU1_SM1_NDT1_BAR, PU_NPU1_SM2_NDT1_BAR, PU_NPU1_SM3_NDT1_BAR,
            PU_NPU2_SM0_NDT1_BAR, PU_NPU2_SM1_NDT1_BAR, PU_NPU2_SM2_NDT1_BAR, PU_NPU2_SM3_NDT1_BAR,
            PU_NPU0_SM0_PHY_BAR, PU_NPU0_SM1_PHY_BAR, PU_NPU0_SM2_PHY_BAR, PU_NPU0_SM3_PHY_BAR,
            PU_NPU1_SM0_PHY_BAR, PU_NPU1_SM1_PHY_BAR, PU_NPU1_SM2_PHY_BAR, PU_NPU1_SM3_PHY_BAR,
            PU_NPU2_SM0_PHY_BAR, PU_NPU2_SM1_PHY_BAR, PU_NPU2_SM2_PHY_BAR, PU_NPU2_SM3_PHY_BAR
        };
        const uint64_t l_NTL_config1_addrs[l_numNTLs] =
        {
            NV_0_CONFIG1, NV_1_CONFIG1, NV_2_CONFIG1, NV_3_CONFIG1,
            PU_NPU2_NTL0_CONFIG1, PU_NPU2_NTL1_CONFIG1
        };
        const uint64_t l_NTL_config2_addrs[l_numNTLs] =
        {
            NV_0_CONFIG2, NV_1_CONFIG2, NV_2_CONFIG2, NV_3_CONFIG2,
            PU_NPU2_NTL0_CONFIG2, PU_NPU2_NTL1_CONFIG2
        };

        const uint64_t PU_NPU_CTL_DA_ADDR_VAL = PU_NPU_CTL_DA_ADDR;
        const uint64_t PU_NPU_CTL_DA_DATA_VAL = PU_NPU_CTL_DA_DATA;
        const uint64_t PU_NPU_CTL_FENCE_STATE_VAL = PU_NPU_CTL_FENCE_STATE;

#else
        const uint32_t C_GPU_MEMORY_BARS_SIZE = 24;
        const uint32_t C_MEMORY_BARS_SIZE = 48;

        const uint32_t l_GPU_Memory_BARs[C_GPU_MEMORY_BARS_SIZE] =
        {
            P9N2_PU_NPU0_SM0_GPU0_BAR,    P9N2_PU_NPU0_SM1_GPU0_BAR,    P9N2_PU_NPU0_SM3_GPU0_BAR,    P9N2_PU_NPU0_CTL_GPU0_BAR,
            P9N2_PU_NPU2_SM0_GPU0_BAR,    P9N2_PU_NPU2_SM1_GPU0_BAR,    P9N2_PU_NPU2_SM3_GPU0_BAR,    P9N2_PU_NPU2_CTL_GPU0_BAR,
            P9N2_PU_NPU_MSC_SM0_GPU0_BAR, P9N2_PU_NPU_MSC_SM1_GPU0_BAR, P9N2_PU_NPU_MSC_SM3_GPU0_BAR, P9N2_PU_NPU_MSC_CTL_GPU0_BAR,
            P9N2_PU_NPU0_SM0_GPU1_BAR,    P9N2_PU_NPU0_SM1_GPU1_BAR,    P9N2_PU_NPU0_SM3_GPU1_BAR,    P9N2_PU_NPU0_CTL_GPU1_BAR,
            P9N2_PU_NPU2_SM0_GPU1_BAR,    P9N2_PU_NPU2_SM1_GPU1_BAR,    P9N2_PU_NPU2_SM3_GPU1_BAR,    P9N2_PU_NPU2_CTL_GPU1_BAR,
            P9N2_PU_NPU_MSC_SM0_GPU1_BAR, P9N2_PU_NPU_MSC_SM1_GPU1_BAR, P9N2_PU_NPU_MSC_SM3_GPU1_BAR, P9N2_PU_NPU_MSC_CTL_GPU1_BAR
        };

        const uint32_t l_memory_bars[C_MEMORY_BARS_SIZE] =
        {
            P9N2_PU_NPU0_SM0_NDT0_BAR,     P9N2_PU_NPU0_SM1_NDT0_BAR,     P9N2_PU_NPU0_SM3_NDT0_BAR,     P9N2_PU_NPU0_CTL_NDT0_BAR,
            P9N2_PU_NPU0_SM0_NDT1_BAR,     P9N2_PU_NPU0_SM1_NDT1_BAR,     P9N2_PU_NPU0_SM3_NDT1_BAR,     P9N2_PU_NPU0_CTL_NDT1_BAR,
            P9N2_PU_NPU2_SM0_NDT0_BAR,     P9N2_PU_NPU2_SM1_NDT0_BAR,     P9N2_PU_NPU2_SM3_NDT0_BAR,     P9N2_PU_NPU2_CTL_NDT0_BAR,
            P9N2_PU_NPU2_SM0_NDT1_BAR,     P9N2_PU_NPU2_SM1_NDT1_BAR,     P9N2_PU_NPU2_SM3_NDT1_BAR,     P9N2_PU_NPU2_CTL_NDT1_BAR,
            P9N2_PU_NPU_MSC_SM0_NDT0_BAR,  P9N2_PU_NPU_MSC_SM1_NDT0_BAR,  P9N2_PU_NPU_MSC_SM3_NDT0_BAR,  P9N2_PU_NPU_MSC_CTL_NDT0_BAR,
            P9N2_PU_NPU_MSC_SM0_NDT1_BAR,  P9N2_PU_NPU_MSC_SM1_NDT1_BAR,  P9N2_PU_NPU_MSC_SM3_NDT1_BAR,  P9N2_PU_NPU_MSC_CTL_NDT1_BAR,
            P9N2_PU_NPU_MSC_SM0_PHY_BAR,   P9N2_PU_NPU_MSC_SM1_PHY_BAR,   P9N2_PU_NPU_MSC_SM3_PHY_BAR,   P9N2_PU_NPU_MSC_CTL_PHY_BAR,
            P9N2_PU_NPU2_SM0_PHY_BAR,      P9N2_PU_NPU2_SM1_PHY_BAR,      P9N2_PU_NPU2_SM3_PHY_BAR,      P9N2_PU_NPU2_CTL_PHY_BAR,
            P9N2_PU_NPU0_SM0_GENID_BAR,    P9N2_PU_NPU0_SM1_GENID_BAR,    P9N2_PU_NPU0_SM3_GENID_BAR,    P9N2_PU_NPU0_CTL_GENID_BAR,
            P9N2_PU_NPU2_SM0_GENID_BAR,    P9N2_PU_NPU2_SM1_GENID_BAR,    P9N2_PU_NPU2_SM3_GENID_BAR,    P9N2_PU_NPU2_CTL_GENID_BAR,
            P9N2_PU_NPU_MSC_SM0_GENID_BAR, P9N2_PU_NPU_MSC_SM1_GENID_BAR, P9N2_PU_NPU_MSC_SM3_GENID_BAR, P9N2_PU_NPU_MSC_CTL_GENID_BAR,
            P9N2_PU_NPU0_SM0_PHY_BAR, P9N2_PU_NPU0_SM1_PHY_BAR, P9N2_PU_NPU_SM3_C_ERR_RPT_HOLD1, P9N2_PU_NPU_CTL_C_ERR_RPT_HOLD1
        };

        const uint32_t l_NTL_config1_addrs[l_numNTLs] =
        {
            P9N2_PU_NPU1_SM1_CONFIG1, P9N2_PU_NPU1_SM2_CONFIG1,
            P9N2_PU_NPU_SM1_CONFIG1,  P9N2_PU_NPU_SM2_CONFIG1,
            P9N2__SM1_CONFIG1,        P9N2__SM2_CONFIG1
        };

        const uint32_t l_NTL_config2_addrs[l_numNTLs] =
        {
            P9N2_PU_NPU1_SM0_CONFIG2, P9N2_PU_NPU1_SM1_CONFIG2,
            P9N2_PU_NPU_SM0_CONFIG2, P9N2_PU_NPU_SM1_CONFIG2,
            P9N2__SM0_CONFIG2, P9N2__SM1_CONFIG2
        };

        const uint64_t PU_NPU_CTL_DA_ADDR_VAL = P9N2__CTL_DA_ADDR;
        const uint64_t PU_NPU_CTL_DA_DATA_VAL = P9N2__CTL_DA_DATA;
        const uint64_t PU_NPU_CTL_FENCE_STATE_VAL = P9N2__CTL_FENCE_STATE;
#endif


        // 1) Place all six of the NTLs into Reset State
        // Set bits 8:9 in the NTL Misc Config 1 registers to place NTLs in Reset state
        for (uint32_t i = 0; i < l_numNTLs; i++)
        {
            //First check if the NTL was initialized before attempting to reset
            FAPI_TRY(fapi2::getScom(i_target, l_NTL_config2_addrs[i], l_data));

            if(l_data.getBit<0>())
            {
                FAPI_TRY(fapi2::getScom(i_target, l_NTL_config1_addrs[i], l_data));
                l_data.insertFromRight<NV_CONFIG1_NTL_RESET, NV_CONFIG1_NTL_RESET_LEN>(0x3);
                FAPI_TRY(fapi2::putScom(i_target, l_NTL_config1_addrs[i], l_data));
            }
        }

        //Poll the CQ Fence Status Registers util "Value" is detected to verify
        //that NTLs are in Reset State
        for (uint32_t i = 0; i < l_numNTLs; i++)
        {
            //First check if NTL was initialized before polling for reset
            FAPI_TRY(fapi2::getScom(i_target, l_NTL_config2_addrs[i], l_data));

            if(l_data.getBit<0>())
            {
                for (uint32_t j = 0; j < CAPP_CAPP_ERR_STATUS_CONTROL_QUIESCE_DONE; j++)
                {
                    //Set address of CQ fence status reg in the indirect address "sddr" reg
                    //also set bits 24 and 25 to indicate in the request we want 8 bytes  back
                    l_data.flush<0>()
                    .insertFromRight<PU_NPU_CTL_DA_ADDR_MISC,
                                     PU_NPU_CTL_DA_ADDR_MISC_LEN>
                                     (CQ_fence_status_regs[i]).setBit<24>().setBit<25>();
                    FAPI_TRY(fapi2::putScom(i_target, PU_NPU_CTL_DA_ADDR_VAL, l_data));
                    FAPI_TRY(fapi2::getScom(i_target, PU_NPU_CTL_DA_DATA_VAL, l_data));

                    //If bit 0 and 1 are set on the CQ fence status that indicates
                    //the reset was successful
                    if (l_data.getBit<0>() && l_data.getBit<1>())
                    {
                        break;
                    }

                    FAPI_TRY(fapi2::delay(C_NPU_DELAY_NS, C_NPU_DELAY_CYCLES));
                }

                FAPI_ASSERT((l_data.getBit<0>() && l_data.getBit<1>()),
                            fapi2::P9_NTL_NOT_IN_RESET()
                            .set_TARGET(i_target)
                            .set_NTL_ADDR(CQ_fence_status_regs[i])
                            .set_NTL_DATA(l_data),
                            "One of the NTLS are not in the reset state");
            }
        }

        // 2) Place all NV-Link Bricks into Fence State
        // Set bits 0:5 in the NPU Fence State register to place all bricks into Fence State
        l_data.setBit<PU_NPU_CTL_FENCE_STATE_BRK0>()
        .setBit<PU_NPU_CTL_FENCE_STATE_BRK1>()
        .setBit<PU_NPU_CTL_FENCE_STATE_BRK2>()
        .setBit<PU_NPU_CTL_FENCE_STATE_BRK3>()
        .setBit<PU_NPU_CTL_FENCE_STATE_BRK4>()
        .setBit<PU_NPU_CTL_FENCE_STATE_BRK5>();
        FAPI_TRY(fapi2::putScom(i_target, PU_NPU_CTL_FENCE_STATE_VAL, l_data));

#ifdef DD2
        l_data.flush<0>();
        //Write bits 0:22 of the NPU Interrupt Request register to eliminate
        //any interrupt requests that occurred between steps 1 and 2.
        FAPI_TRY(fapi2::putScom(i_target, P9N2__CTL_INT_REQ, l_data));
#endif

        // 3) Disable all NPU BAR registers
        // Reset bits 0 and 32 in the GPU-Memory BARs to stop NPU from responding
        // to accesses to GPU memory

        for (uint32_t i = 0; i < C_GPU_MEMORY_BARS_SIZE; i++)
        {
            l_data.flush<0>().clearBit<PU_NPU0_SM0_GPU_BAR_CONFIG_GPU0_ENABLE>().clearBit<PU_NPU0_SM0_GPU_BAR_CONFIG_GPU1_ENABLE>();
            FAPI_TRY(fapi2::putScom(i_target, l_GPU_Memory_BARs[i], l_data));
        }

        // Reset bit 0 in the NTL0/NDL0 Memory BARs and NTL1/NDL1 Memory BARs to
        //   stop NPU from responding to accesses to NTL/NDL registers
        // Reset bit 0 in PHY0/PHY1/NPU MMIO BAR for stack 0 and stack 1 to stop
        //   NPU from responding to PHY register accesses
        // Reset bit 0 in PHY0/PHY1/NPU MMIO BARs in stack 2 to stop
        //   NPU from responding to NPU MMIO register accesses
        for (uint32_t i = 0; i < C_MEMORY_BARS_SIZE; i++)
        {
            l_data.flush<0>().clearBit<PU_NPU0_SM0_NDT0_BAR_CONFIG_ENABLE>();
            FAPI_TRY(fapi2::putScom(i_target, l_memory_bars[i], l_data));

        }

    fapi_try_exit:
        FAPI_DBG("p9_npu_check_quiesce: Exiting...");
        return fapi2::current_err;
    }

    //---------------------------------------------------------------------------------
    // NOTE: description in header
    //---------------------------------------------------------------------------------
    fapi2::ReturnCode p9_vas_check_quiesce(
        const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target)
    {
        FAPI_DBG("p9_vas_check_quiesce: Entering...");
        fapi2::buffer<uint64_t> l_vas_north_misc_ctl_data(0);
        fapi2::buffer<uint64_t> l_vas_south_misc_ctl_data(0);

        // VAS needs to be quiesced before NX

        // Read the VAS Misc status and North control register so we don't write over anything
        FAPI_TRY(fapi2::getScom(i_target, PU_VAS_MISCCTL, l_vas_north_misc_ctl_data));

        // Set the 'Quiesce Requested' bit in the VAS Miscellaneous Status and
        // North Control Register to a 1. This will prevent VAS from
        // accepting new paste or write monitor operations
        l_vas_north_misc_ctl_data.setBit<PU_VAS_MISCCTL_MISC_CTL_QUIESCE_REQUEST>();
        FAPI_TRY(fapi2::putScom(i_target, PU_VAS_MISCCTL, l_vas_north_misc_ctl_data));

        // Check that VAS has quiesced. This is accomplished by reading two
        // status registers. The "RG is Idle' bit in the VAS Miscellaneous
        // Status and North Control Register as well as the 'EG is Idle',
        // 'CQ is Idle' and 'WC is Idle' bit sin the VAS Miscellaneous Status
        // and South Control Register must all be set to one to indicate that
        // VAS has gone idle.
        for (uint32_t i = 0; i < C_NUM_TRIES_QUIESCE_STATE; i++)
        {
            // Read VAS Misc status and North control register to ensure
            // 'RG is idle' and 'EG is idle' bits are both set -
            FAPI_TRY(fapi2::getScom(i_target, PU_VAS_MISCCTL,
                                    l_vas_north_misc_ctl_data));

            // Read VAS Misc status and South control register to ensure
            // 'WC is idle' and 'CQ is idle' bits are both set -
            FAPI_TRY(fapi2::getScom(i_target, PU_VAS_SOUTHCTL,
                                    l_vas_south_misc_ctl_data));

            if (l_vas_north_misc_ctl_data.getBit<PU_VAS_MISCCTL_MISC_CTL_RG_IS_IDLE>()
                && l_vas_south_misc_ctl_data.getBit<PU_VAS_SOUTHCTL_SOUTH_CTL_WC_IDLE_BIT>()
                && l_vas_south_misc_ctl_data.getBit<PU_VAS_SOUTHCTL_SOUTH_CTL_CQ_IDLE_BIT>()
                && l_vas_south_misc_ctl_data.getBit<PU_VAS_SOUTHCTL_SOUTH_CTL_EG_IDLE_BIT>())
            {
                break;
            }

            FAPI_TRY(fapi2::delay(C_DELAY_NS_396, C_DELAY_CYCLES_396));
        }

        // In order to prevent additional FIFO entries from getting posted
        // to the NX receive FIFOs while trying to quiesce NX, software may
        // wish to close all windows to prevent users from continuing to try
        // to access the accelerators. Software may close all windows by
        // writing the Open/Enable bit to a zero in the Window Control
        // Register<n>. This step is optional, but should be done as part of
        // an orderly shut down of a user's access.

        // Software may also choose to deallocate any pages that partitions
        // (or users) have mapped to VAS' MMIO space. In a general use case,
        // a partition (or user) will have pages that map to VAS' MMIO space
        // to allow the partition to return credits via the Local Receive
        // Window Credit Adder Register <m>. In order to stop MMIO traffic,
        // these pages should be unmapped. In a NX only usage model, this step
        // can be ignored as long as the Quiesce NX procedures are followed.

        FAPI_ASSERT((l_vas_north_misc_ctl_data.getBit<PU_VAS_MISCCTL_MISC_CTL_RG_IS_IDLE>()
                     && l_vas_south_misc_ctl_data.getBit<PU_VAS_SOUTHCTL_SOUTH_CTL_WC_IDLE_BIT>()
                     && l_vas_south_misc_ctl_data.getBit<PU_VAS_SOUTHCTL_SOUTH_CTL_CQ_IDLE_BIT>()
                     && l_vas_south_misc_ctl_data.getBit<PU_VAS_SOUTHCTL_SOUTH_CTL_EG_IDLE_BIT>()),
                    fapi2::P9_VAS_QUIESCE_TIMEOUT()
                    .set_TARGET(i_target)
                    .set_NORTHDATA(l_vas_north_misc_ctl_data)
                    .set_SOUTHDATA(l_vas_south_misc_ctl_data),
                    "VAS quiesce timed out");

        // Write Invalidate CAM location field of North register (optional)
        l_vas_north_misc_ctl_data.setBit<PU_VAS_MISCCTL_MISC_CTL_INVALIDATE_CAM_ALL>();
        FAPI_TRY(fapi2::putScom(i_target, PU_VAS_MISCCTL, l_vas_north_misc_ctl_data));

    fapi_try_exit:
        FAPI_DBG("p9_vas_check_quiesce: Exiting...");
        return fapi2::current_err;
    }

    //---------------------------------------------------------------------------------
    // NOTE: description in header
    //---------------------------------------------------------------------------------
    fapi2::ReturnCode p9_nx_check_quiesce(const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target)
    {
        FAPI_DBG("p9_nx_check_quiesce: Entering....");
        fapi2::buffer<uint64_t> l_dma_status_reg_data(0);
        fapi2::buffer<uint64_t> l_data(0);

        //If (DMA Status Register[HMI Ative])
        FAPI_TRY(fapi2::getScom(i_target, PU_SU_STATUS, l_dma_status_reg_data));

        // If HMI has een signaled, NX PBI is frozen and read machines may be
        // stuck active. The quiesce may either be abandoned or write machines
        // idle status can be polled in lieu of the quiesce procedure.
        // The latter is selected here.
        if (l_dma_status_reg_data.getBit<PU_SU_STATUS_HMI_ACTIVE>())
        {
            //then while (!PowerBus Interface Error Report 0 Register[PBI Write Idle])
            for (uint32_t i = 0; i < C_NUM_TRIES_QUIESCE_STATE; i++)
            {
                FAPI_TRY(fapi2::getScom(i_target, PU_NX_PB_ERR_RPT_0, l_data));

                if (l_data.getBit<PU_NX_PB_ERR_RPT_0_PBI_WRITE_IDLE>())
                {
                    break;
                }

                FAPI_TRY(fapi2::delay(C_DELAY_NS_396, C_DELAY_CYCLES_396));
            }

            FAPI_ASSERT((l_data.getBit<PU_NX_PB_ERR_RPT_0_PBI_WRITE_IDLE>()),
                        fapi2::P9_NX_PBI_WRITE_IDLE_TIMEOUT()
                        .set_TARGET(i_target)
                        .set_DATA(l_data), "PBI Write Idle never happened");
        }

        if(!l_dma_status_reg_data.getBit<PU_SU_STATUS_HMI_ACTIVE>() ||
           l_data.getBit<PU_NX_PB_ERR_RPT_0_PBI_WRITE_IDLE>())
        {
            //Any CRB kill must be complete before issuing the following sequence
            FAPI_TRY(fapi2::getScom(i_target, PU_SU_CRB_KILL_REQ, l_data));

            //if (CRB Kill Request Configuration Register[Kill Enable])
            if (l_data.getBit<PU_SU_CRB_KILL_REQ_ENABLE>())
            {
                //while(!CRB Kill Request Configuration Register[Kill Done]){}
                for (uint32_t i = 0; i < C_NUM_TRIES_QUIESCE_STATE; i++)
                {
                    FAPI_TRY(fapi2::getScom(i_target, PU_SU_CRB_KILL_REQ, l_data));

                    if (l_data.getBit<PU_SU_CRB_KILL_REQ_DONE>())
                    {
                        break;
                    }

                    FAPI_TRY(fapi2::delay(C_DELAY_NS_396, C_DELAY_CYCLES_396));
                }

                FAPI_ASSERT(l_data.getBit<PU_SU_CRB_KILL_REQ_DONE>(),
                            fapi2::P9_NX_CRB_KILL_DONE_TIMEOUT()
                            .set_TARGET(i_target)
                            .set_DATA(l_data), "CRB kills were not complete");
            }

            //Stop UMAC from fetching new CRBs
            FAPI_TRY(fapi2::getScom(i_target, PU_UMAC_STATUS_CONTROL, l_data));
            //clear_reg(UMAC Status and Control Register[CRB Read Enable])
            l_data.clearBit<PU_UMAC_STATUS_CONTROL_CRB_READS_ENBL>();
            FAPI_TRY(fapi2::putScom(i_target, PU_UMAC_STATUS_CONTROL, l_data));

            //while(!UMAC Status and Control Register[CRB Read Halted]){}
            for (uint32_t i = 0; i < C_NUM_TRIES_QUIESCE_STATE; i++)
            {
                FAPI_TRY(fapi2::getScom(i_target, PU_UMAC_STATUS_CONTROL, l_data));

                if (l_data.getBit<PU_UMAC_STATUS_CONTROL_CRB_READS_HALTED>())
                {
                    break;
                }

                FAPI_TRY(fapi2::delay(C_DELAY_NS_396, C_DELAY_CYCLES_396));
            }

            FAPI_ASSERT(l_data.getBit<PU_UMAC_STATUS_CONTROL_CRB_READS_HALTED>(),
                        fapi2::P9_NX_STOP_UMAC_FETCHING_NEW_CRBS_TIMEOUT()
                        .set_TARGET(i_target)
                        .set_DATA(l_data),
                        "UMAC was not stopped from fetching new CRBs");

            //Wait for UMAC dispatch slots to drain of CRBs
            //UMAC can still have CRBs queued in receive FIFOs
            //while(!UMAC Status and Control Register[UMAC Quiesced]){}
            for (uint32_t i = 0; i < C_NUM_TRIES_QUIESCE_STATE; i++)
            {
                FAPI_TRY(fapi2::getScom(i_target, PU_UMAC_STATUS_CONTROL, l_data));

                if (l_data.getBit<PU_UMAC_STATUS_CONTROL_QUIESCED>())
                {
                    break;
                }

                FAPI_TRY(fapi2::delay(C_DELAY_NS_396, C_DELAY_CYCLES_396));
            }


            FAPI_ASSERT(l_data.getBit<PU_UMAC_STATUS_CONTROL_QUIESCED>(),
                        fapi2::P9_NX_UMAC_DISPATCH_SLOTS_TO_DRAIN_CRBS_TIMEOUT()
                        .set_TARGET(i_target)
                        .set_DATA(l_data),
                        "UMAC was not done dispatching slots to drain of CRBs");

            //Wait for DMA channels to drain
            //while(DMA Status Register[DMA Channel 0:4 Idle] != 5b1_1111){}
            for (uint32_t i = 0; i < C_NUM_TRIES_QUIESCE_STATE; i++)
            {
                FAPI_TRY(fapi2::getScom(i_target, PU_SU_STATUS, l_dma_status_reg_data));

                if (l_dma_status_reg_data.getBit<PU_SU_STATUS_DMA_CH0_IDLE>()
                    && l_dma_status_reg_data.getBit<PU_SU_STATUS_DMA_CH1_IDLE>()
                    && l_dma_status_reg_data.getBit<PU_SU_STATUS_DMA_CH2_IDLE>()
                    && l_dma_status_reg_data.getBit<PU_SU_STATUS_DMA_CH3_IDLE>()
                    && l_dma_status_reg_data.getBit<PU_SU_STATUS_DMA_CH4_IDLE>())
                {
                    break;
                }

                fapi2::delay(C_DELAY_NS_396, C_DELAY_CYCLES_396);
            }

            FAPI_ASSERT((l_dma_status_reg_data.getBit<PU_SU_STATUS_DMA_CH0_IDLE>()
                         && l_dma_status_reg_data.getBit<PU_SU_STATUS_DMA_CH1_IDLE>()
                         && l_dma_status_reg_data.getBit<PU_SU_STATUS_DMA_CH2_IDLE>()
                         && l_dma_status_reg_data.getBit<PU_SU_STATUS_DMA_CH3_IDLE>()
                         && l_dma_status_reg_data.getBit<PU_SU_STATUS_DMA_CH4_IDLE>()),
                        fapi2::P9_WAIT_FOR_DMA_CHANNELS_TO_DRAIN_TIMEOUT()
                        .set_TARGET(i_target)
                        .set_DATA(l_dma_status_reg_data),
                        "DMA channels were not drained");

            //Wait for ERAT to be idle. Should be trivially idle because of the above.
            //while(!ERAT Status and Control Register[ERAT idle]){}
            for (uint32_t i = 0; i < C_NUM_TRIES_QUIESCE_STATE; i++)
            {
                FAPI_TRY(fapi2::getScom(i_target, PU_ERAT_STATUS_CONTROL, l_data));

                if (l_data.getBit<PU_ERAT_STATUS_CONTROL_IDLE>())
                {
                    break;
                }

                FAPI_TRY(fapi2::delay(C_DELAY_NS_396, C_DELAY_CYCLES_396));
            }

            FAPI_ASSERT(l_data.getBit<PU_ERAT_STATUS_CONTROL_IDLE>(),
                        fapi2::P9_WAIT_FOR_ERAT_IDLE()
                        .set_TARGET(i_target).set_DATA(l_data),
                        "ERAT was not idle");

            //Wait for PBI master machines to be idle
            //while(!DMA Status Register[PBI Idle]){}
            for (uint32_t i = 0; i < C_NUM_TRIES_QUIESCE_STATE; i++)
            {
                FAPI_TRY(fapi2::getScom(i_target, PU_SU_STATUS, l_dma_status_reg_data));

                if (l_dma_status_reg_data.getBit<PU_SU_STATUS_PBI_IDLE>())
                {
                    break;
                }

                FAPI_TRY(fapi2::delay(C_DELAY_NS_396, C_DELAY_CYCLES_396));
            }

            FAPI_ASSERT(l_dma_status_reg_data.getBit<PU_SU_STATUS_PBI_IDLE>(),
                        fapi2::P9_PBI_MASTER_MACHINES_IDLE_TIMEOUT()
                        .set_TARGET(i_target)
                        .set_DATA(l_dma_status_reg_data),
                        "PBI Master Machines are not idle");
        }

        // If this procedure is followed, then usually if UMAC Status and
        // Control Register[Quiesce Request] is written to 1 then hardware will
        // trivially respond UMAC Status and Control Register[Quiesce Achieved] = 1

        // Write to UMAC Control register(bits 4:6) with '100'
        //TODO RTC 160710 for DD1 this is broken, will readd when we are on DD2
#ifdef DD2
        FAPI_TRY(fapi2::getScom(i_target, PU_UMAC_STATUS_CONTROL, l_data));
        l_data.setBit<PU_UMAC_STATUS_CONTROL_QUIESCE_REQUEST>()
        .clearBit<PU_UMAC_STATUS_CONTROL_QUIESCE_ACHEIVED>()
        .clearBit<PU_UMAC_STATUS_CONTROL_QUIESCE_FAILED>();
        FAPI_TRY(fapi2::putScom(i_target, PU_UMAC_STATUS_CONTROL, l_data));

        // Poll UMAC Control register status register (bit 5, bit 6 indicates fail)
        for (uint32_t i = 0; i < C_NUM_TRIES_QUIESCE_STATE; i++)
        {
            FAPI_TRY(fapi2::getScom(i_target, PU_UMAC_STATUS_CONTROL, l_data));

            if (!l_data.getBit<PU_UMAC_STATUS_CONTROL_QUIESCE_FAILED>())
            {
                break;
            }

            FAPI_TRY(fapi2::delay(C_DELAY_NS_396, C_DELAY_CYCLES_396));
        }


        FAPI_ASSERT(!l_data.getBit<PU_UMAC_STATUS_CONTROL_QUIESCE_FAILED>(),
                    fapi2::P9_UMAC_QUIESCE_FAILED()
                    .set_TARGET(i_target)
                    .set_DATA(l_data),
                    "UMAC status control quiesce failed");
#endif

    fapi_try_exit:
        FAPI_DBG("p9_nx_check_quiesce: Exiting....");
        return fapi2::current_err;
    }

    //---------------------------------------------------------------------------------
    // NOTE: description in header
    //---------------------------------------------------------------------------------
    fapi2::ReturnCode p9_psihb_check_quiesce(const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target)
    {
        FAPI_DBG("p9_psihb_check_quiesce: Entering...");
        fapi2::buffer<uint64_t> l_psihb_data(0);
        const uint32_t c_error_mask_disable_all = 0xFFFull;

        // Need mechanism to quiesce PSI DMAs
        // There are bits on the PSIHB to force the DMAs to be rejected

        // Disable FSP Command Enable bit in PSIHB Command/Status register
        l_psihb_data.setBit<PU_PSIHB_STATUS_CTL_REG_FSP_CMD_ENABLE>()
        .setBit<PU_PSIHB_STATUS_CTL_REG_FSP_INT_ENABLE>();
        FAPI_TRY(fapi2::putScom(i_target, PU_PSIHB_STATUS_CTL_REG_SCOM2, l_psihb_data));

        //mask all interrupts to quiesce
        FAPI_TRY(fapi2::getScom(i_target, PU_PSIHB_ERROR_MASK_REG, l_psihb_data));
        l_psihb_data.insertFromRight<PU_PSIHB_ERROR_MASK_REG_INTERRUPT_DISABLE,
                                     PU_PSIHB_ERROR_MASK_REG_INTERRUPT_DISABLE_LEN>
                                     (c_error_mask_disable_all);
        FAPI_TRY(fapi2::putScom(i_target, PU_PSIHB_ERROR_MASK_REG, l_psihb_data));

        //Poll PSIHBCR bit 20 - inbound queue empty to be 0b0 for quiesce state
        for (uint32_t i = 0; i < C_NUM_TRIES_QUIESCE_STATE; i++)
        {
            FAPI_TRY(fapi2::getScom(i_target, PU_PSIHB_STATUS_CTL_REG_SCOM, l_psihb_data));

            if (!l_psihb_data.getBit<PU_PSIHB_STATUS_CTL_REG_FSP_INBOUND_ACTIVE>())
            {
                break;
            }

            FAPI_TRY(fapi2::delay(C_DELAY_NS_396, C_DELAY_CYCLES_396));
        }

        FAPI_ASSERT(!l_psihb_data.getBit<PU_PSIHB_STATUS_CTL_REG_FSP_INBOUND_ACTIVE>(),
                    fapi2::P9_PSIHBCR_INBOUND_QUEUE_NOT_EMPTY()
                    .set_TARGET(i_target)
                    .set_DATA(l_psihb_data), "PSIHBCR inbound queue not empty");

        // Disable TCE access by clearing the secure boot register - can't be done
        // later because it's a security hole
        l_psihb_data.flush<0>();
        FAPI_TRY(fapi2::putScom(i_target, PU_TRUST_CONTROL, l_psihb_data));

    fapi_try_exit:
        FAPI_DBG("p9_psihb_check_quiesce: Exiting...");
        return fapi2::current_err;
    }

    //---------------------------------------------------------------------------------
    // NOTE: description in header
    //---------------------------------------------------------------------------------
    fapi2::ReturnCode p9_intp_check_quiesce(const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target)
    {
        FAPI_DBG("p9_intp_check_quiesce: Entering...");
        fapi2::buffer<uint64_t> l_data(0);

        //Start the scrub operation in all caches andPoll for completion
        FAPI_TRY(p9_int_scrub_caches(i_target), "Error scrubbing the caches");

        // Read INT_CQ_RST_CTL so that we don't override anything
        FAPI_TRY(fapi2::getScom(i_target, PU_INT_CQ_RST_CTL, l_data));

        // Set bit in INT_CQ_RST_CTL to request quiesce
        l_data.setBit<PU_INT_CQ_RST_CTL_QUIESCE_PB>();
        FAPI_TRY(fapi2::putScom(i_target, PU_INT_CQ_RST_CTL, l_data));

        // Poll master and slave quiesced via bits in RST_CTL
        for (uint32_t i = 0; i < C_NUM_TRIES_QUIESCE_STATE; i++)
        {
            FAPI_TRY(fapi2::getScom(i_target, PU_INT_CQ_RST_CTL, l_data));

            if (l_data.getBit<PU_INT_CQ_RST_CTL_MASTER_IDLE>() &&
                l_data.getBit<PU_INT_CQ_RST_CTL_SLAVE_IDLE>())
            {
                break;
            }

            FAPI_TRY(fapi2::delay(C_INTP_DELAY_NS, C_INTP_DELAY_CYCLES));
        }

        FAPI_ASSERT((l_data.getBit<PU_INT_CQ_RST_CTL_MASTER_IDLE>()
                     && l_data.getBit<PU_INT_CQ_RST_CTL_SLAVE_IDLE>()),
                    fapi2::P9_INTP_QUIESCE_TIMEOUT()
                    .set_TARGET(i_target)
                    .set_DATA(l_data), "INTP master or slave is not IDLE");

        //Set sync_reset in RST_CTL
        l_data.setBit<PU_INT_CQ_RST_CTL_SYNC_RESET>();
        FAPI_TRY(fapi2::putScom(i_target, PU_INT_CQ_RST_CTL, l_data));

        FAPI_TRY(p9_clear_int_fir_regs(i_target), "error clearing int_cq firs");

    fapi_try_exit:
        FAPI_DBG("p9_intp_check_quiesce: Exiting...");
        return fapi2::current_err;
    }

    //---------------------------------------------------------------------------------
    // NOTE: description in header
    //---------------------------------------------------------------------------------
    fapi2::ReturnCode p9_clear_int_fir_regs(
        const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target)
    {
        // Number of register we need to read in order to clear INT_CQ firs
        const uint8_t l_numRegs = 20;
        const uint64_t l_fir_reg_addrs_to_read_to_clear[l_numRegs] =
        {
            PU_INT_PC_ERR0_WOF, PU_INT_PC_ERR0_FATAL,
            PU_INT_PC_ERR0_RECOV, PU_INT_PC_ERR0_INFO,
            PU_INT_PC_ERR1_WOF, PU_INT_PC_ERR1_FATAL,
            PU_INT_PC_ERR1_RECOV, PU_INT_PC_ERR1_INFO,
            PU_INT_PC_VPC_WOF_ERR, PU_INT_PC_VPC_FATAL_ERR,
            PU_INT_PC_VPC_RECOV_ERR, PU_INT_PC_VPC_INFO_ERR,
            PU_INT_VC_WOF_ERR_G0, PU_INT_VC_WOF_ERR_G1,
            PU_INT_VC_FATAL_ERR_G1, PU_INT_VC_FATAL_ERR_G0,
            PU_INT_VC_RECOV_ERR_G0, PU_INT_VC_RECOV_ERR_G1,
            PU_INT_VC_INFO_ERR_G0, PU_INT_VC_INFO_ERR_G1
        };

        fapi2::buffer<uint64_t> l_fir_clear_data(0);

        // Read from each register in order to clear it (per scomdef)
        // We don't care what was read out.
        for (uint8_t i = 0; i < l_numRegs; i++)
        {
            FAPI_TRY(fapi2::getScom(i_target, l_fir_reg_addrs_to_read_to_clear[i], l_fir_clear_data));
        }

        // Clean up data buffer incase data was read
        l_fir_clear_data.flush<0>();

        // clear PU_INT_CQ_WOF via write (any write to this reg should clear)
        FAPI_TRY(fapi2::putScom(i_target, PU_INT_CQ_WOF, l_fir_clear_data));

        // Write all 0's to PU_INT_CQ_FIR to get rid of any stale firs
        FAPI_TRY(fapi2::putScom(i_target, PU_INT_CQ_FIR, l_fir_clear_data));

    fapi_try_exit:
        return fapi2::current_err;
    }

    //---------------------------------------------------------------------------------
    // NOTE: description in header
    //---------------------------------------------------------------------------------
    fapi2::ReturnCode p9_int_scrub_caches(
        const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target)
    {
        fapi2::buffer<uint64_t> l_scrub_trig_data(0);
        const uint64_t l_scrub_addrs[4] =
        {
            PU_INT_PC_VPC_SCRUB_TRIG, PU_INT_VC_SBC_SCRUB_TRIG,
            PU_INT_VC_EQC_SCRUB_TRIG, PU_INT_VC_IVC_SCRUB_TRIG
        };

        //Start the scrub operation in all caches
        for (uint32_t i = 0; i < 4; i++)
        {
            fapi2::putScom(i_target, l_scrub_addrs[i], 0xA000000000000000);

            for (uint32_t j = 0; j < C_NUM_TRIES_QUIESCE_STATE; j++)
            {
                FAPI_TRY(fapi2::delay(C_INTP_DELAY_NS, C_INTP_DELAY_CYCLES));
                FAPI_TRY(fapi2::getScom(i_target, l_scrub_addrs[i], l_scrub_trig_data));

                if (!l_scrub_trig_data.getBit<0>())
                {
                    break;
                }
            }

            FAPI_ASSERT(!l_scrub_trig_data.getBit<0>(),
                        fapi2::P9_INT_SCRUB_NOT_FINISHED_ERR()
                        .set_TARGET(i_target)
                        .set_ADDRESS(l_scrub_addrs[i])
                        .set_DATA(l_scrub_trig_data),
                        "INT scrub operation still busy");
        }

    fapi_try_exit:
        return fapi2::current_err;
    }

    fapi2::ReturnCode p9_pm_check_quiesce(const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP>& i_target)
    {
        // Bit-13 used to set WAKEUP_NOTIFY_SELECT bit on the Core Power Management Mode Reg
        static const uint64_t  CPPM_WKUP_NOTIFY_SELECT = 0x0004000000000000;
        // Bit 0 in each SPWKUP_PMM register controls if SPWKUP is asserted from the source
        static const uint64_t  CLEAR_SPWKUP            = 0x0000000000000000;
        // Special wakeup sources
        static const uint64_t  SPWKUP_SRC_REGS[4] =
        {
            C_PPM_SPWKUP_OTR, C_PPM_SPWKUP_FSP,
            C_PPM_SPWKUP_HYP, C_PPM_SPWKUP_OCC
        };

        FAPI_DBG("p9_pm_check_quiesce: Entering...");

        //Loop over cores and set the WKUP_NOTIFY_SELECT bit and clear out
        //SPWK request from all srcs
        for(auto& l_childCore :
            i_target.getChildren<fapi2::TARGET_TYPE_CORE>())
        {
            //This scom sets WKUP_NOTIFY_SELECT
            FAPI_TRY(fapi2::putScom(l_childCore, PERV_EC00_CPPM_CPMMR_OR, CPPM_WKUP_NOTIFY_SELECT ));


            //This loop clears spwkup asserts from all the possilble srcs
            for(uint8_t i = 0; i < 4; i++)
            {
                FAPI_TRY(fapi2::putScom(l_childCore, SPWKUP_SRC_REGS[i] , CLEAR_SPWKUP));
            }

        }

    fapi_try_exit:
        FAPI_DBG("p9_pm_check_quiece: Exiting...");
        return fapi2::current_err;
    }

} // extern "C"
OpenPOWER on IntegriCloud