1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
|
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/irqchip/arm-gic-v3.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <kvm/arm_vgic.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_asm.h>
#include "vgic.h"
static bool group0_trap;
static bool group1_trap;
static bool common_trap;
static bool gicv4_enable;
void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
cpuif->vgic_hcr |= ICH_HCR_UIE;
}
static bool lr_signals_eoi_mi(u64 lr_val)
{
return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
!(lr_val & ICH_LR_HW);
}
void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
{
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
u32 model = vcpu->kvm->arch.vgic.vgic_model;
int lr;
DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
cpuif->vgic_hcr &= ~ICH_HCR_UIE;
for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
u64 val = cpuif->vgic_lr[lr];
u32 intid, cpuid;
struct vgic_irq *irq;
bool is_v2_sgi = false;
cpuid = val & GICH_LR_PHYSID_CPUID;
cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
intid = val & ICH_LR_VIRTUAL_ID_MASK;
} else {
intid = val & GICH_LR_VIRTUALID;
is_v2_sgi = vgic_irq_is_sgi(intid);
}
/* Notify fds when the guest EOI'ed a level-triggered IRQ */
if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
kvm_notify_acked_irq(vcpu->kvm, 0,
intid - VGIC_NR_PRIVATE_IRQS);
irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
if (!irq) /* An LPI could have been unmapped. */
continue;
raw_spin_lock(&irq->irq_lock);
/* Always preserve the active bit */
irq->active = !!(val & ICH_LR_ACTIVE_BIT);
if (irq->active && is_v2_sgi)
irq->active_source = cpuid;
/* Edge is the only case where we preserve the pending bit */
if (irq->config == VGIC_CONFIG_EDGE &&
(val & ICH_LR_PENDING_BIT)) {
irq->pending_latch = true;
if (is_v2_sgi)
irq->source |= (1 << cpuid);
}
/*
* Clear soft pending state when level irqs have been acked.
*/
if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
irq->pending_latch = false;
/*
* Level-triggered mapped IRQs are special because we only
* observe rising edges as input to the VGIC.
*
* If the guest never acked the interrupt we have to sample
* the physical line and set the line level, because the
* device state could have changed or we simply need to
* process the still pending interrupt later.
*
* If this causes us to lower the level, we have to also clear
* the physical active state, since we will otherwise never be
* told when the interrupt becomes asserted again.
*/
if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) {
irq->line_level = vgic_get_phys_line_level(irq);
if (!irq->line_level)
vgic_irq_set_phys_active(irq, false);
}
raw_spin_unlock(&irq->irq_lock);
vgic_put_irq(vcpu->kvm, irq);
}
vgic_cpu->used_lrs = 0;
}
/* Requires the irq to be locked already */
void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
{
u32 model = vcpu->kvm->arch.vgic.vgic_model;
u64 val = irq->intid;
bool allow_pending = true, is_v2_sgi;
is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
model == KVM_DEV_TYPE_ARM_VGIC_V2);
if (irq->active) {
val |= ICH_LR_ACTIVE_BIT;
if (is_v2_sgi)
val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
if (vgic_irq_is_multi_sgi(irq)) {
allow_pending = false;
val |= ICH_LR_EOI;
}
}
if (irq->hw) {
val |= ICH_LR_HW;
val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
/*
* Never set pending+active on a HW interrupt, as the
* pending state is kept at the physical distributor
* level.
*/
if (irq->active)
allow_pending = false;
} else {
if (irq->config == VGIC_CONFIG_LEVEL) {
val |= ICH_LR_EOI;
/*
* Software resampling doesn't work very well
* if we allow P+A, so let's not do that.
*/
if (irq->active)
allow_pending = false;
}
}
if (allow_pending && irq_is_pending(irq)) {
val |= ICH_LR_PENDING_BIT;
if (irq->config == VGIC_CONFIG_EDGE)
irq->pending_latch = false;
if (vgic_irq_is_sgi(irq->intid) &&
model == KVM_DEV_TYPE_ARM_VGIC_V2) {
u32 src = ffs(irq->source);
BUG_ON(!src);
val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
irq->source &= ~(1 << (src - 1));
if (irq->source) {
irq->pending_latch = true;
val |= ICH_LR_EOI;
}
}
}
/*
* Level-triggered mapped IRQs are special because we only observe
* rising edges as input to the VGIC. We therefore lower the line
* level here, so that we can take new virtual IRQs. See
* vgic_v3_fold_lr_state for more info.
*/
if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
irq->line_level = false;
if (irq->group)
val |= ICH_LR_GROUP;
val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
}
void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
{
vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
}
void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
u32 model = vcpu->kvm->arch.vgic.vgic_model;
u32 vmcr;
if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
ICH_VMCR_ACK_CTL_MASK;
vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
ICH_VMCR_FIQ_EN_MASK;
} else {
/*
* When emulating GICv3 on GICv3 with SRE=1 on the
* VFIQEn bit is RES1 and the VAckCtl bit is RES0.
*/
vmcr = ICH_VMCR_FIQ_EN_MASK;
}
vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
cpu_if->vgic_vmcr = vmcr;
}
void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
u32 model = vcpu->kvm->arch.vgic.vgic_model;
u32 vmcr;
vmcr = cpu_if->vgic_vmcr;
if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
ICH_VMCR_ACK_CTL_SHIFT;
vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
ICH_VMCR_FIQ_EN_SHIFT;
} else {
/*
* When emulating GICv3 on GICv3 with SRE=1 on the
* VFIQEn bit is RES1 and the VAckCtl bit is RES0.
*/
vmcrp->fiqen = 1;
vmcrp->ackctl = 0;
}
vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
}
#define INITIAL_PENDBASER_VALUE \
(GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \
GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \
GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
void vgic_v3_enable(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
/*
* By forcing VMCR to zero, the GIC will restore the binary
* points to their reset values. Anything else resets to zero
* anyway.
*/
vgic_v3->vgic_vmcr = 0;
/*
* If we are emulating a GICv3, we do it in an non-GICv2-compatible
* way, so we force SRE to 1 to demonstrate this to the guest.
* Also, we don't support any form of IRQ/FIQ bypass.
* This goes with the spec allowing the value to be RAO/WI.
*/
if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
ICC_SRE_EL1_DFB |
ICC_SRE_EL1_SRE);
vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
} else {
vgic_v3->vgic_sre = 0;
}
vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
ICH_VTR_ID_BITS_MASK) >>
ICH_VTR_ID_BITS_SHIFT;
vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
ICH_VTR_PRI_BITS_MASK) >>
ICH_VTR_PRI_BITS_SHIFT) + 1;
/* Get the show on the road... */
vgic_v3->vgic_hcr = ICH_HCR_EN;
if (group0_trap)
vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
if (group1_trap)
vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
if (common_trap)
vgic_v3->vgic_hcr |= ICH_HCR_TC;
}
int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
{
struct kvm_vcpu *vcpu;
int byte_offset, bit_nr;
gpa_t pendbase, ptr;
bool status;
u8 val;
int ret;
unsigned long flags;
retry:
vcpu = irq->target_vcpu;
if (!vcpu)
return 0;
pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
byte_offset = irq->intid / BITS_PER_BYTE;
bit_nr = irq->intid % BITS_PER_BYTE;
ptr = pendbase + byte_offset;
ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
if (ret)
return ret;
status = val & (1 << bit_nr);
raw_spin_lock_irqsave(&irq->irq_lock, flags);
if (irq->target_vcpu != vcpu) {
raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
goto retry;
}
irq->pending_latch = status;
vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
if (status) {
/* clear consumed data */
val &= ~(1 << bit_nr);
ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
if (ret)
return ret;
}
return 0;
}
/**
* vgic_its_save_pending_tables - Save the pending tables into guest RAM
* kvm lock and all vcpu lock must be held
*/
int vgic_v3_save_pending_tables(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
int last_byte_offset = -1;
struct vgic_irq *irq;
int ret;
u8 val;
list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
int byte_offset, bit_nr;
struct kvm_vcpu *vcpu;
gpa_t pendbase, ptr;
bool stored;
vcpu = irq->target_vcpu;
if (!vcpu)
continue;
pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
byte_offset = irq->intid / BITS_PER_BYTE;
bit_nr = irq->intid % BITS_PER_BYTE;
ptr = pendbase + byte_offset;
if (byte_offset != last_byte_offset) {
ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
if (ret)
return ret;
last_byte_offset = byte_offset;
}
stored = val & (1U << bit_nr);
if (stored == irq->pending_latch)
continue;
if (irq->pending_latch)
val |= 1 << bit_nr;
else
val &= ~(1 << bit_nr);
ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
if (ret)
return ret;
}
return 0;
}
/**
* vgic_v3_rdist_overlap - check if a region overlaps with any
* existing redistributor region
*
* @kvm: kvm handle
* @base: base of the region
* @size: size of region
*
* Return: true if there is an overlap
*/
bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
{
struct vgic_dist *d = &kvm->arch.vgic;
struct vgic_redist_region *rdreg;
list_for_each_entry(rdreg, &d->rd_regions, list) {
if ((base + size > rdreg->base) &&
(base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
return true;
}
return false;
}
/*
* Check for overlapping regions and for regions crossing the end of memory
* for base addresses which have already been set.
*/
bool vgic_v3_check_base(struct kvm *kvm)
{
struct vgic_dist *d = &kvm->arch.vgic;
struct vgic_redist_region *rdreg;
if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
return false;
list_for_each_entry(rdreg, &d->rd_regions, list) {
if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) <
rdreg->base)
return false;
}
if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
return true;
return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
KVM_VGIC_V3_DIST_SIZE);
}
/**
* vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
* which has free space to put a new rdist region.
*
* @rd_regions: redistributor region list head
*
* A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
* Stride between redistributors is 0 and regions are filled in the index order.
*
* Return: the redist region handle, if any, that has space to map a new rdist
* region.
*/
struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
{
struct vgic_redist_region *rdreg;
list_for_each_entry(rdreg, rd_regions, list) {
if (!vgic_v3_redist_region_full(rdreg))
return rdreg;
}
return NULL;
}
struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
u32 index)
{
struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
struct vgic_redist_region *rdreg;
list_for_each_entry(rdreg, rd_regions, list) {
if (rdreg->index == index)
return rdreg;
}
return NULL;
}
int vgic_v3_map_resources(struct kvm *kvm)
{
struct vgic_dist *dist = &kvm->arch.vgic;
struct kvm_vcpu *vcpu;
int ret = 0;
int c;
if (vgic_ready(kvm))
goto out;
kvm_for_each_vcpu(c, vcpu, kvm) {
struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
kvm_debug("vcpu %d redistributor base not set\n", c);
ret = -ENXIO;
goto out;
}
}
if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
kvm_err("Need to set vgic distributor addresses first\n");
ret = -ENXIO;
goto out;
}
if (!vgic_v3_check_base(kvm)) {
kvm_err("VGIC redist and dist frames overlap\n");
ret = -EINVAL;
goto out;
}
/*
* For a VGICv3 we require the userland to explicitly initialize
* the VGIC before we need to use it.
*/
if (!vgic_initialized(kvm)) {
ret = -EBUSY;
goto out;
}
ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
if (ret) {
kvm_err("Unable to register VGICv3 dist MMIO regions\n");
goto out;
}
dist->ready = true;
out:
return ret;
}
DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
static int __init early_group0_trap_cfg(char *buf)
{
return strtobool(buf, &group0_trap);
}
early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
static int __init early_group1_trap_cfg(char *buf)
{
return strtobool(buf, &group1_trap);
}
early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
static int __init early_common_trap_cfg(char *buf)
{
return strtobool(buf, &common_trap);
}
early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
static int __init early_gicv4_enable(char *buf)
{
return strtobool(buf, &gicv4_enable);
}
early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
/**
* vgic_v3_probe - probe for a GICv3 compatible interrupt controller in DT
* @node: pointer to the DT node
*
* Returns 0 if a GICv3 has been found, returns an error code otherwise
*/
int vgic_v3_probe(const struct gic_kvm_info *info)
{
u32 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_ich_vtr_el2);
int ret;
/*
* The ListRegs field is 5 bits, but there is a architectural
* maximum of 16 list registers. Just ignore bit 4...
*/
kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
kvm_vgic_global_state.can_emulate_gicv2 = false;
kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
/* GICv4 support? */
if (info->has_v4) {
kvm_vgic_global_state.has_gicv4 = gicv4_enable;
kvm_info("GICv4 support %sabled\n",
gicv4_enable ? "en" : "dis");
}
if (!info->vcpu.start) {
kvm_info("GICv3: no GICV resource entry\n");
kvm_vgic_global_state.vcpu_base = 0;
} else if (!PAGE_ALIGNED(info->vcpu.start)) {
pr_warn("GICV physical address 0x%llx not page aligned\n",
(unsigned long long)info->vcpu.start);
kvm_vgic_global_state.vcpu_base = 0;
} else {
kvm_vgic_global_state.vcpu_base = info->vcpu.start;
kvm_vgic_global_state.can_emulate_gicv2 = true;
ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
if (ret) {
kvm_err("Cannot register GICv2 KVM device.\n");
return ret;
}
kvm_info("vgic-v2@%llx\n", info->vcpu.start);
}
ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
if (ret) {
kvm_err("Cannot register GICv3 KVM device.\n");
kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
return ret;
}
if (kvm_vgic_global_state.vcpu_base == 0)
kvm_info("disabling GICv2 emulation\n");
#ifdef CONFIG_ARM64
if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
group0_trap = true;
group1_trap = true;
}
#endif
if (group0_trap || group1_trap || common_trap) {
kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n",
group0_trap ? "G0" : "",
group1_trap ? "G1" : "",
common_trap ? "C" : "");
static_branch_enable(&vgic_v3_cpuif_trap);
}
kvm_vgic_global_state.vctrl_base = NULL;
kvm_vgic_global_state.type = VGIC_V3;
kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
return 0;
}
void vgic_v3_load(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
/*
* If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
* is dependent on ICC_SRE_EL1.SRE, and we have to perform the
* VMCR_EL2 save/restore in the world switch.
*/
if (likely(cpu_if->vgic_sre))
kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
kvm_call_hyp(__vgic_v3_restore_aprs, vcpu);
if (has_vhe())
__vgic_v3_activate_traps(vcpu);
}
void vgic_v3_put(struct kvm_vcpu *vcpu)
{
struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
if (likely(cpu_if->vgic_sre))
cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr);
kvm_call_hyp(__vgic_v3_save_aprs, vcpu);
if (has_vhe())
__vgic_v3_deactivate_traps(vcpu);
}
|