summaryrefslogtreecommitdiffstats
path: root/import-layers/yocto-poky/bitbake/lib/ply/yacc.py
diff options
context:
space:
mode:
authorDave Cobbley <david.j.cobbley@linux.intel.com>2018-08-14 10:05:37 -0700
committerBrad Bishop <bradleyb@fuzziesquirrel.com>2018-08-22 21:26:31 -0400
commiteb8dc40360f0cfef56fb6947cc817a547d6d9bc6 (patch)
treede291a73dc37168da6370e2cf16c347d1eba9df8 /import-layers/yocto-poky/bitbake/lib/ply/yacc.py
parent9c3cf826d853102535ead04cebc2d6023eff3032 (diff)
downloadtalos-openbmc-eb8dc40360f0cfef56fb6947cc817a547d6d9bc6.tar.gz
talos-openbmc-eb8dc40360f0cfef56fb6947cc817a547d6d9bc6.zip
[Subtree] Removing import-layers directory
As part of the move to subtrees, need to bring all the import layers content to the top level. Change-Id: I4a163d10898cbc6e11c27f776f60e1a470049d8f Signed-off-by: Dave Cobbley <david.j.cobbley@linux.intel.com> Signed-off-by: Brad Bishop <bradleyb@fuzziesquirrel.com>
Diffstat (limited to 'import-layers/yocto-poky/bitbake/lib/ply/yacc.py')
-rw-r--r--import-layers/yocto-poky/bitbake/lib/ply/yacc.py3278
1 files changed, 0 insertions, 3278 deletions
diff --git a/import-layers/yocto-poky/bitbake/lib/ply/yacc.py b/import-layers/yocto-poky/bitbake/lib/ply/yacc.py
deleted file mode 100644
index d50886ed2..000000000
--- a/import-layers/yocto-poky/bitbake/lib/ply/yacc.py
+++ /dev/null
@@ -1,3278 +0,0 @@
-# -----------------------------------------------------------------------------
-# ply: yacc.py
-#
-# Copyright (C) 2001-2009,
-# David M. Beazley (Dabeaz LLC)
-# All rights reserved.
-#
-# Redistribution and use in source and binary forms, with or without
-# modification, are permitted provided that the following conditions are
-# met:
-#
-# * Redistributions of source code must retain the above copyright notice,
-# this list of conditions and the following disclaimer.
-# * Redistributions in binary form must reproduce the above copyright notice,
-# this list of conditions and the following disclaimer in the documentation
-# and/or other materials provided with the distribution.
-# * Neither the name of the David Beazley or Dabeaz LLC may be used to
-# endorse or promote products derived from this software without
-# specific prior written permission.
-#
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-# -----------------------------------------------------------------------------
-#
-# This implements an LR parser that is constructed from grammar rules defined
-# as Python functions. The grammer is specified by supplying the BNF inside
-# Python documentation strings. The inspiration for this technique was borrowed
-# from John Aycock's Spark parsing system. PLY might be viewed as cross between
-# Spark and the GNU bison utility.
-#
-# The current implementation is only somewhat object-oriented. The
-# LR parser itself is defined in terms of an object (which allows multiple
-# parsers to co-exist). However, most of the variables used during table
-# construction are defined in terms of global variables. Users shouldn't
-# notice unless they are trying to define multiple parsers at the same
-# time using threads (in which case they should have their head examined).
-#
-# This implementation supports both SLR and LALR(1) parsing. LALR(1)
-# support was originally implemented by Elias Ioup (ezioup@alumni.uchicago.edu),
-# using the algorithm found in Aho, Sethi, and Ullman "Compilers: Principles,
-# Techniques, and Tools" (The Dragon Book). LALR(1) has since been replaced
-# by the more efficient DeRemer and Pennello algorithm.
-#
-# :::::::: WARNING :::::::
-#
-# Construction of LR parsing tables is fairly complicated and expensive.
-# To make this module run fast, a *LOT* of work has been put into
-# optimization---often at the expensive of readability and what might
-# consider to be good Python "coding style." Modify the code at your
-# own risk!
-# ----------------------------------------------------------------------------
-
-__version__ = "3.3"
-__tabversion__ = "3.2" # Table version
-
-#-----------------------------------------------------------------------------
-# === User configurable parameters ===
-#
-# Change these to modify the default behavior of yacc (if you wish)
-#-----------------------------------------------------------------------------
-
-yaccdebug = 0 # Debugging mode. If set, yacc generates a
- # a 'parser.out' file in the current directory
-
-debug_file = 'parser.out' # Default name of the debugging file
-tab_module = 'parsetab' # Default name of the table module
-default_lr = 'LALR' # Default LR table generation method
-
-error_count = 3 # Number of symbols that must be shifted to leave recovery mode
-
-yaccdevel = 0 # Set to True if developing yacc. This turns off optimized
- # implementations of certain functions.
-
-resultlimit = 40 # Size limit of results when running in debug mode.
-
-pickle_protocol = 0 # Protocol to use when writing pickle files
-
-import re, types, sys, os.path
-
-# Compatibility function for python 2.6/3.0
-if sys.version_info[0] < 3:
- def func_code(f):
- return f.func_code
-else:
- def func_code(f):
- return f.__code__
-
-# Compatibility
-try:
- MAXINT = sys.maxint
-except AttributeError:
- MAXINT = sys.maxsize
-
-# Python 2.x/3.0 compatibility.
-def load_ply_lex():
- if sys.version_info[0] < 3:
- import lex
- else:
- import ply.lex as lex
- return lex
-
-# This object is a stand-in for a logging object created by the
-# logging module. PLY will use this by default to create things
-# such as the parser.out file. If a user wants more detailed
-# information, they can create their own logging object and pass
-# it into PLY.
-
-class PlyLogger(object):
- def __init__(self,f):
- self.f = f
- def debug(self,msg,*args,**kwargs):
- self.f.write((msg % args) + "\n")
- info = debug
-
- def warning(self,msg,*args,**kwargs):
- self.f.write("WARNING: "+ (msg % args) + "\n")
-
- def error(self,msg,*args,**kwargs):
- self.f.write("ERROR: " + (msg % args) + "\n")
-
- critical = debug
-
-# Null logger is used when no output is generated. Does nothing.
-class NullLogger(object):
- def __getattribute__(self,name):
- return self
- def __call__(self,*args,**kwargs):
- return self
-
-# Exception raised for yacc-related errors
-class YaccError(Exception): pass
-
-# Format the result message that the parser produces when running in debug mode.
-def format_result(r):
- repr_str = repr(r)
- if '\n' in repr_str: repr_str = repr(repr_str)
- if len(repr_str) > resultlimit:
- repr_str = repr_str[:resultlimit]+" ..."
- result = "<%s @ 0x%x> (%s)" % (type(r).__name__,id(r),repr_str)
- return result
-
-
-# Format stack entries when the parser is running in debug mode
-def format_stack_entry(r):
- repr_str = repr(r)
- if '\n' in repr_str: repr_str = repr(repr_str)
- if len(repr_str) < 16:
- return repr_str
- else:
- return "<%s @ 0x%x>" % (type(r).__name__,id(r))
-
-#-----------------------------------------------------------------------------
-# === LR Parsing Engine ===
-#
-# The following classes are used for the LR parser itself. These are not
-# used during table construction and are independent of the actual LR
-# table generation algorithm
-#-----------------------------------------------------------------------------
-
-# This class is used to hold non-terminal grammar symbols during parsing.
-# It normally has the following attributes set:
-# .type = Grammar symbol type
-# .value = Symbol value
-# .lineno = Starting line number
-# .endlineno = Ending line number (optional, set automatically)
-# .lexpos = Starting lex position
-# .endlexpos = Ending lex position (optional, set automatically)
-
-class YaccSymbol:
- def __str__(self): return self.type
- def __repr__(self): return str(self)
-
-# This class is a wrapper around the objects actually passed to each
-# grammar rule. Index lookup and assignment actually assign the
-# .value attribute of the underlying YaccSymbol object.
-# The lineno() method returns the line number of a given
-# item (or 0 if not defined). The linespan() method returns
-# a tuple of (startline,endline) representing the range of lines
-# for a symbol. The lexspan() method returns a tuple (lexpos,endlexpos)
-# representing the range of positional information for a symbol.
-
-class YaccProduction:
- def __init__(self,s,stack=None):
- self.slice = s
- self.stack = stack
- self.lexer = None
- self.parser= None
- def __getitem__(self,n):
- if isinstance(n,slice):
- return [self[i] for i in range(*(n.indices(len(self.slice))))]
- if n >= 0: return self.slice[n].value
- else: return self.stack[n].value
-
- def __setitem__(self,n,v):
- self.slice[n].value = v
-
- def __getslice__(self,i,j):
- return [s.value for s in self.slice[i:j]]
-
- def __len__(self):
- return len(self.slice)
-
- def lineno(self,n):
- return getattr(self.slice[n],"lineno",0)
-
- def set_lineno(self,n,lineno):
- self.slice[n].lineno = lineno
-
- def linespan(self,n):
- startline = getattr(self.slice[n],"lineno",0)
- endline = getattr(self.slice[n],"endlineno",startline)
- return startline,endline
-
- def lexpos(self,n):
- return getattr(self.slice[n],"lexpos",0)
-
- def lexspan(self,n):
- startpos = getattr(self.slice[n],"lexpos",0)
- endpos = getattr(self.slice[n],"endlexpos",startpos)
- return startpos,endpos
-
- def error(self):
- raise SyntaxError
-
-
-# -----------------------------------------------------------------------------
-# == LRParser ==
-#
-# The LR Parsing engine.
-# -----------------------------------------------------------------------------
-
-class LRParser:
- def __init__(self,lrtab,errorf):
- self.productions = lrtab.lr_productions
- self.action = lrtab.lr_action
- self.goto = lrtab.lr_goto
- self.errorfunc = errorf
-
- def errok(self):
- self.errorok = 1
-
- def restart(self):
- del self.statestack[:]
- del self.symstack[:]
- sym = YaccSymbol()
- sym.type = '$end'
- self.symstack.append(sym)
- self.statestack.append(0)
-
- def parse(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc=None):
- if debug or yaccdevel:
- if isinstance(debug,int):
- debug = PlyLogger(sys.stderr)
- return self.parsedebug(input,lexer,debug,tracking,tokenfunc)
- elif tracking:
- return self.parseopt(input,lexer,debug,tracking,tokenfunc)
- else:
- return self.parseopt_notrack(input,lexer,debug,tracking,tokenfunc)
-
-
- # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
- # parsedebug().
- #
- # This is the debugging enabled version of parse(). All changes made to the
- # parsing engine should be made here. For the non-debugging version,
- # copy this code to a method parseopt() and delete all of the sections
- # enclosed in:
- #
- # #--! DEBUG
- # statements
- # #--! DEBUG
- #
- # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-
- def parsedebug(self,input=None,lexer=None,debug=None,tracking=0,tokenfunc=None):
- lookahead = None # Current lookahead symbol
- lookaheadstack = [ ] # Stack of lookahead symbols
- actions = self.action # Local reference to action table (to avoid lookup on self.)
- goto = self.goto # Local reference to goto table (to avoid lookup on self.)
- prod = self.productions # Local reference to production list (to avoid lookup on self.)
- pslice = YaccProduction(None) # Production object passed to grammar rules
- errorcount = 0 # Used during error recovery
-
- # --! DEBUG
- debug.info("PLY: PARSE DEBUG START")
- # --! DEBUG
-
- # If no lexer was given, we will try to use the lex module
- if not lexer:
- lex = load_ply_lex()
- lexer = lex.lexer
-
- # Set up the lexer and parser objects on pslice
- pslice.lexer = lexer
- pslice.parser = self
-
- # If input was supplied, pass to lexer
- if input is not None:
- lexer.input(input)
-
- if tokenfunc is None:
- # Tokenize function
- get_token = lexer.token
- else:
- get_token = tokenfunc
-
- # Set up the state and symbol stacks
-
- statestack = [ ] # Stack of parsing states
- self.statestack = statestack
- symstack = [ ] # Stack of grammar symbols
- self.symstack = symstack
-
- pslice.stack = symstack # Put in the production
- errtoken = None # Err token
-
- # The start state is assumed to be (0,$end)
-
- statestack.append(0)
- sym = YaccSymbol()
- sym.type = "$end"
- symstack.append(sym)
- state = 0
- while 1:
- # Get the next symbol on the input. If a lookahead symbol
- # is already set, we just use that. Otherwise, we'll pull
- # the next token off of the lookaheadstack or from the lexer
-
- # --! DEBUG
- debug.debug('')
- debug.debug('State : %s', state)
- # --! DEBUG
-
- if not lookahead:
- if not lookaheadstack:
- lookahead = get_token() # Get the next token
- else:
- lookahead = lookaheadstack.pop()
- if not lookahead:
- lookahead = YaccSymbol()
- lookahead.type = "$end"
-
- # --! DEBUG
- debug.debug('Stack : %s',
- ("%s . %s" % (" ".join([xx.type for xx in symstack][1:]), str(lookahead))).lstrip())
- # --! DEBUG
-
- # Check the action table
- ltype = lookahead.type
- t = actions[state].get(ltype)
-
- if t is not None:
- if t > 0:
- # shift a symbol on the stack
- statestack.append(t)
- state = t
-
- # --! DEBUG
- debug.debug("Action : Shift and goto state %s", t)
- # --! DEBUG
-
- symstack.append(lookahead)
- lookahead = None
-
- # Decrease error count on successful shift
- if errorcount: errorcount -=1
- continue
-
- if t < 0:
- # reduce a symbol on the stack, emit a production
- p = prod[-t]
- pname = p.name
- plen = p.len
-
- # Get production function
- sym = YaccSymbol()
- sym.type = pname # Production name
- sym.value = None
-
- # --! DEBUG
- if plen:
- debug.info("Action : Reduce rule [%s] with %s and goto state %d", p.str, "["+",".join([format_stack_entry(_v.value) for _v in symstack[-plen:]])+"]",-t)
- else:
- debug.info("Action : Reduce rule [%s] with %s and goto state %d", p.str, [],-t)
-
- # --! DEBUG
-
- if plen:
- targ = symstack[-plen-1:]
- targ[0] = sym
-
- # --! TRACKING
- if tracking:
- t1 = targ[1]
- sym.lineno = t1.lineno
- sym.lexpos = t1.lexpos
- t1 = targ[-1]
- sym.endlineno = getattr(t1,"endlineno",t1.lineno)
- sym.endlexpos = getattr(t1,"endlexpos",t1.lexpos)
-
- # --! TRACKING
-
- # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
- # The code enclosed in this section is duplicated
- # below as a performance optimization. Make sure
- # changes get made in both locations.
-
- pslice.slice = targ
-
- try:
- # Call the grammar rule with our special slice object
- del symstack[-plen:]
- del statestack[-plen:]
- p.callable(pslice)
- # --! DEBUG
- debug.info("Result : %s", format_result(pslice[0]))
- # --! DEBUG
- symstack.append(sym)
- state = goto[statestack[-1]][pname]
- statestack.append(state)
- except SyntaxError:
- # If an error was set. Enter error recovery state
- lookaheadstack.append(lookahead)
- symstack.pop()
- statestack.pop()
- state = statestack[-1]
- sym.type = 'error'
- lookahead = sym
- errorcount = error_count
- self.errorok = 0
- continue
- # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-
- else:
-
- # --! TRACKING
- if tracking:
- sym.lineno = lexer.lineno
- sym.lexpos = lexer.lexpos
- # --! TRACKING
-
- targ = [ sym ]
-
- # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
- # The code enclosed in this section is duplicated
- # above as a performance optimization. Make sure
- # changes get made in both locations.
-
- pslice.slice = targ
-
- try:
- # Call the grammar rule with our special slice object
- p.callable(pslice)
- # --! DEBUG
- debug.info("Result : %s", format_result(pslice[0]))
- # --! DEBUG
- symstack.append(sym)
- state = goto[statestack[-1]][pname]
- statestack.append(state)
- except SyntaxError:
- # If an error was set. Enter error recovery state
- lookaheadstack.append(lookahead)
- symstack.pop()
- statestack.pop()
- state = statestack[-1]
- sym.type = 'error'
- lookahead = sym
- errorcount = error_count
- self.errorok = 0
- continue
- # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-
- if t == 0:
- n = symstack[-1]
- result = getattr(n,"value",None)
- # --! DEBUG
- debug.info("Done : Returning %s", format_result(result))
- debug.info("PLY: PARSE DEBUG END")
- # --! DEBUG
- return result
-
- if t == None:
-
- # --! DEBUG
- debug.error('Error : %s',
- ("%s . %s" % (" ".join([xx.type for xx in symstack][1:]), str(lookahead))).lstrip())
- # --! DEBUG
-
- # We have some kind of parsing error here. To handle
- # this, we are going to push the current token onto
- # the tokenstack and replace it with an 'error' token.
- # If there are any synchronization rules, they may
- # catch it.
- #
- # In addition to pushing the error token, we call call
- # the user defined p_error() function if this is the
- # first syntax error. This function is only called if
- # errorcount == 0.
- if errorcount == 0 or self.errorok:
- errorcount = error_count
- self.errorok = 0
- errtoken = lookahead
- if errtoken.type == "$end":
- errtoken = None # End of file!
- if self.errorfunc:
- global errok,token,restart
- errok = self.errok # Set some special functions available in error recovery
- token = get_token
- restart = self.restart
- if errtoken and not hasattr(errtoken,'lexer'):
- errtoken.lexer = lexer
- tok = self.errorfunc(errtoken)
- del errok, token, restart # Delete special functions
-
- if self.errorok:
- # User must have done some kind of panic
- # mode recovery on their own. The
- # returned token is the next lookahead
- lookahead = tok
- errtoken = None
- continue
- else:
- if errtoken:
- if hasattr(errtoken,"lineno"): lineno = lookahead.lineno
- else: lineno = 0
- if lineno:
- sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type))
- else:
- sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type)
- else:
- sys.stderr.write("yacc: Parse error in input. EOF\n")
- return
-
- else:
- errorcount = error_count
-
- # case 1: the statestack only has 1 entry on it. If we're in this state, the
- # entire parse has been rolled back and we're completely hosed. The token is
- # discarded and we just keep going.
-
- if len(statestack) <= 1 and lookahead.type != "$end":
- lookahead = None
- errtoken = None
- state = 0
- # Nuke the pushback stack
- del lookaheadstack[:]
- continue
-
- # case 2: the statestack has a couple of entries on it, but we're
- # at the end of the file. nuke the top entry and generate an error token
-
- # Start nuking entries on the stack
- if lookahead.type == "$end":
- # Whoa. We're really hosed here. Bail out
- return
-
- if lookahead.type != 'error':
- sym = symstack[-1]
- if sym.type == 'error':
- # Hmmm. Error is on top of stack, we'll just nuke input
- # symbol and continue
- lookahead = None
- continue
- t = YaccSymbol()
- t.type = 'error'
- if hasattr(lookahead,"lineno"):
- t.lineno = lookahead.lineno
- t.value = lookahead
- lookaheadstack.append(lookahead)
- lookahead = t
- else:
- symstack.pop()
- statestack.pop()
- state = statestack[-1] # Potential bug fix
-
- continue
-
- # Call an error function here
- raise RuntimeError("yacc: internal parser error!!!\n")
-
- # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
- # parseopt().
- #
- # Optimized version of parse() method. DO NOT EDIT THIS CODE DIRECTLY.
- # Edit the debug version above, then copy any modifications to the method
- # below while removing #--! DEBUG sections.
- # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-
-
- def parseopt(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc=None):
- lookahead = None # Current lookahead symbol
- lookaheadstack = [ ] # Stack of lookahead symbols
- actions = self.action # Local reference to action table (to avoid lookup on self.)
- goto = self.goto # Local reference to goto table (to avoid lookup on self.)
- prod = self.productions # Local reference to production list (to avoid lookup on self.)
- pslice = YaccProduction(None) # Production object passed to grammar rules
- errorcount = 0 # Used during error recovery
-
- # If no lexer was given, we will try to use the lex module
- if not lexer:
- lex = load_ply_lex()
- lexer = lex.lexer
-
- # Set up the lexer and parser objects on pslice
- pslice.lexer = lexer
- pslice.parser = self
-
- # If input was supplied, pass to lexer
- if input is not None:
- lexer.input(input)
-
- if tokenfunc is None:
- # Tokenize function
- get_token = lexer.token
- else:
- get_token = tokenfunc
-
- # Set up the state and symbol stacks
-
- statestack = [ ] # Stack of parsing states
- self.statestack = statestack
- symstack = [ ] # Stack of grammar symbols
- self.symstack = symstack
-
- pslice.stack = symstack # Put in the production
- errtoken = None # Err token
-
- # The start state is assumed to be (0,$end)
-
- statestack.append(0)
- sym = YaccSymbol()
- sym.type = '$end'
- symstack.append(sym)
- state = 0
- while 1:
- # Get the next symbol on the input. If a lookahead symbol
- # is already set, we just use that. Otherwise, we'll pull
- # the next token off of the lookaheadstack or from the lexer
-
- if not lookahead:
- if not lookaheadstack:
- lookahead = get_token() # Get the next token
- else:
- lookahead = lookaheadstack.pop()
- if not lookahead:
- lookahead = YaccSymbol()
- lookahead.type = '$end'
-
- # Check the action table
- ltype = lookahead.type
- t = actions[state].get(ltype)
-
- if t is not None:
- if t > 0:
- # shift a symbol on the stack
- statestack.append(t)
- state = t
-
- symstack.append(lookahead)
- lookahead = None
-
- # Decrease error count on successful shift
- if errorcount: errorcount -=1
- continue
-
- if t < 0:
- # reduce a symbol on the stack, emit a production
- p = prod[-t]
- pname = p.name
- plen = p.len
-
- # Get production function
- sym = YaccSymbol()
- sym.type = pname # Production name
- sym.value = None
-
- if plen:
- targ = symstack[-plen-1:]
- targ[0] = sym
-
- # --! TRACKING
- if tracking:
- t1 = targ[1]
- sym.lineno = t1.lineno
- sym.lexpos = t1.lexpos
- t1 = targ[-1]
- sym.endlineno = getattr(t1,"endlineno",t1.lineno)
- sym.endlexpos = getattr(t1,"endlexpos",t1.lexpos)
-
- # --! TRACKING
-
- # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
- # The code enclosed in this section is duplicated
- # below as a performance optimization. Make sure
- # changes get made in both locations.
-
- pslice.slice = targ
-
- try:
- # Call the grammar rule with our special slice object
- del symstack[-plen:]
- del statestack[-plen:]
- p.callable(pslice)
- symstack.append(sym)
- state = goto[statestack[-1]][pname]
- statestack.append(state)
- except SyntaxError:
- # If an error was set. Enter error recovery state
- lookaheadstack.append(lookahead)
- symstack.pop()
- statestack.pop()
- state = statestack[-1]
- sym.type = 'error'
- lookahead = sym
- errorcount = error_count
- self.errorok = 0
- continue
- # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-
- else:
-
- # --! TRACKING
- if tracking:
- sym.lineno = lexer.lineno
- sym.lexpos = lexer.lexpos
- # --! TRACKING
-
- targ = [ sym ]
-
- # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
- # The code enclosed in this section is duplicated
- # above as a performance optimization. Make sure
- # changes get made in both locations.
-
- pslice.slice = targ
-
- try:
- # Call the grammar rule with our special slice object
- p.callable(pslice)
- symstack.append(sym)
- state = goto[statestack[-1]][pname]
- statestack.append(state)
- except SyntaxError:
- # If an error was set. Enter error recovery state
- lookaheadstack.append(lookahead)
- symstack.pop()
- statestack.pop()
- state = statestack[-1]
- sym.type = 'error'
- lookahead = sym
- errorcount = error_count
- self.errorok = 0
- continue
- # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-
- if t == 0:
- n = symstack[-1]
- return getattr(n,"value",None)
-
- if t == None:
-
- # We have some kind of parsing error here. To handle
- # this, we are going to push the current token onto
- # the tokenstack and replace it with an 'error' token.
- # If there are any synchronization rules, they may
- # catch it.
- #
- # In addition to pushing the error token, we call call
- # the user defined p_error() function if this is the
- # first syntax error. This function is only called if
- # errorcount == 0.
- if errorcount == 0 or self.errorok:
- errorcount = error_count
- self.errorok = 0
- errtoken = lookahead
- if errtoken.type == '$end':
- errtoken = None # End of file!
- if self.errorfunc:
- global errok,token,restart
- errok = self.errok # Set some special functions available in error recovery
- token = get_token
- restart = self.restart
- if errtoken and not hasattr(errtoken,'lexer'):
- errtoken.lexer = lexer
- tok = self.errorfunc(errtoken)
- del errok, token, restart # Delete special functions
-
- if self.errorok:
- # User must have done some kind of panic
- # mode recovery on their own. The
- # returned token is the next lookahead
- lookahead = tok
- errtoken = None
- continue
- else:
- if errtoken:
- if hasattr(errtoken,"lineno"): lineno = lookahead.lineno
- else: lineno = 0
- if lineno:
- sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type))
- else:
- sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type)
- else:
- sys.stderr.write("yacc: Parse error in input. EOF\n")
- return
-
- else:
- errorcount = error_count
-
- # case 1: the statestack only has 1 entry on it. If we're in this state, the
- # entire parse has been rolled back and we're completely hosed. The token is
- # discarded and we just keep going.
-
- if len(statestack) <= 1 and lookahead.type != '$end':
- lookahead = None
- errtoken = None
- state = 0
- # Nuke the pushback stack
- del lookaheadstack[:]
- continue
-
- # case 2: the statestack has a couple of entries on it, but we're
- # at the end of the file. nuke the top entry and generate an error token
-
- # Start nuking entries on the stack
- if lookahead.type == '$end':
- # Whoa. We're really hosed here. Bail out
- return
-
- if lookahead.type != 'error':
- sym = symstack[-1]
- if sym.type == 'error':
- # Hmmm. Error is on top of stack, we'll just nuke input
- # symbol and continue
- lookahead = None
- continue
- t = YaccSymbol()
- t.type = 'error'
- if hasattr(lookahead,"lineno"):
- t.lineno = lookahead.lineno
- t.value = lookahead
- lookaheadstack.append(lookahead)
- lookahead = t
- else:
- symstack.pop()
- statestack.pop()
- state = statestack[-1] # Potential bug fix
-
- continue
-
- # Call an error function here
- raise RuntimeError("yacc: internal parser error!!!\n")
-
- # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
- # parseopt_notrack().
- #
- # Optimized version of parseopt() with line number tracking removed.
- # DO NOT EDIT THIS CODE DIRECTLY. Copy the optimized version and remove
- # code in the #--! TRACKING sections
- # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-
- def parseopt_notrack(self,input=None,lexer=None,debug=0,tracking=0,tokenfunc=None):
- lookahead = None # Current lookahead symbol
- lookaheadstack = [ ] # Stack of lookahead symbols
- actions = self.action # Local reference to action table (to avoid lookup on self.)
- goto = self.goto # Local reference to goto table (to avoid lookup on self.)
- prod = self.productions # Local reference to production list (to avoid lookup on self.)
- pslice = YaccProduction(None) # Production object passed to grammar rules
- errorcount = 0 # Used during error recovery
-
- # If no lexer was given, we will try to use the lex module
- if not lexer:
- lex = load_ply_lex()
- lexer = lex.lexer
-
- # Set up the lexer and parser objects on pslice
- pslice.lexer = lexer
- pslice.parser = self
-
- # If input was supplied, pass to lexer
- if input is not None:
- lexer.input(input)
-
- if tokenfunc is None:
- # Tokenize function
- get_token = lexer.token
- else:
- get_token = tokenfunc
-
- # Set up the state and symbol stacks
-
- statestack = [ ] # Stack of parsing states
- self.statestack = statestack
- symstack = [ ] # Stack of grammar symbols
- self.symstack = symstack
-
- pslice.stack = symstack # Put in the production
- errtoken = None # Err token
-
- # The start state is assumed to be (0,$end)
-
- statestack.append(0)
- sym = YaccSymbol()
- sym.type = '$end'
- symstack.append(sym)
- state = 0
- while 1:
- # Get the next symbol on the input. If a lookahead symbol
- # is already set, we just use that. Otherwise, we'll pull
- # the next token off of the lookaheadstack or from the lexer
-
- if not lookahead:
- if not lookaheadstack:
- lookahead = get_token() # Get the next token
- else:
- lookahead = lookaheadstack.pop()
- if not lookahead:
- lookahead = YaccSymbol()
- lookahead.type = '$end'
-
- # Check the action table
- ltype = lookahead.type
- t = actions[state].get(ltype)
-
- if t is not None:
- if t > 0:
- # shift a symbol on the stack
- statestack.append(t)
- state = t
-
- symstack.append(lookahead)
- lookahead = None
-
- # Decrease error count on successful shift
- if errorcount: errorcount -=1
- continue
-
- if t < 0:
- # reduce a symbol on the stack, emit a production
- p = prod[-t]
- pname = p.name
- plen = p.len
-
- # Get production function
- sym = YaccSymbol()
- sym.type = pname # Production name
- sym.value = None
-
- if plen:
- targ = symstack[-plen-1:]
- targ[0] = sym
-
- # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
- # The code enclosed in this section is duplicated
- # below as a performance optimization. Make sure
- # changes get made in both locations.
-
- pslice.slice = targ
-
- try:
- # Call the grammar rule with our special slice object
- del symstack[-plen:]
- del statestack[-plen:]
- p.callable(pslice)
- symstack.append(sym)
- state = goto[statestack[-1]][pname]
- statestack.append(state)
- except SyntaxError:
- # If an error was set. Enter error recovery state
- lookaheadstack.append(lookahead)
- symstack.pop()
- statestack.pop()
- state = statestack[-1]
- sym.type = 'error'
- lookahead = sym
- errorcount = error_count
- self.errorok = 0
- continue
- # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-
- else:
-
- targ = [ sym ]
-
- # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
- # The code enclosed in this section is duplicated
- # above as a performance optimization. Make sure
- # changes get made in both locations.
-
- pslice.slice = targ
-
- try:
- # Call the grammar rule with our special slice object
- p.callable(pslice)
- symstack.append(sym)
- state = goto[statestack[-1]][pname]
- statestack.append(state)
- except SyntaxError:
- # If an error was set. Enter error recovery state
- lookaheadstack.append(lookahead)
- symstack.pop()
- statestack.pop()
- state = statestack[-1]
- sym.type = 'error'
- lookahead = sym
- errorcount = error_count
- self.errorok = 0
- continue
- # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-
- if t == 0:
- n = symstack[-1]
- return getattr(n,"value",None)
-
- if t == None:
-
- # We have some kind of parsing error here. To handle
- # this, we are going to push the current token onto
- # the tokenstack and replace it with an 'error' token.
- # If there are any synchronization rules, they may
- # catch it.
- #
- # In addition to pushing the error token, we call call
- # the user defined p_error() function if this is the
- # first syntax error. This function is only called if
- # errorcount == 0.
- if errorcount == 0 or self.errorok:
- errorcount = error_count
- self.errorok = 0
- errtoken = lookahead
- if errtoken.type == '$end':
- errtoken = None # End of file!
- if self.errorfunc:
- global errok,token,restart
- errok = self.errok # Set some special functions available in error recovery
- token = get_token
- restart = self.restart
- if errtoken and not hasattr(errtoken,'lexer'):
- errtoken.lexer = lexer
- tok = self.errorfunc(errtoken)
- del errok, token, restart # Delete special functions
-
- if self.errorok:
- # User must have done some kind of panic
- # mode recovery on their own. The
- # returned token is the next lookahead
- lookahead = tok
- errtoken = None
- continue
- else:
- if errtoken:
- if hasattr(errtoken,"lineno"): lineno = lookahead.lineno
- else: lineno = 0
- if lineno:
- sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type))
- else:
- sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type)
- else:
- sys.stderr.write("yacc: Parse error in input. EOF\n")
- return
-
- else:
- errorcount = error_count
-
- # case 1: the statestack only has 1 entry on it. If we're in this state, the
- # entire parse has been rolled back and we're completely hosed. The token is
- # discarded and we just keep going.
-
- if len(statestack) <= 1 and lookahead.type != '$end':
- lookahead = None
- errtoken = None
- state = 0
- # Nuke the pushback stack
- del lookaheadstack[:]
- continue
-
- # case 2: the statestack has a couple of entries on it, but we're
- # at the end of the file. nuke the top entry and generate an error token
-
- # Start nuking entries on the stack
- if lookahead.type == '$end':
- # Whoa. We're really hosed here. Bail out
- return
-
- if lookahead.type != 'error':
- sym = symstack[-1]
- if sym.type == 'error':
- # Hmmm. Error is on top of stack, we'll just nuke input
- # symbol and continue
- lookahead = None
- continue
- t = YaccSymbol()
- t.type = 'error'
- if hasattr(lookahead,"lineno"):
- t.lineno = lookahead.lineno
- t.value = lookahead
- lookaheadstack.append(lookahead)
- lookahead = t
- else:
- symstack.pop()
- statestack.pop()
- state = statestack[-1] # Potential bug fix
-
- continue
-
- # Call an error function here
- raise RuntimeError("yacc: internal parser error!!!\n")
-
-# -----------------------------------------------------------------------------
-# === Grammar Representation ===
-#
-# The following functions, classes, and variables are used to represent and
-# manipulate the rules that make up a grammar.
-# -----------------------------------------------------------------------------
-
-import re
-
-# regex matching identifiers
-_is_identifier = re.compile(r'^[a-zA-Z0-9_-]+$')
-
-# -----------------------------------------------------------------------------
-# class Production:
-#
-# This class stores the raw information about a single production or grammar rule.
-# A grammar rule refers to a specification such as this:
-#
-# expr : expr PLUS term
-#
-# Here are the basic attributes defined on all productions
-#
-# name - Name of the production. For example 'expr'
-# prod - A list of symbols on the right side ['expr','PLUS','term']
-# prec - Production precedence level
-# number - Production number.
-# func - Function that executes on reduce
-# file - File where production function is defined
-# lineno - Line number where production function is defined
-#
-# The following attributes are defined or optional.
-#
-# len - Length of the production (number of symbols on right hand side)
-# usyms - Set of unique symbols found in the production
-# -----------------------------------------------------------------------------
-
-class Production(object):
- reduced = 0
- def __init__(self,number,name,prod,precedence=('right',0),func=None,file='',line=0):
- self.name = name
- self.prod = tuple(prod)
- self.number = number
- self.func = func
- self.callable = None
- self.file = file
- self.line = line
- self.prec = precedence
-
- # Internal settings used during table construction
-
- self.len = len(self.prod) # Length of the production
-
- # Create a list of unique production symbols used in the production
- self.usyms = [ ]
- for s in self.prod:
- if s not in self.usyms:
- self.usyms.append(s)
-
- # List of all LR items for the production
- self.lr_items = []
- self.lr_next = None
-
- # Create a string representation
- if self.prod:
- self.str = "%s -> %s" % (self.name," ".join(self.prod))
- else:
- self.str = "%s -> <empty>" % self.name
-
- def __str__(self):
- return self.str
-
- def __repr__(self):
- return "Production("+str(self)+")"
-
- def __len__(self):
- return len(self.prod)
-
- def __nonzero__(self):
- return 1
-
- def __getitem__(self,index):
- return self.prod[index]
-
- # Return the nth lr_item from the production (or None if at the end)
- def lr_item(self,n):
- if n > len(self.prod): return None
- p = LRItem(self,n)
-
- # Precompute the list of productions immediately following. Hack. Remove later
- try:
- p.lr_after = Prodnames[p.prod[n+1]]
- except (IndexError,KeyError):
- p.lr_after = []
- try:
- p.lr_before = p.prod[n-1]
- except IndexError:
- p.lr_before = None
-
- return p
-
- # Bind the production function name to a callable
- def bind(self,pdict):
- if self.func:
- self.callable = pdict[self.func]
-
-# This class serves as a minimal standin for Production objects when
-# reading table data from files. It only contains information
-# actually used by the LR parsing engine, plus some additional
-# debugging information.
-class MiniProduction(object):
- def __init__(self,str,name,len,func,file,line):
- self.name = name
- self.len = len
- self.func = func
- self.callable = None
- self.file = file
- self.line = line
- self.str = str
- def __str__(self):
- return self.str
- def __repr__(self):
- return "MiniProduction(%s)" % self.str
-
- # Bind the production function name to a callable
- def bind(self,pdict):
- if self.func:
- self.callable = pdict[self.func]
-
-
-# -----------------------------------------------------------------------------
-# class LRItem
-#
-# This class represents a specific stage of parsing a production rule. For
-# example:
-#
-# expr : expr . PLUS term
-#
-# In the above, the "." represents the current location of the parse. Here
-# basic attributes:
-#
-# name - Name of the production. For example 'expr'
-# prod - A list of symbols on the right side ['expr','.', 'PLUS','term']
-# number - Production number.
-#
-# lr_next Next LR item. Example, if we are ' expr -> expr . PLUS term'
-# then lr_next refers to 'expr -> expr PLUS . term'
-# lr_index - LR item index (location of the ".") in the prod list.
-# lookaheads - LALR lookahead symbols for this item
-# len - Length of the production (number of symbols on right hand side)
-# lr_after - List of all productions that immediately follow
-# lr_before - Grammar symbol immediately before
-# -----------------------------------------------------------------------------
-
-class LRItem(object):
- def __init__(self,p,n):
- self.name = p.name
- self.prod = list(p.prod)
- self.number = p.number
- self.lr_index = n
- self.lookaheads = { }
- self.prod.insert(n,".")
- self.prod = tuple(self.prod)
- self.len = len(self.prod)
- self.usyms = p.usyms
-
- def __str__(self):
- if self.prod:
- s = "%s -> %s" % (self.name," ".join(self.prod))
- else:
- s = "%s -> <empty>" % self.name
- return s
-
- def __repr__(self):
- return "LRItem("+str(self)+")"
-
-# -----------------------------------------------------------------------------
-# rightmost_terminal()
-#
-# Return the rightmost terminal from a list of symbols. Used in add_production()
-# -----------------------------------------------------------------------------
-def rightmost_terminal(symbols, terminals):
- i = len(symbols) - 1
- while i >= 0:
- if symbols[i] in terminals:
- return symbols[i]
- i -= 1
- return None
-
-# -----------------------------------------------------------------------------
-# === GRAMMAR CLASS ===
-#
-# The following class represents the contents of the specified grammar along
-# with various computed properties such as first sets, follow sets, LR items, etc.
-# This data is used for critical parts of the table generation process later.
-# -----------------------------------------------------------------------------
-
-class GrammarError(YaccError): pass
-
-class Grammar(object):
- def __init__(self,terminals):
- self.Productions = [None] # A list of all of the productions. The first
- # entry is always reserved for the purpose of
- # building an augmented grammar
-
- self.Prodnames = { } # A dictionary mapping the names of nonterminals to a list of all
- # productions of that nonterminal.
-
- self.Prodmap = { } # A dictionary that is only used to detect duplicate
- # productions.
-
- self.Terminals = { } # A dictionary mapping the names of terminal symbols to a
- # list of the rules where they are used.
-
- for term in terminals:
- self.Terminals[term] = []
-
- self.Terminals['error'] = []
-
- self.Nonterminals = { } # A dictionary mapping names of nonterminals to a list
- # of rule numbers where they are used.
-
- self.First = { } # A dictionary of precomputed FIRST(x) symbols
-
- self.Follow = { } # A dictionary of precomputed FOLLOW(x) symbols
-
- self.Precedence = { } # Precedence rules for each terminal. Contains tuples of the
- # form ('right',level) or ('nonassoc', level) or ('left',level)
-
- self.UsedPrecedence = { } # Precedence rules that were actually used by the grammer.
- # This is only used to provide error checking and to generate
- # a warning about unused precedence rules.
-
- self.Start = None # Starting symbol for the grammar
-
-
- def __len__(self):
- return len(self.Productions)
-
- def __getitem__(self,index):
- return self.Productions[index]
-
- # -----------------------------------------------------------------------------
- # set_precedence()
- #
- # Sets the precedence for a given terminal. assoc is the associativity such as
- # 'left','right', or 'nonassoc'. level is a numeric level.
- #
- # -----------------------------------------------------------------------------
-
- def set_precedence(self,term,assoc,level):
- assert self.Productions == [None],"Must call set_precedence() before add_production()"
- if term in self.Precedence:
- raise GrammarError("Precedence already specified for terminal '%s'" % term)
- if assoc not in ['left','right','nonassoc']:
- raise GrammarError("Associativity must be one of 'left','right', or 'nonassoc'")
- self.Precedence[term] = (assoc,level)
-
- # -----------------------------------------------------------------------------
- # add_production()
- #
- # Given an action function, this function assembles a production rule and
- # computes its precedence level.
- #
- # The production rule is supplied as a list of symbols. For example,
- # a rule such as 'expr : expr PLUS term' has a production name of 'expr' and
- # symbols ['expr','PLUS','term'].
- #
- # Precedence is determined by the precedence of the right-most non-terminal
- # or the precedence of a terminal specified by %prec.
- #
- # A variety of error checks are performed to make sure production symbols
- # are valid and that %prec is used correctly.
- # -----------------------------------------------------------------------------
-
- def add_production(self,prodname,syms,func=None,file='',line=0):
-
- if prodname in self.Terminals:
- raise GrammarError("%s:%d: Illegal rule name '%s'. Already defined as a token" % (file,line,prodname))
- if prodname == 'error':
- raise GrammarError("%s:%d: Illegal rule name '%s'. error is a reserved word" % (file,line,prodname))
- if not _is_identifier.match(prodname):
- raise GrammarError("%s:%d: Illegal rule name '%s'" % (file,line,prodname))
-
- # Look for literal tokens
- for n,s in enumerate(syms):
- if s[0] in "'\"":
- try:
- c = eval(s)
- if (len(c) > 1):
- raise GrammarError("%s:%d: Literal token %s in rule '%s' may only be a single character" % (file,line,s, prodname))
- if not c in self.Terminals:
- self.Terminals[c] = []
- syms[n] = c
- continue
- except SyntaxError:
- pass
- if not _is_identifier.match(s) and s != '%prec':
- raise GrammarError("%s:%d: Illegal name '%s' in rule '%s'" % (file,line,s, prodname))
-
- # Determine the precedence level
- if '%prec' in syms:
- if syms[-1] == '%prec':
- raise GrammarError("%s:%d: Syntax error. Nothing follows %%prec" % (file,line))
- if syms[-2] != '%prec':
- raise GrammarError("%s:%d: Syntax error. %%prec can only appear at the end of a grammar rule" % (file,line))
- precname = syms[-1]
- prodprec = self.Precedence.get(precname,None)
- if not prodprec:
- raise GrammarError("%s:%d: Nothing known about the precedence of '%s'" % (file,line,precname))
- else:
- self.UsedPrecedence[precname] = 1
- del syms[-2:] # Drop %prec from the rule
- else:
- # If no %prec, precedence is determined by the rightmost terminal symbol
- precname = rightmost_terminal(syms,self.Terminals)
- prodprec = self.Precedence.get(precname,('right',0))
-
- # See if the rule is already in the rulemap
- map = "%s -> %s" % (prodname,syms)
- if map in self.Prodmap:
- m = self.Prodmap[map]
- raise GrammarError("%s:%d: Duplicate rule %s. " % (file,line, m) +
- "Previous definition at %s:%d" % (m.file, m.line))
-
- # From this point on, everything is valid. Create a new Production instance
- pnumber = len(self.Productions)
- if not prodname in self.Nonterminals:
- self.Nonterminals[prodname] = [ ]
-
- # Add the production number to Terminals and Nonterminals
- for t in syms:
- if t in self.Terminals:
- self.Terminals[t].append(pnumber)
- else:
- if not t in self.Nonterminals:
- self.Nonterminals[t] = [ ]
- self.Nonterminals[t].append(pnumber)
-
- # Create a production and add it to the list of productions
- p = Production(pnumber,prodname,syms,prodprec,func,file,line)
- self.Productions.append(p)
- self.Prodmap[map] = p
-
- # Add to the global productions list
- try:
- self.Prodnames[prodname].append(p)
- except KeyError:
- self.Prodnames[prodname] = [ p ]
- return 0
-
- # -----------------------------------------------------------------------------
- # set_start()
- #
- # Sets the starting symbol and creates the augmented grammar. Production
- # rule 0 is S' -> start where start is the start symbol.
- # -----------------------------------------------------------------------------
-
- def set_start(self,start=None):
- if not start:
- start = self.Productions[1].name
- if start not in self.Nonterminals:
- raise GrammarError("start symbol %s undefined" % start)
- self.Productions[0] = Production(0,"S'",[start])
- self.Nonterminals[start].append(0)
- self.Start = start
-
- # -----------------------------------------------------------------------------
- # find_unreachable()
- #
- # Find all of the nonterminal symbols that can't be reached from the starting
- # symbol. Returns a list of nonterminals that can't be reached.
- # -----------------------------------------------------------------------------
-
- def find_unreachable(self):
-
- # Mark all symbols that are reachable from a symbol s
- def mark_reachable_from(s):
- if reachable[s]:
- # We've already reached symbol s.
- return
- reachable[s] = 1
- for p in self.Prodnames.get(s,[]):
- for r in p.prod:
- mark_reachable_from(r)
-
- reachable = { }
- for s in list(self.Terminals) + list(self.Nonterminals):
- reachable[s] = 0
-
- mark_reachable_from( self.Productions[0].prod[0] )
-
- return [s for s in list(self.Nonterminals)
- if not reachable[s]]
-
- # -----------------------------------------------------------------------------
- # infinite_cycles()
- #
- # This function looks at the various parsing rules and tries to detect
- # infinite recursion cycles (grammar rules where there is no possible way
- # to derive a string of only terminals).
- # -----------------------------------------------------------------------------
-
- def infinite_cycles(self):
- terminates = {}
-
- # Terminals:
- for t in self.Terminals:
- terminates[t] = 1
-
- terminates['$end'] = 1
-
- # Nonterminals:
-
- # Initialize to false:
- for n in self.Nonterminals:
- terminates[n] = 0
-
- # Then propagate termination until no change:
- while 1:
- some_change = 0
- for (n,pl) in self.Prodnames.items():
- # Nonterminal n terminates iff any of its productions terminates.
- for p in pl:
- # Production p terminates iff all of its rhs symbols terminate.
- for s in p.prod:
- if not terminates[s]:
- # The symbol s does not terminate,
- # so production p does not terminate.
- p_terminates = 0
- break
- else:
- # didn't break from the loop,
- # so every symbol s terminates
- # so production p terminates.
- p_terminates = 1
-
- if p_terminates:
- # symbol n terminates!
- if not terminates[n]:
- terminates[n] = 1
- some_change = 1
- # Don't need to consider any more productions for this n.
- break
-
- if not some_change:
- break
-
- infinite = []
- for (s,term) in terminates.items():
- if not term:
- if not s in self.Prodnames and not s in self.Terminals and s != 'error':
- # s is used-but-not-defined, and we've already warned of that,
- # so it would be overkill to say that it's also non-terminating.
- pass
- else:
- infinite.append(s)
-
- return infinite
-
-
- # -----------------------------------------------------------------------------
- # undefined_symbols()
- #
- # Find all symbols that were used the grammar, but not defined as tokens or
- # grammar rules. Returns a list of tuples (sym, prod) where sym in the symbol
- # and prod is the production where the symbol was used.
- # -----------------------------------------------------------------------------
- def undefined_symbols(self):
- result = []
- for p in self.Productions:
- if not p: continue
-
- for s in p.prod:
- if not s in self.Prodnames and not s in self.Terminals and s != 'error':
- result.append((s,p))
- return result
-
- # -----------------------------------------------------------------------------
- # unused_terminals()
- #
- # Find all terminals that were defined, but not used by the grammar. Returns
- # a list of all symbols.
- # -----------------------------------------------------------------------------
- def unused_terminals(self):
- unused_tok = []
- for s,v in self.Terminals.items():
- if s != 'error' and not v:
- unused_tok.append(s)
-
- return unused_tok
-
- # ------------------------------------------------------------------------------
- # unused_rules()
- #
- # Find all grammar rules that were defined, but not used (maybe not reachable)
- # Returns a list of productions.
- # ------------------------------------------------------------------------------
-
- def unused_rules(self):
- unused_prod = []
- for s,v in self.Nonterminals.items():
- if not v:
- p = self.Prodnames[s][0]
- unused_prod.append(p)
- return unused_prod
-
- # -----------------------------------------------------------------------------
- # unused_precedence()
- #
- # Returns a list of tuples (term,precedence) corresponding to precedence
- # rules that were never used by the grammar. term is the name of the terminal
- # on which precedence was applied and precedence is a string such as 'left' or
- # 'right' corresponding to the type of precedence.
- # -----------------------------------------------------------------------------
-
- def unused_precedence(self):
- unused = []
- for termname in self.Precedence:
- if not (termname in self.Terminals or termname in self.UsedPrecedence):
- unused.append((termname,self.Precedence[termname][0]))
-
- return unused
-
- # -------------------------------------------------------------------------
- # _first()
- #
- # Compute the value of FIRST1(beta) where beta is a tuple of symbols.
- #
- # During execution of compute_first1, the result may be incomplete.
- # Afterward (e.g., when called from compute_follow()), it will be complete.
- # -------------------------------------------------------------------------
- def _first(self,beta):
-
- # We are computing First(x1,x2,x3,...,xn)
- result = [ ]
- for x in beta:
- x_produces_empty = 0
-
- # Add all the non-<empty> symbols of First[x] to the result.
- for f in self.First[x]:
- if f == '<empty>':
- x_produces_empty = 1
- else:
- if f not in result: result.append(f)
-
- if x_produces_empty:
- # We have to consider the next x in beta,
- # i.e. stay in the loop.
- pass
- else:
- # We don't have to consider any further symbols in beta.
- break
- else:
- # There was no 'break' from the loop,
- # so x_produces_empty was true for all x in beta,
- # so beta produces empty as well.
- result.append('<empty>')
-
- return result
-
- # -------------------------------------------------------------------------
- # compute_first()
- #
- # Compute the value of FIRST1(X) for all symbols
- # -------------------------------------------------------------------------
- def compute_first(self):
- if self.First:
- return self.First
-
- # Terminals:
- for t in self.Terminals:
- self.First[t] = [t]
-
- self.First['$end'] = ['$end']
-
- # Nonterminals:
-
- # Initialize to the empty set:
- for n in self.Nonterminals:
- self.First[n] = []
-
- # Then propagate symbols until no change:
- while 1:
- some_change = 0
- for n in self.Nonterminals:
- for p in self.Prodnames[n]:
- for f in self._first(p.prod):
- if f not in self.First[n]:
- self.First[n].append( f )
- some_change = 1
- if not some_change:
- break
-
- return self.First
-
- # ---------------------------------------------------------------------
- # compute_follow()
- #
- # Computes all of the follow sets for every non-terminal symbol. The
- # follow set is the set of all symbols that might follow a given
- # non-terminal. See the Dragon book, 2nd Ed. p. 189.
- # ---------------------------------------------------------------------
- def compute_follow(self,start=None):
- # If already computed, return the result
- if self.Follow:
- return self.Follow
-
- # If first sets not computed yet, do that first.
- if not self.First:
- self.compute_first()
-
- # Add '$end' to the follow list of the start symbol
- for k in self.Nonterminals:
- self.Follow[k] = [ ]
-
- if not start:
- start = self.Productions[1].name
-
- self.Follow[start] = [ '$end' ]
-
- while 1:
- didadd = 0
- for p in self.Productions[1:]:
- # Here is the production set
- for i in range(len(p.prod)):
- B = p.prod[i]
- if B in self.Nonterminals:
- # Okay. We got a non-terminal in a production
- fst = self._first(p.prod[i+1:])
- hasempty = 0
- for f in fst:
- if f != '<empty>' and f not in self.Follow[B]:
- self.Follow[B].append(f)
- didadd = 1
- if f == '<empty>':
- hasempty = 1
- if hasempty or i == (len(p.prod)-1):
- # Add elements of follow(a) to follow(b)
- for f in self.Follow[p.name]:
- if f not in self.Follow[B]:
- self.Follow[B].append(f)
- didadd = 1
- if not didadd: break
- return self.Follow
-
-
- # -----------------------------------------------------------------------------
- # build_lritems()
- #
- # This function walks the list of productions and builds a complete set of the
- # LR items. The LR items are stored in two ways: First, they are uniquely
- # numbered and placed in the list _lritems. Second, a linked list of LR items
- # is built for each production. For example:
- #
- # E -> E PLUS E
- #
- # Creates the list
- #
- # [E -> . E PLUS E, E -> E . PLUS E, E -> E PLUS . E, E -> E PLUS E . ]
- # -----------------------------------------------------------------------------
-
- def build_lritems(self):
- for p in self.Productions:
- lastlri = p
- i = 0
- lr_items = []
- while 1:
- if i > len(p):
- lri = None
- else:
- lri = LRItem(p,i)
- # Precompute the list of productions immediately following
- try:
- lri.lr_after = self.Prodnames[lri.prod[i+1]]
- except (IndexError,KeyError):
- lri.lr_after = []
- try:
- lri.lr_before = lri.prod[i-1]
- except IndexError:
- lri.lr_before = None
-
- lastlri.lr_next = lri
- if not lri: break
- lr_items.append(lri)
- lastlri = lri
- i += 1
- p.lr_items = lr_items
-
-# -----------------------------------------------------------------------------
-# == Class LRTable ==
-#
-# This basic class represents a basic table of LR parsing information.
-# Methods for generating the tables are not defined here. They are defined
-# in the derived class LRGeneratedTable.
-# -----------------------------------------------------------------------------
-
-class VersionError(YaccError): pass
-
-class LRTable(object):
- def __init__(self):
- self.lr_action = None
- self.lr_goto = None
- self.lr_productions = None
- self.lr_method = None
-
- def read_table(self,module):
- if isinstance(module,types.ModuleType):
- parsetab = module
- else:
- if sys.version_info[0] < 3:
- exec("import %s as parsetab" % module)
- else:
- env = { }
- exec("import %s as parsetab" % module, env, env)
- parsetab = env['parsetab']
-
- if parsetab._tabversion != __tabversion__:
- raise VersionError("yacc table file version is out of date")
-
- self.lr_action = parsetab._lr_action
- self.lr_goto = parsetab._lr_goto
-
- self.lr_productions = []
- for p in parsetab._lr_productions:
- self.lr_productions.append(MiniProduction(*p))
-
- self.lr_method = parsetab._lr_method
- return parsetab._lr_signature
-
- def read_pickle(self,filename):
- try:
- import cPickle as pickle
- except ImportError:
- import pickle
-
- in_f = open(filename,"rb")
-
- tabversion = pickle.load(in_f)
- if tabversion != __tabversion__:
- raise VersionError("yacc table file version is out of date")
- self.lr_method = pickle.load(in_f)
- signature = pickle.load(in_f)
- self.lr_action = pickle.load(in_f)
- self.lr_goto = pickle.load(in_f)
- productions = pickle.load(in_f)
-
- self.lr_productions = []
- for p in productions:
- self.lr_productions.append(MiniProduction(*p))
-
- in_f.close()
- return signature
-
- # Bind all production function names to callable objects in pdict
- def bind_callables(self,pdict):
- for p in self.lr_productions:
- p.bind(pdict)
-
-# -----------------------------------------------------------------------------
-# === LR Generator ===
-#
-# The following classes and functions are used to generate LR parsing tables on
-# a grammar.
-# -----------------------------------------------------------------------------
-
-# -----------------------------------------------------------------------------
-# digraph()
-# traverse()
-#
-# The following two functions are used to compute set valued functions
-# of the form:
-#
-# F(x) = F'(x) U U{F(y) | x R y}
-#
-# This is used to compute the values of Read() sets as well as FOLLOW sets
-# in LALR(1) generation.
-#
-# Inputs: X - An input set
-# R - A relation
-# FP - Set-valued function
-# ------------------------------------------------------------------------------
-
-def digraph(X,R,FP):
- N = { }
- for x in X:
- N[x] = 0
- stack = []
- F = { }
- for x in X:
- if N[x] == 0: traverse(x,N,stack,F,X,R,FP)
- return F
-
-def traverse(x,N,stack,F,X,R,FP):
- stack.append(x)
- d = len(stack)
- N[x] = d
- F[x] = FP(x) # F(X) <- F'(x)
-
- rel = R(x) # Get y's related to x
- for y in rel:
- if N[y] == 0:
- traverse(y,N,stack,F,X,R,FP)
- N[x] = min(N[x],N[y])
- for a in F.get(y,[]):
- if a not in F[x]: F[x].append(a)
- if N[x] == d:
- N[stack[-1]] = MAXINT
- F[stack[-1]] = F[x]
- element = stack.pop()
- while element != x:
- N[stack[-1]] = MAXINT
- F[stack[-1]] = F[x]
- element = stack.pop()
-
-class LALRError(YaccError): pass
-
-# -----------------------------------------------------------------------------
-# == LRGeneratedTable ==
-#
-# This class implements the LR table generation algorithm. There are no
-# public methods except for write()
-# -----------------------------------------------------------------------------
-
-class LRGeneratedTable(LRTable):
- def __init__(self,grammar,method='LALR',log=None):
- if method not in ['SLR','LALR']:
- raise LALRError("Unsupported method %s" % method)
-
- self.grammar = grammar
- self.lr_method = method
-
- # Set up the logger
- if not log:
- log = NullLogger()
- self.log = log
-
- # Internal attributes
- self.lr_action = {} # Action table
- self.lr_goto = {} # Goto table
- self.lr_productions = grammar.Productions # Copy of grammar Production array
- self.lr_goto_cache = {} # Cache of computed gotos
- self.lr0_cidhash = {} # Cache of closures
-
- self._add_count = 0 # Internal counter used to detect cycles
-
- # Diagonistic information filled in by the table generator
- self.sr_conflict = 0
- self.rr_conflict = 0
- self.conflicts = [] # List of conflicts
-
- self.sr_conflicts = []
- self.rr_conflicts = []
-
- # Build the tables
- self.grammar.build_lritems()
- self.grammar.compute_first()
- self.grammar.compute_follow()
- self.lr_parse_table()
-
- # Compute the LR(0) closure operation on I, where I is a set of LR(0) items.
-
- def lr0_closure(self,I):
- self._add_count += 1
-
- # Add everything in I to J
- J = I[:]
- didadd = 1
- while didadd:
- didadd = 0
- for j in J:
- for x in j.lr_after:
- if getattr(x,"lr0_added",0) == self._add_count: continue
- # Add B --> .G to J
- J.append(x.lr_next)
- x.lr0_added = self._add_count
- didadd = 1
-
- return J
-
- # Compute the LR(0) goto function goto(I,X) where I is a set
- # of LR(0) items and X is a grammar symbol. This function is written
- # in a way that guarantees uniqueness of the generated goto sets
- # (i.e. the same goto set will never be returned as two different Python
- # objects). With uniqueness, we can later do fast set comparisons using
- # id(obj) instead of element-wise comparison.
-
- def lr0_goto(self,I,x):
- # First we look for a previously cached entry
- g = self.lr_goto_cache.get((id(I),x),None)
- if g: return g
-
- # Now we generate the goto set in a way that guarantees uniqueness
- # of the result
-
- s = self.lr_goto_cache.get(x,None)
- if not s:
- s = { }
- self.lr_goto_cache[x] = s
-
- gs = [ ]
- for p in I:
- n = p.lr_next
- if n and n.lr_before == x:
- s1 = s.get(id(n),None)
- if not s1:
- s1 = { }
- s[id(n)] = s1
- gs.append(n)
- s = s1
- g = s.get('$end',None)
- if not g:
- if gs:
- g = self.lr0_closure(gs)
- s['$end'] = g
- else:
- s['$end'] = gs
- self.lr_goto_cache[(id(I),x)] = g
- return g
-
- # Compute the LR(0) sets of item function
- def lr0_items(self):
-
- C = [ self.lr0_closure([self.grammar.Productions[0].lr_next]) ]
- i = 0
- for I in C:
- self.lr0_cidhash[id(I)] = i
- i += 1
-
- # Loop over the items in C and each grammar symbols
- i = 0
- while i < len(C):
- I = C[i]
- i += 1
-
- # Collect all of the symbols that could possibly be in the goto(I,X) sets
- asyms = { }
- for ii in I:
- for s in ii.usyms:
- asyms[s] = None
-
- for x in asyms:
- g = self.lr0_goto(I,x)
- if not g: continue
- if id(g) in self.lr0_cidhash: continue
- self.lr0_cidhash[id(g)] = len(C)
- C.append(g)
-
- return C
-
- # -----------------------------------------------------------------------------
- # ==== LALR(1) Parsing ====
- #
- # LALR(1) parsing is almost exactly the same as SLR except that instead of
- # relying upon Follow() sets when performing reductions, a more selective
- # lookahead set that incorporates the state of the LR(0) machine is utilized.
- # Thus, we mainly just have to focus on calculating the lookahead sets.
- #
- # The method used here is due to DeRemer and Pennelo (1982).
- #
- # DeRemer, F. L., and T. J. Pennelo: "Efficient Computation of LALR(1)
- # Lookahead Sets", ACM Transactions on Programming Languages and Systems,
- # Vol. 4, No. 4, Oct. 1982, pp. 615-649
- #
- # Further details can also be found in:
- #
- # J. Tremblay and P. Sorenson, "The Theory and Practice of Compiler Writing",
- # McGraw-Hill Book Company, (1985).
- #
- # -----------------------------------------------------------------------------
-
- # -----------------------------------------------------------------------------
- # compute_nullable_nonterminals()
- #
- # Creates a dictionary containing all of the non-terminals that might produce
- # an empty production.
- # -----------------------------------------------------------------------------
-
- def compute_nullable_nonterminals(self):
- nullable = {}
- num_nullable = 0
- while 1:
- for p in self.grammar.Productions[1:]:
- if p.len == 0:
- nullable[p.name] = 1
- continue
- for t in p.prod:
- if not t in nullable: break
- else:
- nullable[p.name] = 1
- if len(nullable) == num_nullable: break
- num_nullable = len(nullable)
- return nullable
-
- # -----------------------------------------------------------------------------
- # find_nonterminal_trans(C)
- #
- # Given a set of LR(0) items, this functions finds all of the non-terminal
- # transitions. These are transitions in which a dot appears immediately before
- # a non-terminal. Returns a list of tuples of the form (state,N) where state
- # is the state number and N is the nonterminal symbol.
- #
- # The input C is the set of LR(0) items.
- # -----------------------------------------------------------------------------
-
- def find_nonterminal_transitions(self,C):
- trans = []
- for state in range(len(C)):
- for p in C[state]:
- if p.lr_index < p.len - 1:
- t = (state,p.prod[p.lr_index+1])
- if t[1] in self.grammar.Nonterminals:
- if t not in trans: trans.append(t)
- state = state + 1
- return trans
-
- # -----------------------------------------------------------------------------
- # dr_relation()
- #
- # Computes the DR(p,A) relationships for non-terminal transitions. The input
- # is a tuple (state,N) where state is a number and N is a nonterminal symbol.
- #
- # Returns a list of terminals.
- # -----------------------------------------------------------------------------
-
- def dr_relation(self,C,trans,nullable):
- dr_set = { }
- state,N = trans
- terms = []
-
- g = self.lr0_goto(C[state],N)
- for p in g:
- if p.lr_index < p.len - 1:
- a = p.prod[p.lr_index+1]
- if a in self.grammar.Terminals:
- if a not in terms: terms.append(a)
-
- # This extra bit is to handle the start state
- if state == 0 and N == self.grammar.Productions[0].prod[0]:
- terms.append('$end')
-
- return terms
-
- # -----------------------------------------------------------------------------
- # reads_relation()
- #
- # Computes the READS() relation (p,A) READS (t,C).
- # -----------------------------------------------------------------------------
-
- def reads_relation(self,C, trans, empty):
- # Look for empty transitions
- rel = []
- state, N = trans
-
- g = self.lr0_goto(C[state],N)
- j = self.lr0_cidhash.get(id(g),-1)
- for p in g:
- if p.lr_index < p.len - 1:
- a = p.prod[p.lr_index + 1]
- if a in empty:
- rel.append((j,a))
-
- return rel
-
- # -----------------------------------------------------------------------------
- # compute_lookback_includes()
- #
- # Determines the lookback and includes relations
- #
- # LOOKBACK:
- #
- # This relation is determined by running the LR(0) state machine forward.
- # For example, starting with a production "N : . A B C", we run it forward
- # to obtain "N : A B C ." We then build a relationship between this final
- # state and the starting state. These relationships are stored in a dictionary
- # lookdict.
- #
- # INCLUDES:
- #
- # Computes the INCLUDE() relation (p,A) INCLUDES (p',B).
- #
- # This relation is used to determine non-terminal transitions that occur
- # inside of other non-terminal transition states. (p,A) INCLUDES (p', B)
- # if the following holds:
- #
- # B -> LAT, where T -> epsilon and p' -L-> p
- #
- # L is essentially a prefix (which may be empty), T is a suffix that must be
- # able to derive an empty string. State p' must lead to state p with the string L.
- #
- # -----------------------------------------------------------------------------
-
- def compute_lookback_includes(self,C,trans,nullable):
-
- lookdict = {} # Dictionary of lookback relations
- includedict = {} # Dictionary of include relations
-
- # Make a dictionary of non-terminal transitions
- dtrans = {}
- for t in trans:
- dtrans[t] = 1
-
- # Loop over all transitions and compute lookbacks and includes
- for state,N in trans:
- lookb = []
- includes = []
- for p in C[state]:
- if p.name != N: continue
-
- # Okay, we have a name match. We now follow the production all the way
- # through the state machine until we get the . on the right hand side
-
- lr_index = p.lr_index
- j = state
- while lr_index < p.len - 1:
- lr_index = lr_index + 1
- t = p.prod[lr_index]
-
- # Check to see if this symbol and state are a non-terminal transition
- if (j,t) in dtrans:
- # Yes. Okay, there is some chance that this is an includes relation
- # the only way to know for certain is whether the rest of the
- # production derives empty
-
- li = lr_index + 1
- while li < p.len:
- if p.prod[li] in self.grammar.Terminals: break # No forget it
- if not p.prod[li] in nullable: break
- li = li + 1
- else:
- # Appears to be a relation between (j,t) and (state,N)
- includes.append((j,t))
-
- g = self.lr0_goto(C[j],t) # Go to next set
- j = self.lr0_cidhash.get(id(g),-1) # Go to next state
-
- # When we get here, j is the final state, now we have to locate the production
- for r in C[j]:
- if r.name != p.name: continue
- if r.len != p.len: continue
- i = 0
- # This look is comparing a production ". A B C" with "A B C ."
- while i < r.lr_index:
- if r.prod[i] != p.prod[i+1]: break
- i = i + 1
- else:
- lookb.append((j,r))
- for i in includes:
- if not i in includedict: includedict[i] = []
- includedict[i].append((state,N))
- lookdict[(state,N)] = lookb
-
- return lookdict,includedict
-
- # -----------------------------------------------------------------------------
- # compute_read_sets()
- #
- # Given a set of LR(0) items, this function computes the read sets.
- #
- # Inputs: C = Set of LR(0) items
- # ntrans = Set of nonterminal transitions
- # nullable = Set of empty transitions
- #
- # Returns a set containing the read sets
- # -----------------------------------------------------------------------------
-
- def compute_read_sets(self,C, ntrans, nullable):
- FP = lambda x: self.dr_relation(C,x,nullable)
- R = lambda x: self.reads_relation(C,x,nullable)
- F = digraph(ntrans,R,FP)
- return F
-
- # -----------------------------------------------------------------------------
- # compute_follow_sets()
- #
- # Given a set of LR(0) items, a set of non-terminal transitions, a readset,
- # and an include set, this function computes the follow sets
- #
- # Follow(p,A) = Read(p,A) U U {Follow(p',B) | (p,A) INCLUDES (p',B)}
- #
- # Inputs:
- # ntrans = Set of nonterminal transitions
- # readsets = Readset (previously computed)
- # inclsets = Include sets (previously computed)
- #
- # Returns a set containing the follow sets
- # -----------------------------------------------------------------------------
-
- def compute_follow_sets(self,ntrans,readsets,inclsets):
- FP = lambda x: readsets[x]
- R = lambda x: inclsets.get(x,[])
- F = digraph(ntrans,R,FP)
- return F
-
- # -----------------------------------------------------------------------------
- # add_lookaheads()
- #
- # Attaches the lookahead symbols to grammar rules.
- #
- # Inputs: lookbacks - Set of lookback relations
- # followset - Computed follow set
- #
- # This function directly attaches the lookaheads to productions contained
- # in the lookbacks set
- # -----------------------------------------------------------------------------
-
- def add_lookaheads(self,lookbacks,followset):
- for trans,lb in lookbacks.items():
- # Loop over productions in lookback
- for state,p in lb:
- if not state in p.lookaheads:
- p.lookaheads[state] = []
- f = followset.get(trans,[])
- for a in f:
- if a not in p.lookaheads[state]: p.lookaheads[state].append(a)
-
- # -----------------------------------------------------------------------------
- # add_lalr_lookaheads()
- #
- # This function does all of the work of adding lookahead information for use
- # with LALR parsing
- # -----------------------------------------------------------------------------
-
- def add_lalr_lookaheads(self,C):
- # Determine all of the nullable nonterminals
- nullable = self.compute_nullable_nonterminals()
-
- # Find all non-terminal transitions
- trans = self.find_nonterminal_transitions(C)
-
- # Compute read sets
- readsets = self.compute_read_sets(C,trans,nullable)
-
- # Compute lookback/includes relations
- lookd, included = self.compute_lookback_includes(C,trans,nullable)
-
- # Compute LALR FOLLOW sets
- followsets = self.compute_follow_sets(trans,readsets,included)
-
- # Add all of the lookaheads
- self.add_lookaheads(lookd,followsets)
-
- # -----------------------------------------------------------------------------
- # lr_parse_table()
- #
- # This function constructs the parse tables for SLR or LALR
- # -----------------------------------------------------------------------------
- def lr_parse_table(self):
- Productions = self.grammar.Productions
- Precedence = self.grammar.Precedence
- goto = self.lr_goto # Goto array
- action = self.lr_action # Action array
- log = self.log # Logger for output
-
- actionp = { } # Action production array (temporary)
-
- log.info("Parsing method: %s", self.lr_method)
-
- # Step 1: Construct C = { I0, I1, ... IN}, collection of LR(0) items
- # This determines the number of states
-
- C = self.lr0_items()
-
- if self.lr_method == 'LALR':
- self.add_lalr_lookaheads(C)
-
- # Build the parser table, state by state
- st = 0
- for I in C:
- # Loop over each production in I
- actlist = [ ] # List of actions
- st_action = { }
- st_actionp = { }
- st_goto = { }
- log.info("")
- log.info("state %d", st)
- log.info("")
- for p in I:
- log.info(" (%d) %s", p.number, str(p))
- log.info("")
-
- for p in I:
- if p.len == p.lr_index + 1:
- if p.name == "S'":
- # Start symbol. Accept!
- st_action["$end"] = 0
- st_actionp["$end"] = p
- else:
- # We are at the end of a production. Reduce!
- if self.lr_method == 'LALR':
- laheads = p.lookaheads[st]
- else:
- laheads = self.grammar.Follow[p.name]
- for a in laheads:
- actlist.append((a,p,"reduce using rule %d (%s)" % (p.number,p)))
- r = st_action.get(a,None)
- if r is not None:
- # Whoa. Have a shift/reduce or reduce/reduce conflict
- if r > 0:
- # Need to decide on shift or reduce here
- # By default we favor shifting. Need to add
- # some precedence rules here.
- sprec,slevel = Productions[st_actionp[a].number].prec
- rprec,rlevel = Precedence.get(a,('right',0))
- if (slevel < rlevel) or ((slevel == rlevel) and (rprec == 'left')):
- # We really need to reduce here.
- st_action[a] = -p.number
- st_actionp[a] = p
- if not slevel and not rlevel:
- log.info(" ! shift/reduce conflict for %s resolved as reduce",a)
- self.sr_conflicts.append((st,a,'reduce'))
- Productions[p.number].reduced += 1
- elif (slevel == rlevel) and (rprec == 'nonassoc'):
- st_action[a] = None
- else:
- # Hmmm. Guess we'll keep the shift
- if not rlevel:
- log.info(" ! shift/reduce conflict for %s resolved as shift",a)
- self.sr_conflicts.append((st,a,'shift'))
- elif r < 0:
- # Reduce/reduce conflict. In this case, we favor the rule
- # that was defined first in the grammar file
- oldp = Productions[-r]
- pp = Productions[p.number]
- if oldp.line > pp.line:
- st_action[a] = -p.number
- st_actionp[a] = p
- chosenp,rejectp = pp,oldp
- Productions[p.number].reduced += 1
- Productions[oldp.number].reduced -= 1
- else:
- chosenp,rejectp = oldp,pp
- self.rr_conflicts.append((st,chosenp,rejectp))
- log.info(" ! reduce/reduce conflict for %s resolved using rule %d (%s)", a,st_actionp[a].number, st_actionp[a])
- else:
- raise LALRError("Unknown conflict in state %d" % st)
- else:
- st_action[a] = -p.number
- st_actionp[a] = p
- Productions[p.number].reduced += 1
- else:
- i = p.lr_index
- a = p.prod[i+1] # Get symbol right after the "."
- if a in self.grammar.Terminals:
- g = self.lr0_goto(I,a)
- j = self.lr0_cidhash.get(id(g),-1)
- if j >= 0:
- # We are in a shift state
- actlist.append((a,p,"shift and go to state %d" % j))
- r = st_action.get(a,None)
- if r is not None:
- # Whoa have a shift/reduce or shift/shift conflict
- if r > 0:
- if r != j:
- raise LALRError("Shift/shift conflict in state %d" % st)
- elif r < 0:
- # Do a precedence check.
- # - if precedence of reduce rule is higher, we reduce.
- # - if precedence of reduce is same and left assoc, we reduce.
- # - otherwise we shift
- rprec,rlevel = Productions[st_actionp[a].number].prec
- sprec,slevel = Precedence.get(a,('right',0))
- if (slevel > rlevel) or ((slevel == rlevel) and (rprec == 'right')):
- # We decide to shift here... highest precedence to shift
- Productions[st_actionp[a].number].reduced -= 1
- st_action[a] = j
- st_actionp[a] = p
- if not rlevel:
- log.info(" ! shift/reduce conflict for %s resolved as shift",a)
- self.sr_conflicts.append((st,a,'shift'))
- elif (slevel == rlevel) and (rprec == 'nonassoc'):
- st_action[a] = None
- else:
- # Hmmm. Guess we'll keep the reduce
- if not slevel and not rlevel:
- log.info(" ! shift/reduce conflict for %s resolved as reduce",a)
- self.sr_conflicts.append((st,a,'reduce'))
-
- else:
- raise LALRError("Unknown conflict in state %d" % st)
- else:
- st_action[a] = j
- st_actionp[a] = p
-
- # Print the actions associated with each terminal
- _actprint = { }
- for a,p,m in actlist:
- if a in st_action:
- if p is st_actionp[a]:
- log.info(" %-15s %s",a,m)
- _actprint[(a,m)] = 1
- log.info("")
- # Print the actions that were not used. (debugging)
- not_used = 0
- for a,p,m in actlist:
- if a in st_action:
- if p is not st_actionp[a]:
- if not (a,m) in _actprint:
- log.debug(" ! %-15s [ %s ]",a,m)
- not_used = 1
- _actprint[(a,m)] = 1
- if not_used:
- log.debug("")
-
- # Construct the goto table for this state
-
- nkeys = { }
- for ii in I:
- for s in ii.usyms:
- if s in self.grammar.Nonterminals:
- nkeys[s] = None
- for n in nkeys:
- g = self.lr0_goto(I,n)
- j = self.lr0_cidhash.get(id(g),-1)
- if j >= 0:
- st_goto[n] = j
- log.info(" %-30s shift and go to state %d",n,j)
-
- action[st] = st_action
- actionp[st] = st_actionp
- goto[st] = st_goto
- st += 1
-
-
- # -----------------------------------------------------------------------------
- # write()
- #
- # This function writes the LR parsing tables to a file
- # -----------------------------------------------------------------------------
-
- def write_table(self,modulename,outputdir='',signature=""):
- basemodulename = modulename.split(".")[-1]
- filename = os.path.join(outputdir,basemodulename) + ".py"
- try:
- f = open(filename,"w")
-
- f.write("""
-# %s
-# This file is automatically generated. Do not edit.
-_tabversion = %r
-
-_lr_method = %r
-
-_lr_signature = %r
- """ % (filename, __tabversion__, self.lr_method, signature))
-
- # Change smaller to 0 to go back to original tables
- smaller = 1
-
- # Factor out names to try and make smaller
- if smaller:
- items = { }
-
- for s,nd in self.lr_action.items():
- for name,v in nd.items():
- i = items.get(name)
- if not i:
- i = ([],[])
- items[name] = i
- i[0].append(s)
- i[1].append(v)
-
- f.write("\n_lr_action_items = {")
- for k,v in items.items():
- f.write("%r:([" % k)
- for i in v[0]:
- f.write("%r," % i)
- f.write("],[")
- for i in v[1]:
- f.write("%r," % i)
-
- f.write("]),")
- f.write("}\n")
-
- f.write("""
-_lr_action = { }
-for _k, _v in _lr_action_items.items():
- for _x,_y in zip(_v[0],_v[1]):
- if not _x in _lr_action: _lr_action[_x] = { }
- _lr_action[_x][_k] = _y
-del _lr_action_items
-""")
-
- else:
- f.write("\n_lr_action = { ");
- for k,v in self.lr_action.items():
- f.write("(%r,%r):%r," % (k[0],k[1],v))
- f.write("}\n");
-
- if smaller:
- # Factor out names to try and make smaller
- items = { }
-
- for s,nd in self.lr_goto.items():
- for name,v in nd.items():
- i = items.get(name)
- if not i:
- i = ([],[])
- items[name] = i
- i[0].append(s)
- i[1].append(v)
-
- f.write("\n_lr_goto_items = {")
- for k,v in items.items():
- f.write("%r:([" % k)
- for i in v[0]:
- f.write("%r," % i)
- f.write("],[")
- for i in v[1]:
- f.write("%r," % i)
-
- f.write("]),")
- f.write("}\n")
-
- f.write("""
-_lr_goto = { }
-for _k, _v in _lr_goto_items.items():
- for _x,_y in zip(_v[0],_v[1]):
- if not _x in _lr_goto: _lr_goto[_x] = { }
- _lr_goto[_x][_k] = _y
-del _lr_goto_items
-""")
- else:
- f.write("\n_lr_goto = { ");
- for k,v in self.lr_goto.items():
- f.write("(%r,%r):%r," % (k[0],k[1],v))
- f.write("}\n");
-
- # Write production table
- f.write("_lr_productions = [\n")
- for p in self.lr_productions:
- if p.func:
- f.write(" (%r,%r,%d,%r,%r,%d),\n" % (p.str,p.name, p.len, p.func,p.file,p.line))
- else:
- f.write(" (%r,%r,%d,None,None,None),\n" % (str(p),p.name, p.len))
- f.write("]\n")
- f.close()
-
- except IOError:
- e = sys.exc_info()[1]
- sys.stderr.write("Unable to create '%s'\n" % filename)
- sys.stderr.write(str(e)+"\n")
- return
-
-
- # -----------------------------------------------------------------------------
- # pickle_table()
- #
- # This function pickles the LR parsing tables to a supplied file object
- # -----------------------------------------------------------------------------
-
- def pickle_table(self,filename,signature=""):
- try:
- import cPickle as pickle
- except ImportError:
- import pickle
- outf = open(filename,"wb")
- pickle.dump(__tabversion__,outf,pickle_protocol)
- pickle.dump(self.lr_method,outf,pickle_protocol)
- pickle.dump(signature,outf,pickle_protocol)
- pickle.dump(self.lr_action,outf,pickle_protocol)
- pickle.dump(self.lr_goto,outf,pickle_protocol)
-
- outp = []
- for p in self.lr_productions:
- if p.func:
- outp.append((p.str,p.name, p.len, p.func,p.file,p.line))
- else:
- outp.append((str(p),p.name,p.len,None,None,None))
- pickle.dump(outp,outf,pickle_protocol)
- outf.close()
-
-# -----------------------------------------------------------------------------
-# === INTROSPECTION ===
-#
-# The following functions and classes are used to implement the PLY
-# introspection features followed by the yacc() function itself.
-# -----------------------------------------------------------------------------
-
-# -----------------------------------------------------------------------------
-# get_caller_module_dict()
-#
-# This function returns a dictionary containing all of the symbols defined within
-# a caller further down the call stack. This is used to get the environment
-# associated with the yacc() call if none was provided.
-# -----------------------------------------------------------------------------
-
-def get_caller_module_dict(levels):
- try:
- raise RuntimeError
- except RuntimeError:
- e,b,t = sys.exc_info()
- f = t.tb_frame
- while levels > 0:
- f = f.f_back
- levels -= 1
- ldict = f.f_globals.copy()
- if f.f_globals != f.f_locals:
- ldict.update(f.f_locals)
-
- return ldict
-
-# -----------------------------------------------------------------------------
-# parse_grammar()
-#
-# This takes a raw grammar rule string and parses it into production data
-# -----------------------------------------------------------------------------
-def parse_grammar(doc,file,line):
- grammar = []
- # Split the doc string into lines
- pstrings = doc.splitlines()
- lastp = None
- dline = line
- for ps in pstrings:
- dline += 1
- p = ps.split()
- if not p: continue
- try:
- if p[0] == '|':
- # This is a continuation of a previous rule
- if not lastp:
- raise SyntaxError("%s:%d: Misplaced '|'" % (file,dline))
- prodname = lastp
- syms = p[1:]
- else:
- prodname = p[0]
- lastp = prodname
- syms = p[2:]
- assign = p[1]
- if assign != ':' and assign != '::=':
- raise SyntaxError("%s:%d: Syntax error. Expected ':'" % (file,dline))
-
- grammar.append((file,dline,prodname,syms))
- except SyntaxError:
- raise
- except Exception:
- raise SyntaxError("%s:%d: Syntax error in rule '%s'" % (file,dline,ps.strip()))
-
- return grammar
-
-# -----------------------------------------------------------------------------
-# ParserReflect()
-#
-# This class represents information extracted for building a parser including
-# start symbol, error function, tokens, precedence list, action functions,
-# etc.
-# -----------------------------------------------------------------------------
-class ParserReflect(object):
- def __init__(self,pdict,log=None):
- self.pdict = pdict
- self.start = None
- self.error_func = None
- self.tokens = None
- self.files = {}
- self.grammar = []
- self.error = 0
-
- if log is None:
- self.log = PlyLogger(sys.stderr)
- else:
- self.log = log
-
- # Get all of the basic information
- def get_all(self):
- self.get_start()
- self.get_error_func()
- self.get_tokens()
- self.get_precedence()
- self.get_pfunctions()
-
- # Validate all of the information
- def validate_all(self):
- self.validate_start()
- self.validate_error_func()
- self.validate_tokens()
- self.validate_precedence()
- self.validate_pfunctions()
- self.validate_files()
- return self.error
-
- # Compute a signature over the grammar
- def signature(self):
- try:
- from hashlib import md5
- except ImportError:
- from md5 import md5
- try:
- sig = md5()
- if self.start:
- sig.update(self.start.encode('latin-1'))
- if self.prec:
- sig.update("".join(["".join(p) for p in self.prec]).encode('latin-1'))
- if self.tokens:
- sig.update(" ".join(self.tokens).encode('latin-1'))
- for f in self.pfuncs:
- if f[3]:
- sig.update(f[3].encode('latin-1'))
- except (TypeError,ValueError):
- pass
- return sig.digest()
-
- # -----------------------------------------------------------------------------
- # validate_file()
- #
- # This method checks to see if there are duplicated p_rulename() functions
- # in the parser module file. Without this function, it is really easy for
- # users to make mistakes by cutting and pasting code fragments (and it's a real
- # bugger to try and figure out why the resulting parser doesn't work). Therefore,
- # we just do a little regular expression pattern matching of def statements
- # to try and detect duplicates.
- # -----------------------------------------------------------------------------
-
- def validate_files(self):
- # Match def p_funcname(
- fre = re.compile(r'\s*def\s+(p_[a-zA-Z_0-9]*)\(')
-
- for filename in self.files.keys():
- base,ext = os.path.splitext(filename)
- if ext != '.py': return 1 # No idea. Assume it's okay.
-
- try:
- f = open(filename)
- lines = f.readlines()
- f.close()
- except IOError:
- continue
-
- counthash = { }
- for linen,l in enumerate(lines):
- linen += 1
- m = fre.match(l)
- if m:
- name = m.group(1)
- prev = counthash.get(name)
- if not prev:
- counthash[name] = linen
- else:
- self.log.warning("%s:%d: Function %s redefined. Previously defined on line %d", filename,linen,name,prev)
-
- # Get the start symbol
- def get_start(self):
- self.start = self.pdict.get('start')
-
- # Validate the start symbol
- def validate_start(self):
- if self.start is not None:
- if not isinstance(self.start,str):
- self.log.error("'start' must be a string")
-
- # Look for error handler
- def get_error_func(self):
- self.error_func = self.pdict.get('p_error')
-
- # Validate the error function
- def validate_error_func(self):
- if self.error_func:
- if isinstance(self.error_func,types.FunctionType):
- ismethod = 0
- elif isinstance(self.error_func, types.MethodType):
- ismethod = 1
- else:
- self.log.error("'p_error' defined, but is not a function or method")
- self.error = 1
- return
-
- eline = func_code(self.error_func).co_firstlineno
- efile = func_code(self.error_func).co_filename
- self.files[efile] = 1
-
- if (func_code(self.error_func).co_argcount != 1+ismethod):
- self.log.error("%s:%d: p_error() requires 1 argument",efile,eline)
- self.error = 1
-
- # Get the tokens map
- def get_tokens(self):
- tokens = self.pdict.get("tokens",None)
- if not tokens:
- self.log.error("No token list is defined")
- self.error = 1
- return
-
- if not isinstance(tokens,(list, tuple)):
- self.log.error("tokens must be a list or tuple")
- self.error = 1
- return
-
- if not tokens:
- self.log.error("tokens is empty")
- self.error = 1
- return
-
- self.tokens = tokens
-
- # Validate the tokens
- def validate_tokens(self):
- # Validate the tokens.
- if 'error' in self.tokens:
- self.log.error("Illegal token name 'error'. Is a reserved word")
- self.error = 1
- return
-
- terminals = {}
- for n in self.tokens:
- if n in terminals:
- self.log.warning("Token '%s' multiply defined", n)
- terminals[n] = 1
-
- # Get the precedence map (if any)
- def get_precedence(self):
- self.prec = self.pdict.get("precedence",None)
-
- # Validate and parse the precedence map
- def validate_precedence(self):
- preclist = []
- if self.prec:
- if not isinstance(self.prec,(list,tuple)):
- self.log.error("precedence must be a list or tuple")
- self.error = 1
- return
- for level,p in enumerate(self.prec):
- if not isinstance(p,(list,tuple)):
- self.log.error("Bad precedence table")
- self.error = 1
- return
-
- if len(p) < 2:
- self.log.error("Malformed precedence entry %s. Must be (assoc, term, ..., term)",p)
- self.error = 1
- return
- assoc = p[0]
- if not isinstance(assoc,str):
- self.log.error("precedence associativity must be a string")
- self.error = 1
- return
- for term in p[1:]:
- if not isinstance(term,str):
- self.log.error("precedence items must be strings")
- self.error = 1
- return
- preclist.append((term,assoc,level+1))
- self.preclist = preclist
-
- # Get all p_functions from the grammar
- def get_pfunctions(self):
- p_functions = []
- for name, item in self.pdict.items():
- if name[:2] != 'p_': continue
- if name == 'p_error': continue
- if isinstance(item,(types.FunctionType,types.MethodType)):
- line = func_code(item).co_firstlineno
- file = func_code(item).co_filename
- p_functions.append((line,file,name,item.__doc__))
-
- # Sort all of the actions by line number
- p_functions.sort()
- self.pfuncs = p_functions
-
-
- # Validate all of the p_functions
- def validate_pfunctions(self):
- grammar = []
- # Check for non-empty symbols
- if len(self.pfuncs) == 0:
- self.log.error("no rules of the form p_rulename are defined")
- self.error = 1
- return
-
- for line, file, name, doc in self.pfuncs:
- func = self.pdict[name]
- if isinstance(func, types.MethodType):
- reqargs = 2
- else:
- reqargs = 1
- if func_code(func).co_argcount > reqargs:
- self.log.error("%s:%d: Rule '%s' has too many arguments",file,line,func.__name__)
- self.error = 1
- elif func_code(func).co_argcount < reqargs:
- self.log.error("%s:%d: Rule '%s' requires an argument",file,line,func.__name__)
- self.error = 1
- elif not func.__doc__:
- self.log.warning("%s:%d: No documentation string specified in function '%s' (ignored)",file,line,func.__name__)
- else:
- try:
- parsed_g = parse_grammar(doc,file,line)
- for g in parsed_g:
- grammar.append((name, g))
- except SyntaxError:
- e = sys.exc_info()[1]
- self.log.error(str(e))
- self.error = 1
-
- # Looks like a valid grammar rule
- # Mark the file in which defined.
- self.files[file] = 1
-
- # Secondary validation step that looks for p_ definitions that are not functions
- # or functions that look like they might be grammar rules.
-
- for n,v in self.pdict.items():
- if n[0:2] == 'p_' and isinstance(v, (types.FunctionType, types.MethodType)): continue
- if n[0:2] == 't_': continue
- if n[0:2] == 'p_' and n != 'p_error':
- self.log.warning("'%s' not defined as a function", n)
- if ((isinstance(v,types.FunctionType) and func_code(v).co_argcount == 1) or
- (isinstance(v,types.MethodType) and func_code(v).co_argcount == 2)):
- try:
- doc = v.__doc__.split(" ")
- if doc[1] == ':':
- self.log.warning("%s:%d: Possible grammar rule '%s' defined without p_ prefix",
- func_code(v).co_filename, func_code(v).co_firstlineno,n)
- except Exception:
- pass
-
- self.grammar = grammar
-
-# -----------------------------------------------------------------------------
-# yacc(module)
-#
-# Build a parser
-# -----------------------------------------------------------------------------
-
-def yacc(method='LALR', debug=yaccdebug, module=None, tabmodule=tab_module, start=None,
- check_recursion=1, optimize=0, write_tables=1, debugfile=debug_file,outputdir='',
- debuglog=None, errorlog = None, picklefile=None):
-
- global parse # Reference to the parsing method of the last built parser
-
- # If pickling is enabled, table files are not created
-
- if picklefile:
- write_tables = 0
-
- if errorlog is None:
- errorlog = PlyLogger(sys.stderr)
-
- # Get the module dictionary used for the parser
- if module:
- _items = [(k,getattr(module,k)) for k in dir(module)]
- pdict = dict(_items)
- else:
- pdict = get_caller_module_dict(2)
-
- # Collect parser information from the dictionary
- pinfo = ParserReflect(pdict,log=errorlog)
- pinfo.get_all()
-
- if pinfo.error:
- raise YaccError("Unable to build parser")
-
- # Check signature against table files (if any)
- signature = pinfo.signature()
-
- # Read the tables
- try:
- lr = LRTable()
- if picklefile:
- read_signature = lr.read_pickle(picklefile)
- else:
- read_signature = lr.read_table(tabmodule)
- if optimize or (read_signature == signature):
- try:
- lr.bind_callables(pinfo.pdict)
- parser = LRParser(lr,pinfo.error_func)
- parse = parser.parse
- return parser
- except Exception:
- e = sys.exc_info()[1]
- errorlog.warning("There was a problem loading the table file: %s", repr(e))
- except VersionError:
- e = sys.exc_info()
- errorlog.warning(str(e))
- except Exception:
- pass
-
- if debuglog is None:
- if debug:
- debuglog = PlyLogger(open(debugfile,"w"))
- else:
- debuglog = NullLogger()
-
- debuglog.info("Created by PLY version %s (http://www.dabeaz.com/ply)", __version__)
-
-
- errors = 0
-
- # Validate the parser information
- if pinfo.validate_all():
- raise YaccError("Unable to build parser")
-
- if not pinfo.error_func:
- errorlog.warning("no p_error() function is defined")
-
- # Create a grammar object
- grammar = Grammar(pinfo.tokens)
-
- # Set precedence level for terminals
- for term, assoc, level in pinfo.preclist:
- try:
- grammar.set_precedence(term,assoc,level)
- except GrammarError:
- e = sys.exc_info()[1]
- errorlog.warning("%s",str(e))
-
- # Add productions to the grammar
- for funcname, gram in pinfo.grammar:
- file, line, prodname, syms = gram
- try:
- grammar.add_production(prodname,syms,funcname,file,line)
- except GrammarError:
- e = sys.exc_info()[1]
- errorlog.error("%s",str(e))
- errors = 1
-
- # Set the grammar start symbols
- try:
- if start is None:
- grammar.set_start(pinfo.start)
- else:
- grammar.set_start(start)
- except GrammarError:
- e = sys.exc_info()[1]
- errorlog.error(str(e))
- errors = 1
-
- if errors:
- raise YaccError("Unable to build parser")
-
- # Verify the grammar structure
- undefined_symbols = grammar.undefined_symbols()
- for sym, prod in undefined_symbols:
- errorlog.error("%s:%d: Symbol '%s' used, but not defined as a token or a rule",prod.file,prod.line,sym)
- errors = 1
-
- unused_terminals = grammar.unused_terminals()
- if unused_terminals:
- debuglog.info("")
- debuglog.info("Unused terminals:")
- debuglog.info("")
- for term in unused_terminals:
- errorlog.warning("Token '%s' defined, but not used", term)
- debuglog.info(" %s", term)
-
- # Print out all productions to the debug log
- if debug:
- debuglog.info("")
- debuglog.info("Grammar")
- debuglog.info("")
- for n,p in enumerate(grammar.Productions):
- debuglog.info("Rule %-5d %s", n, p)
-
- # Find unused non-terminals
- unused_rules = grammar.unused_rules()
- for prod in unused_rules:
- errorlog.warning("%s:%d: Rule '%s' defined, but not used", prod.file, prod.line, prod.name)
-
- if len(unused_terminals) == 1:
- errorlog.warning("There is 1 unused token")
- if len(unused_terminals) > 1:
- errorlog.warning("There are %d unused tokens", len(unused_terminals))
-
- if len(unused_rules) == 1:
- errorlog.warning("There is 1 unused rule")
- if len(unused_rules) > 1:
- errorlog.warning("There are %d unused rules", len(unused_rules))
-
- if debug:
- debuglog.info("")
- debuglog.info("Terminals, with rules where they appear")
- debuglog.info("")
- terms = list(grammar.Terminals)
- terms.sort()
- for term in terms:
- debuglog.info("%-20s : %s", term, " ".join([str(s) for s in grammar.Terminals[term]]))
-
- debuglog.info("")
- debuglog.info("Nonterminals, with rules where they appear")
- debuglog.info("")
- nonterms = list(grammar.Nonterminals)
- nonterms.sort()
- for nonterm in nonterms:
- debuglog.info("%-20s : %s", nonterm, " ".join([str(s) for s in grammar.Nonterminals[nonterm]]))
- debuglog.info("")
-
- if check_recursion:
- unreachable = grammar.find_unreachable()
- for u in unreachable:
- errorlog.warning("Symbol '%s' is unreachable",u)
-
- infinite = grammar.infinite_cycles()
- for inf in infinite:
- errorlog.error("Infinite recursion detected for symbol '%s'", inf)
- errors = 1
-
- unused_prec = grammar.unused_precedence()
- for term, assoc in unused_prec:
- errorlog.error("Precedence rule '%s' defined for unknown symbol '%s'", assoc, term)
- errors = 1
-
- if errors:
- raise YaccError("Unable to build parser")
-
- # Run the LRGeneratedTable on the grammar
- if debug:
- errorlog.debug("Generating %s tables", method)
-
- lr = LRGeneratedTable(grammar,method,debuglog)
-
- if debug:
- num_sr = len(lr.sr_conflicts)
-
- # Report shift/reduce and reduce/reduce conflicts
- if num_sr == 1:
- errorlog.warning("1 shift/reduce conflict")
- elif num_sr > 1:
- errorlog.warning("%d shift/reduce conflicts", num_sr)
-
- num_rr = len(lr.rr_conflicts)
- if num_rr == 1:
- errorlog.warning("1 reduce/reduce conflict")
- elif num_rr > 1:
- errorlog.warning("%d reduce/reduce conflicts", num_rr)
-
- # Write out conflicts to the output file
- if debug and (lr.sr_conflicts or lr.rr_conflicts):
- debuglog.warning("")
- debuglog.warning("Conflicts:")
- debuglog.warning("")
-
- for state, tok, resolution in lr.sr_conflicts:
- debuglog.warning("shift/reduce conflict for %s in state %d resolved as %s", tok, state, resolution)
-
- already_reported = {}
- for state, rule, rejected in lr.rr_conflicts:
- if (state,id(rule),id(rejected)) in already_reported:
- continue
- debuglog.warning("reduce/reduce conflict in state %d resolved using rule (%s)", state, rule)
- debuglog.warning("rejected rule (%s) in state %d", rejected,state)
- errorlog.warning("reduce/reduce conflict in state %d resolved using rule (%s)", state, rule)
- errorlog.warning("rejected rule (%s) in state %d", rejected, state)
- already_reported[state,id(rule),id(rejected)] = 1
-
- warned_never = []
- for state, rule, rejected in lr.rr_conflicts:
- if not rejected.reduced and (rejected not in warned_never):
- debuglog.warning("Rule (%s) is never reduced", rejected)
- errorlog.warning("Rule (%s) is never reduced", rejected)
- warned_never.append(rejected)
-
- # Write the table file if requested
- if write_tables:
- lr.write_table(tabmodule,outputdir,signature)
-
- # Write a pickled version of the tables
- if picklefile:
- lr.pickle_table(picklefile,signature)
-
- # Build the parser
- lr.bind_callables(pinfo.pdict)
- parser = LRParser(lr,pinfo.error_func)
-
- parse = parser.parse
- return parser
OpenPOWER on IntegriCloud