1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
/* IBM_PROLOG_BEGIN_TAG */
/* This is an automatically generated prolog. */
/* */
/* $Source: hwpf/fapi2/include/buffer_traits.H $ */
/* */
/* IBM CONFIDENTIAL */
/* */
/* EKB Project */
/* */
/* COPYRIGHT 2012,2015 */
/* [+] International Business Machines Corp. */
/* */
/* */
/* The source code for this program is not published or otherwise */
/* divested of its trade secrets, irrespective of what has been */
/* deposited with the U.S. Copyright Office. */
/* */
/* IBM_PROLOG_END_TAG */
/**
* @file buffer_traits.H
* @brief trait definitions for fapi2 buffer base class
*/
#ifndef __FAPI2_BUFFER_TRAITS__
#define __FAPI2_BUFFER_TRAITS__
#include <stdint.h>
#include <vector>
#include <algorithm>
#include <buffer_parameters.H>
#ifdef FAPI2_DEBUG
#include <iostream>
#endif
#include <iterator>
namespace fapi2
{
/// @cond
/// Types representing a container of bits. Used to create
/// variable_buffer. container_unit must remain 32-bits
/// for now - there will be a lot of code to change if it
/// changes. There are assertions helping to enforce this
/// in places in the code.
typedef uint32_t container_unit;
typedef std::vector<container_unit> bits_container;
/// @brief Traits of buffers
// In general, we try to give buffers traits reflecting integral types. If
// this fails, the compiler will let someone know.
///
/// @tparam T is the type of iv_data (std::vector, etc)
/// @tparam B is the type of the bit-specifier, typically uint32_t
template<typename T, typename B = uint32_t>
class bufferTraits
{
public:
#if !defined(DOXYGEN) && defined(FAPI2_DEBUG)
///
/// @brief Print a container of bits
/// @param[in] i_data the container of bits
///
static inline void print(const T& i_data)
{
// convert to uint64_t to prevent uint8_t from being
// printed as a char.
std::cout << "\tdata is "
<< std::hex
<< static_cast<uint64_t>(i_data)
<< std::dec << std::endl;
}
#endif
///
/// @brief Return the size of the buffer in E units
/// @tparam E, the element size.
/// @param[in] i_buffer the buffer which to size
/// @return The size of the buffer in E's rounded up
///
template<typename E>
constexpr static B size(const T& i_buffer)
{
return (bit_length(i_buffer) +
(parameterTraits<E>::bit_length() - 1)) /
parameterTraits<E>::bit_length();
}
///
/// @brief Return the size of the buffer itself
/// @param[in] i_buffer the buffer which to size
/// @return The size of the buffer in bits (not units)
///
constexpr static B bit_length(const T&)
{
return sizeof(T) * 8;
}
///
/// @brief Clear the buffer
/// @param[in,out] io_buffer the buffer which to clear
///
static inline void clear(T& io_buffer)
{
io_buffer = static_cast<T>(0);
}
///
/// @brief Set the buffer
/// @param[in,out] io_buffer the buffer which to set
///
static inline void set(T& io_buffer)
{
io_buffer = static_cast<T>(~0);
}
///
/// @brief Invert the buffer
/// @param[in,out] io_buffer the buffer which to invert
///
static inline void invert(T& io_buffer)
{
io_buffer = ~io_buffer;
}
///
/// @brief Reverse the buffer
/// @param[in,out] io_buffer the buffer which to reverse
//
// @note from
// http://stackoverflow.com/questions/746171/best-algorithm-for-bit-reversal-from-msb-lsb-to-lsb-msb-in-c
///
static inline void reverse( T& io_buffer)
{
T l_result = io_buffer;
size_t l_s = sizeof(T) * 8 - 1;
for( io_buffer >>= 1; io_buffer; io_buffer >>= 1)
{
l_result <<= 1;
l_result |= io_buffer & 1;
l_s--;
}
l_result <<= l_s;
io_buffer = l_result;
}
///
/// @brief Get the address of the buffer as an array
/// @param[in] i_buffer the buffer which to invert
/// @return The address of the first element of the buffer
///
static inline void* get_address(T& i_buffer)
{
return (void*)&i_buffer;
}
typedef B bits_type;
typedef T unit_type;
constexpr static uint32_t bits_per_unit(void)
{
return sizeof(unit_type) * 8;
}
};
//
//
/// @brief Traits for buffers which are a container of bits
//
//
template<>
class bufferTraits<bits_container, uint32_t>
{
public:
#if !defined(DOXYGEN) && defined(FAPI2_DEBUG)
///
/// @brief Print a container of bits
/// @param[in] i_data the container of bits
///
static inline void print(const bits_container& i_data)
{
std::cout << "\tdata is " << std::hex;
std::copy(i_data.begin(), i_data.end(),
std::ostream_iterator<container_unit>(std::cout, " "));
std::cout << std::dec << std::endl;
}
#endif
///
/// @brief Return the size of the buffer in E units
/// @tparam E, the element size.
/// @param[in] i_buffer the buffer which to size
/// @return The size of the buffer in E's rounded up
///
template<typename E>
constexpr static uint32_t size(const bits_container& i_buffer)
{
return (bit_length(i_buffer) +
(parameterTraits<E>::bit_length() - 1)) /
parameterTraits<E>::bit_length();
}
///
/// @brief Return the size of the buffer itself
/// @param[in] i_buffer the buffer which to size
/// @return The size of the buffer in bits (not units)
///
static inline uint32_t bit_length(const bits_container& i_buffer)
{
return i_buffer.size() * sizeof(container_unit) * 8;
}
///
/// @brief Clear the buffer
/// @param[in,out] io_buffer the buffer which to clear
///
static inline void clear(bits_container& io_buffer)
{
io_buffer.assign(io_buffer.size(), 0);
}
///
/// @brief Set the buffer
/// @param[in,out] io_buffer the buffer which to set
///
static inline void set(bits_container& io_buffer)
{
io_buffer.assign(io_buffer.size(), ~0);
}
///
/// @brief Invert the buffer
/// @param[in,out] io_buffer the buffer which to invert
///
static inline void invert(bits_container& io_buffer)
{
std::transform(io_buffer.begin(), io_buffer.end(),
io_buffer.begin(),
[](container_unit u)
{
return ~u;
});
}
///
/// @brief Get the address of the buffer as an array
/// @param[in] i_buffer the buffer which to invert
/// @return The address of the first element of the buffer
///
static inline void* get_address(bits_container& i_buffer)
{
return (void*) & (i_buffer[0]);
}
typedef uint32_t bits_type;
typedef container_unit unit_type;
constexpr static uint32_t bits_per_unit(void)
{
return sizeof(unit_type) * 8;
}
};
/// @endcond
}
#endif
|