summaryrefslogtreecommitdiffstats
path: root/importtemp/fapi2/include/fapi2_target.H
blob: ad22fe7d10dad10cfcaf092580116781b37d7599 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: hwpf/fapi2/include/fapi2_target.H $                           */
/*                                                                        */
/* IBM CONFIDENTIAL                                                       */
/*                                                                        */
/* EKB Project                                                            */
/*                                                                        */
/* COPYRIGHT 2015                                                         */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* The source code for this program is not published or otherwise         */
/* divested of its trade secrets, irrespective of what has been           */
/* deposited with the U.S. Copyright Office.                              */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */
///
/// @file fapi2_target.H
/// @brief Common definitions for fapi2 targets
///

#ifndef __FAPI2_COMMON_TARGET__
#define __FAPI2_COMMON_TARGET__

#include <stdint.h>
#include <stdlib.h>
#include <vector>
#include <target_types.H>
#include <target_states.H>
#include <plat_target.H>

namespace fapi2
{
///
/// @brief Class representing a FAPI2 Target
/// @tparam K the type (Kind) of target
/// @tparam V the type of the target's Value
/// @remark TargetLite targets are uint64_t, Targets
/// are uintptr_t (void*).
///
/// Assuming there are representations of a processor,
/// a membuf and a system here are some examples:
/// @code
/// #define PROCESSOR_CHIP_A 0xFFFF0000
/// #define MEMBUF_CHIP_B    0x0000FFFF
/// #define SYSTEM_C         0x0000AAAA
/// @endcode
///
/// * To define a target:
/// @code
/// fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP> A(PROCESSOR_CHIP_A);
/// fapi2::Target<fapi2::TARGET_TYPE_SYSTEM> C(SYSTEM_C);
/// fapi2::Target<fapi2::TARGET_TYPE_MEMBUF_CHIP> B(MEMBUF_CHIP_B);
/// @endcode
///
/// * Functions which take composite target types
/// @code
/// void takesProcOrMembuf(
/// const fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP |
///                     fapi2::TARGET_TYPE_MEMBUF_CHIP>& V );
///
/// void takesAny(const fapi2::Target<fapi2::TARGET_TYPE_ALL>& V );
///
/// @endcode
///
/// * Traversing the target "tree"
/// @code
/// fapi2::Target<fapi2::TARGET_TYPE_PROC_CHIP> A(PROCESSOR_CHIP_A);
///
/// // Get A's parent
/// A.getParent<fapi2::TARGET_TYPE_SYSTEM>();
///
/// // Get the 0x53'd core
/// fapi2::getTarget<fapi2::TARGET_TYPE_CORE>(0x53);
///
/// // Get all *my* present/functional children which are cores
/// A.getChildren<fapi2::TARGET_TYPE_CORE>();
///
/// // Get all of the the cores relative to my base target
/// fapi2::getChildren<fapi2::TARGET_TYPE_CORE>();
/// @endcode
///
/// * Invalid casts
/// @code
/// // Can't cast to a specialized target
/// fapi2::Target<fapi2::TARGET_TYPE_NONE> D(MEMBUF_CHIP_B);
/// takesProcOrMembuf( D );
///
/// // Not one of the shared types
/// fapi2::Target<fapi2::TARGET_TYPE_ABUS_ENDPOINT> E;
/// takesProcOrMembuf( E );
/// @endcode
template<TargetType K, typename V = plat_target_handle_t>
class Target
{
    public:

        ///
        /// @brief Create a Target, with a value
        /// @param[in] Value the value (i.e., specific element this
        /// target represents, or pointer)
        /// @note Platforms can mangle the value and K to get a
        /// single uint64_t in value which represents all the information
        /// they might need. value( K | V ), for example
        ///
        Target(V Value = 0):
            iv_handle(Value)
        {}

        ///
        /// @brief Assignment Operator.
        /// @param[in] i_right Reference to Target to assign from.
        /// @return Reference to 'this' Target
        ///
        Target& operator=(const Target& i_right);

        ///
        /// @brief Equality Comparison Operator
        /// @param[in] i_right Reference to Target to compare.
        /// @return bool. True if equal.
        /// @note Platforms need to define this so that the physical
        /// targets are determined to be equivilent rather than just the handles
        ///
        bool operator==(const Target& i_right) const;

        ///
        /// @brief Inquality Comparison Operator
        /// @param[in] i_right Reference to Target to compare.
        /// @return bool. True if not equal.
        /// @note Platforms need to define this so that the physical
        /// targets are determined to be equivilent rather than just the handles
        ///
        bool operator!=(const Target& i_right) const;

        ///
        /// @brief Get the handle.
        /// @return V The target's handle, or value
        ///
        V get(void) const
        {
            return iv_handle;
        }

        ///
        /// @brief Get the handle as a V
        /// @return V The target's handle, or value
        ///
        inline operator V() const
        {
            return iv_handle;
        }

        ///
        /// @brief Get a target's value
        /// @return V The target's handle, or value
        ///
        inline V& operator()(void)
        {
            return iv_handle;
        }

        ///
        /// @brief Get the target type
        /// @return The type of target represented by this target
        ///
        inline TargetType getType(void) const
        {
            return iv_type;
        }

        ///
        /// @brief Get this target's immediate parent
        /// @tparam T The type of the parent
        /// @return Target<T> a target representing the parent
        ///
        template< TargetType T >
        inline Target<T> getParent(void) const;

        ///
        /// @brief Is this target a chip?
        /// @return Return true if this target is a chip, false otherwise
        ///
        inline constexpr bool isChip(void) const
        {
            return ( (K == TARGET_TYPE_PROC_CHIP) ||
                     (K == TARGET_TYPE_MEMBUF_CHIP) );
        }

        ///
        /// @brief Is this target a chiplet?
        /// @return Return true if this target is a chiplet, false otherwise
        ///
        inline constexpr bool isChiplet(void) const
        {
            return ( (K == TARGET_TYPE_EX) ||
                     (K == TARGET_TYPE_MBA) ||
                     (K == TARGET_TYPE_MCS) ||
                     (K == TARGET_TYPE_XBUS) ||
                     (K == TARGET_TYPE_ABUS) ||
                     (K == TARGET_TYPE_L4) ||
                     (K == TARGET_TYPE_CORE) ||
                     (K == TARGET_TYPE_EQ) ||
                     (K == TARGET_TYPE_MCA) ||
                     (K == TARGET_TYPE_MCBIST) ||
                     (K == TARGET_TYPE_MI) ||
                     (K == TARGET_TYPE_DMI) ||
                     (K == TARGET_TYPE_OBUS) ||
                     (K == TARGET_TYPE_NV) ||
                     (K == TARGET_TYPE_SBE) ||
                     (K == TARGET_TYPE_PPE) ||
                     (K == TARGET_TYPE_PERV) ||
                     (K == TARGET_TYPE_PEC) ||
                     (K == TARGET_TYPE_PHB) );
        }

        ///
        /// @brief Get this target's children
        /// @tparam T The type of the parent
        /// @param[in] i_state The desired TargetState of the children
        /// @return std::vector<Target<T> > a vector of present/functional
        /// children
        /// @warning The children of EX's (cores) are expected to be returned
        /// in order. That is, core 0 is std::vector[0].
        ///
        template< TargetType T>
        inline std::vector<Target<T> >
        getChildren(const TargetState i_state = TARGET_STATE_FUNCTIONAL) const;

        ///
        /// @brief Get the target at the other end of a bus - dimm included
        /// @tparam T The type of the parent
        /// @param[in] i_state The desired TargetState of the children
        /// @return Target<T> a target representing the thing on the other end
        /// @note Can be easily changed to a vector if needed
        ///
        template<TargetType T>
        inline Target<T>
        getOtherEnd(const TargetState i_state = TARGET_STATE_FUNCTIONAL) const;

        ///
        /// @brief Copy from a Target<O> to a Target<K>
        /// @tparam O the target type of the other
        ///
        template<TargetType O>
        inline Target( const Target<O>& Other ):
            Target<K, V>(Other.get())
        {
            // In case of recursion depth failure, use -ftemplate-depth=
            static_assert( (K & O) != 0,
                           "unable to cast Target, no shared types");

            static_assert( bitCount<K>::count >= bitCount<O>::count,
                           "unable to cast to specialized Target");
        }

    private:
        // Don't use enums here as it makes it hard to assign
        // in the platform target cast constructor.
        static const TargetType iv_type = K;
        V iv_handle;

};

// EX threads map to CORE threads:
// t0 / t2 / t4 / t6 fused = t0 / t1 / t2 / t3 normal (c0)
// t1 / t3 / t5 / t7 fused = t0 / t1 / t2 / t3 normal (c1)
// So when splitting the EX, we need to map from EX threads
// to CORE threads.

///
/// @brief Given a normal core thread id, translate this to
/// a fused core thread id. (normal to fused)
/// @param[in] the ordinal number of the normal core this thread belongs to
/// @param[in] a normal core thread id - 0, ..., 3
/// @return the fused core thread id
///
inline uint8_t thread_id_n2f(const uint8_t i_ordinal, const uint8_t i_thread_id)
{
    return (i_thread_id << 1) | i_ordinal;
}

///
/// @brief Given a fused core thread id, translate this to
/// a normal core thread id. (fused to normal)
/// @param[in] a fused core thread id - 0, ..., 7
/// @return the normal core thread id
///
inline uint8_t thread_id_f2n(const uint8_t i_thread_id)
{
    return i_thread_id >> 1;
}

///
/// @brief Given a normal core thread id, translate this to a
/// normal core bitset.
/// @param[in] a normal core thread id - 0, ..., 3
/// @return the normal core bitset
/// @note to got from a fused core id to a normal core bitset,
/// translate from a fused core thread id first.
///
inline uint8_t thread_id2bitset(const uint8_t i_thread_id)
{
    // 0xff means "set all bits"
    static const uint8_t all_threads  = 0xff;
    static const uint8_t all_normal_threads_bitset = 0x0f;

    if (i_thread_id == all_threads)
    {
        return all_normal_threads_bitset;
    }

    // A thread_id is really just bit index.
    return (1 << (4 - i_thread_id - 1));
}

///
/// @brief Given a bitset of normal core thread ids, translate this to
/// a bit mask of fused core thread id. (normal to fused)
/// @param[in] the ordinal number of the normal core this thread belongs to
/// @param[in] a normal core thread bitset - b0000, ..., b1111
/// @return the corresponding fused core bitset
///
inline uint8_t thread_bitset_n2f(const uint8_t i_ordinal, const uint8_t i_threads)
{
    // Since we only have 4 bits I think this is better than a shift-type solution
    // for interleaving bits
    static uint8_t core_map[] =
    {
        0b00000000, // b0000
        0b00000010, // b0001
        0b00001000, // b0010
        0b00001010, // b0011
        0b00100000, // b0100
        0b00100010, // b0101
        0b00101000, // b0110
        0b00101010, // b0111
        0b10000000, // b1000
        0b10000010, // b1001
        0b10001000, // b1010
        0b10001010, // b1011
        0b10100000, // b1100
        0b10100010, // b1101
        0b10101000, // b1110
        0b10101010, // b1111
    };

    return core_map[i_threads] >> i_ordinal;
}

///
/// @brief Given a fused core thread bitset, translate this to
/// a normal core thread bitset. (fused to normal)
/// @param[in] the ordinal number of the normal core this thread belongs to
/// @param[in] a fused core thread bitset - b00000000, ..., b11111111
/// @return the corresponding normal core bitset
///
inline uint8_t thread_bitset_f2n(const uint8_t i_ordinal, const uint8_t i_threads)
{
    uint8_t normal_set = 0;

    // core 0 is the left-most bit in the pair
    uint8_t pair_mask = (i_ordinal == 0) ? 0x2 : 0x1;

    // For each bit which can be set in the normal core bit_set ...
    for( auto i = 0; i <= 3; ++i )
    {
        // ... grab the two fused bits which represent it ...
        // ... and mask off the bit in the pair which represents this normal core ...
        // (the << 1 shifts the masks over as we walk the pairs of bits)
        uint8_t bits = (((3 << (i << 1)) & i_threads) & (pair_mask << (i << 1)));

        // ... if either bit is set, set the corresponding bit in
        // the normal core bitset.
        normal_set |= (bits != 0) << i;
    }

    return normal_set;
}

///
/// @brief Return the string interpretation of this target
/// @tparam T The type of the target
/// @param[in] i_target Target<T>
/// @param[in] i_buffer buffer to write in to
/// @param[in] i_bsize size of the buffer
/// @return void
/// @post The contents of the buffer is replaced with the string
/// representation of the target
///
template< TargetType T >
inline void toString(const Target<T>& i_target, char* i_buffer, size_t i_bsize);

///
/// @brief Return the string interpretation of this target
/// @tparam T The type of the target
/// @tparam B The type of the buffer
/// @param[in] A pointer to the Target<T>
/// @param[in] i_buffer buffer to write in to
/// @param[in] i_bsize size of the buffer
/// @return void
/// @post The contents of the buffer is replaced with the string
/// representation of the target
///
template< TargetType T >
inline void toString(const Target<T>* i_target, char* i_buffer, size_t i_bsize);

///
/// @brief Get an enumerated target of a specific type
/// @tparam T The type of the target
/// @param[in] Ordinal representing the ordinal number of
/// the desired target
/// @return Target<T> the target requested
///
template<TargetType T>
inline Target<T> getTarget(uint64_t Ordinal);

// Why has the been removed? For starters, the API name
// is probably wrong as it's already been confused with
// Target::getChildren(). And if I'm going to change it
// I really want to see if we need it. I'm still not
// clear on whether we're alloing this traversal or not.
#if 0
///
/// @brief Get the base target's children
/// @tparam T The type of the target
/// @return std::vector<Target<T> > a vector of present/functional
/// children
///
template<TargetType T>
inline std::vector<Target<T> > getChildren()
{
    // For testing
    return {Target<T>(), Target<T>()};
}
#endif

///
/// @brief Return the string interpretation of this target
/// @tparam T The type of the target
/// @tparam B The type of the buffer
/// @param[in] i_target Target<T>
/// @param[in] i_buffer buffer
/// @return void
/// @post The contents of the buffer is replaced with the string
/// representation of the target
///
template<TargetType T, typename B>
inline void toString(const Target<T>& i_target, B& i_buffer);

///
/// @brief Check if the target is of a type, or in a type subset.
/// @tparam K the TargetType to check
/// @tparam T TargetType or TargetType composite to check against
/// @return True, iff K is a proper T
///
template< TargetType K, TargetType T >
inline constexpr bool is_same(void)
{
    return (K & T) != 0;
}


}

#endif
OpenPOWER on IntegriCloud