summaryrefslogtreecommitdiffstats
path: root/sound/soc/fsl/fsl_sai.c
blob: dc0cc65406f552b2c31f40fe1c5bcd3b6401f242 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
/*
 * Freescale ALSA SoC Digital Audio Interface (SAI) driver.
 *
 * Copyright 2012-2015 Freescale Semiconductor, Inc.
 *
 * This program is free software, you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 2 of the License, or(at your
 * option) any later version.
 *
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>

#include "fsl_sai.h"
#include "imx-pcm.h"

#define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
		       FSL_SAI_CSR_FEIE)

static const unsigned int fsl_sai_rates[] = {
	8000, 11025, 12000, 16000, 22050,
	24000, 32000, 44100, 48000, 64000,
	88200, 96000, 176400, 192000
};

static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
	.count = ARRAY_SIZE(fsl_sai_rates),
	.list = fsl_sai_rates,
};

static irqreturn_t fsl_sai_isr(int irq, void *devid)
{
	struct fsl_sai *sai = (struct fsl_sai *)devid;
	struct device *dev = &sai->pdev->dev;
	u32 flags, xcsr, mask;
	bool irq_none = true;

	/*
	 * Both IRQ status bits and IRQ mask bits are in the xCSR but
	 * different shifts. And we here create a mask only for those
	 * IRQs that we activated.
	 */
	mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;

	/* Tx IRQ */
	regmap_read(sai->regmap, FSL_SAI_TCSR, &xcsr);
	flags = xcsr & mask;

	if (flags)
		irq_none = false;
	else
		goto irq_rx;

	if (flags & FSL_SAI_CSR_WSF)
		dev_dbg(dev, "isr: Start of Tx word detected\n");

	if (flags & FSL_SAI_CSR_SEF)
		dev_warn(dev, "isr: Tx Frame sync error detected\n");

	if (flags & FSL_SAI_CSR_FEF) {
		dev_warn(dev, "isr: Transmit underrun detected\n");
		/* FIFO reset for safety */
		xcsr |= FSL_SAI_CSR_FR;
	}

	if (flags & FSL_SAI_CSR_FWF)
		dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");

	if (flags & FSL_SAI_CSR_FRF)
		dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");

	flags &= FSL_SAI_CSR_xF_W_MASK;
	xcsr &= ~FSL_SAI_CSR_xF_MASK;

	if (flags)
		regmap_write(sai->regmap, FSL_SAI_TCSR, flags | xcsr);

irq_rx:
	/* Rx IRQ */
	regmap_read(sai->regmap, FSL_SAI_RCSR, &xcsr);
	flags = xcsr & mask;

	if (flags)
		irq_none = false;
	else
		goto out;

	if (flags & FSL_SAI_CSR_WSF)
		dev_dbg(dev, "isr: Start of Rx word detected\n");

	if (flags & FSL_SAI_CSR_SEF)
		dev_warn(dev, "isr: Rx Frame sync error detected\n");

	if (flags & FSL_SAI_CSR_FEF) {
		dev_warn(dev, "isr: Receive overflow detected\n");
		/* FIFO reset for safety */
		xcsr |= FSL_SAI_CSR_FR;
	}

	if (flags & FSL_SAI_CSR_FWF)
		dev_dbg(dev, "isr: Enabled receive FIFO is full\n");

	if (flags & FSL_SAI_CSR_FRF)
		dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");

	flags &= FSL_SAI_CSR_xF_W_MASK;
	xcsr &= ~FSL_SAI_CSR_xF_MASK;

	if (flags)
		regmap_write(sai->regmap, FSL_SAI_RCSR, flags | xcsr);

out:
	if (irq_none)
		return IRQ_NONE;
	else
		return IRQ_HANDLED;
}

static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
				u32 rx_mask, int slots, int slot_width)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);

	sai->slots = slots;
	sai->slot_width = slot_width;

	return 0;
}

static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
		int clk_id, unsigned int freq, int fsl_dir)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
	bool tx = fsl_dir == FSL_FMT_TRANSMITTER;
	u32 val_cr2 = 0;

	switch (clk_id) {
	case FSL_SAI_CLK_BUS:
		val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
		break;
	case FSL_SAI_CLK_MAST1:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
		break;
	case FSL_SAI_CLK_MAST2:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
		break;
	case FSL_SAI_CLK_MAST3:
		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
		break;
	default:
		return -EINVAL;
	}

	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx),
			   FSL_SAI_CR2_MSEL_MASK, val_cr2);

	return 0;
}

static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
		int clk_id, unsigned int freq, int dir)
{
	int ret;

	if (dir == SND_SOC_CLOCK_IN)
		return 0;

	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq,
					FSL_FMT_TRANSMITTER);
	if (ret) {
		dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
		return ret;
	}

	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq,
					FSL_FMT_RECEIVER);
	if (ret)
		dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);

	return ret;
}

static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
				unsigned int fmt, int fsl_dir)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
	bool tx = fsl_dir == FSL_FMT_TRANSMITTER;
	u32 val_cr2 = 0, val_cr4 = 0;

	if (!sai->is_lsb_first)
		val_cr4 |= FSL_SAI_CR4_MF;

	/* DAI mode */
	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
	case SND_SOC_DAIFMT_I2S:
		/*
		 * Frame low, 1clk before data, one word length for frame sync,
		 * frame sync starts one serial clock cycle earlier,
		 * that is, together with the last bit of the previous
		 * data word.
		 */
		val_cr2 |= FSL_SAI_CR2_BCP;
		val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
		break;
	case SND_SOC_DAIFMT_LEFT_J:
		/*
		 * Frame high, one word length for frame sync,
		 * frame sync asserts with the first bit of the frame.
		 */
		val_cr2 |= FSL_SAI_CR2_BCP;
		break;
	case SND_SOC_DAIFMT_DSP_A:
		/*
		 * Frame high, 1clk before data, one bit for frame sync,
		 * frame sync starts one serial clock cycle earlier,
		 * that is, together with the last bit of the previous
		 * data word.
		 */
		val_cr2 |= FSL_SAI_CR2_BCP;
		val_cr4 |= FSL_SAI_CR4_FSE;
		sai->is_dsp_mode = true;
		break;
	case SND_SOC_DAIFMT_DSP_B:
		/*
		 * Frame high, one bit for frame sync,
		 * frame sync asserts with the first bit of the frame.
		 */
		val_cr2 |= FSL_SAI_CR2_BCP;
		sai->is_dsp_mode = true;
		break;
	case SND_SOC_DAIFMT_RIGHT_J:
		/* To be done */
	default:
		return -EINVAL;
	}

	/* DAI clock inversion */
	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
	case SND_SOC_DAIFMT_IB_IF:
		/* Invert both clocks */
		val_cr2 ^= FSL_SAI_CR2_BCP;
		val_cr4 ^= FSL_SAI_CR4_FSP;
		break;
	case SND_SOC_DAIFMT_IB_NF:
		/* Invert bit clock */
		val_cr2 ^= FSL_SAI_CR2_BCP;
		break;
	case SND_SOC_DAIFMT_NB_IF:
		/* Invert frame clock */
		val_cr4 ^= FSL_SAI_CR4_FSP;
		break;
	case SND_SOC_DAIFMT_NB_NF:
		/* Nothing to do for both normal cases */
		break;
	default:
		return -EINVAL;
	}

	/* DAI clock master masks */
	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBS_CFS:
		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
		break;
	case SND_SOC_DAIFMT_CBM_CFM:
		sai->is_slave_mode = true;
		break;
	case SND_SOC_DAIFMT_CBS_CFM:
		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
		break;
	case SND_SOC_DAIFMT_CBM_CFS:
		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
		sai->is_slave_mode = true;
		break;
	default:
		return -EINVAL;
	}

	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx),
			   FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx),
			   FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
			   FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);

	return 0;
}

static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
{
	int ret;

	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, FSL_FMT_TRANSMITTER);
	if (ret) {
		dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
		return ret;
	}

	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, FSL_FMT_RECEIVER);
	if (ret)
		dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);

	return ret;
}

static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
	unsigned long clk_rate;
	u32 savediv = 0, ratio, savesub = freq;
	u32 id;
	int ret = 0;

	/* Don't apply to slave mode */
	if (sai->is_slave_mode)
		return 0;

	for (id = 0; id < FSL_SAI_MCLK_MAX; id++) {
		clk_rate = clk_get_rate(sai->mclk_clk[id]);
		if (!clk_rate)
			continue;

		ratio = clk_rate / freq;

		ret = clk_rate - ratio * freq;

		/*
		 * Drop the source that can not be
		 * divided into the required rate.
		 */
		if (ret != 0 && clk_rate / ret < 1000)
			continue;

		dev_dbg(dai->dev,
			"ratio %d for freq %dHz based on clock %ldHz\n",
			ratio, freq, clk_rate);

		if (ratio % 2 == 0 && ratio >= 2 && ratio <= 512)
			ratio /= 2;
		else
			continue;

		if (ret < savesub) {
			savediv = ratio;
			sai->mclk_id[tx] = id;
			savesub = ret;
		}

		if (ret == 0)
			break;
	}

	if (savediv == 0) {
		dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
				tx ? 'T' : 'R', freq);
		return -EINVAL;
	}

	/*
	 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
	 *    set TCR2 register for playback.
	 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
	 *    and capture.
	 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
	 *    and capture.
	 * 4) For Tx and Rx are both Synchronous with another SAI, we just
	 *    ignore it.
	 */
	if ((sai->synchronous[TX] && !sai->synchronous[RX]) ||
	    (!tx && !sai->synchronous[RX])) {
		regmap_update_bits(sai->regmap, FSL_SAI_RCR2,
				   FSL_SAI_CR2_MSEL_MASK,
				   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
		regmap_update_bits(sai->regmap, FSL_SAI_RCR2,
				   FSL_SAI_CR2_DIV_MASK, savediv - 1);
	} else if ((sai->synchronous[RX] && !sai->synchronous[TX]) ||
		   (tx && !sai->synchronous[TX])) {
		regmap_update_bits(sai->regmap, FSL_SAI_TCR2,
				   FSL_SAI_CR2_MSEL_MASK,
				   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
		regmap_update_bits(sai->regmap, FSL_SAI_TCR2,
				   FSL_SAI_CR2_DIV_MASK, savediv - 1);
	}

	dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
			sai->mclk_id[tx], savediv, savesub);

	return 0;
}

static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
		struct snd_pcm_hw_params *params,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	unsigned int channels = params_channels(params);
	u32 word_width = snd_pcm_format_width(params_format(params));
	u32 val_cr4 = 0, val_cr5 = 0;
	u32 slots = (channels == 1) ? 2 : channels;
	u32 slot_width = word_width;
	int ret;

	if (sai->slots)
		slots = sai->slots;

	if (sai->slot_width)
		slot_width = sai->slot_width;

	if (!sai->is_slave_mode) {
		ret = fsl_sai_set_bclk(cpu_dai, tx,
				slots * slot_width * params_rate(params));
		if (ret)
			return ret;

		/* Do not enable the clock if it is already enabled */
		if (!(sai->mclk_streams & BIT(substream->stream))) {
			ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
			if (ret)
				return ret;

			sai->mclk_streams |= BIT(substream->stream);
		}
	}

	if (!sai->is_dsp_mode)
		val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);

	val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
	val_cr5 |= FSL_SAI_CR5_W0W(slot_width);

	if (sai->is_lsb_first)
		val_cr5 |= FSL_SAI_CR5_FBT(0);
	else
		val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);

	val_cr4 |= FSL_SAI_CR4_FRSZ(slots);

	/*
	 * For SAI master mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
	 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
	 * RCR5(TCR5) and RMR(TMR) for playback(capture), or there will be sync
	 * error.
	 */

	if (!sai->is_slave_mode) {
		if (!sai->synchronous[TX] && sai->synchronous[RX] && !tx) {
			regmap_update_bits(sai->regmap, FSL_SAI_TCR4,
				FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK,
				val_cr4);
			regmap_update_bits(sai->regmap, FSL_SAI_TCR5,
				FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
				FSL_SAI_CR5_FBT_MASK, val_cr5);
			regmap_write(sai->regmap, FSL_SAI_TMR,
				~0UL - ((1 << channels) - 1));
		} else if (!sai->synchronous[RX] && sai->synchronous[TX] && tx) {
			regmap_update_bits(sai->regmap, FSL_SAI_RCR4,
				FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK,
				val_cr4);
			regmap_update_bits(sai->regmap, FSL_SAI_RCR5,
				FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
				FSL_SAI_CR5_FBT_MASK, val_cr5);
			regmap_write(sai->regmap, FSL_SAI_RMR,
				~0UL - ((1 << channels) - 1));
		}
	}

	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx),
			   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK,
			   val_cr4);
	regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx),
			   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
			   FSL_SAI_CR5_FBT_MASK, val_cr5);
	regmap_write(sai->regmap, FSL_SAI_xMR(tx), ~0UL - ((1 << channels) - 1));

	return 0;
}

static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;

	if (!sai->is_slave_mode &&
			sai->mclk_streams & BIT(substream->stream)) {
		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
		sai->mclk_streams &= ~BIT(substream->stream);
	}

	return 0;
}


static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	u32 xcsr, count = 100;

	/*
	 * Asynchronous mode: Clear SYNC for both Tx and Rx.
	 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
	 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
	 */
	regmap_update_bits(sai->regmap, FSL_SAI_TCR2, FSL_SAI_CR2_SYNC, 0);
	regmap_update_bits(sai->regmap, FSL_SAI_RCR2, FSL_SAI_CR2_SYNC,
			   sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);

	/*
	 * It is recommended that the transmitter is the last enabled
	 * and the first disabled.
	 */
	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_RESUME:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx),
				   FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);

		regmap_update_bits(sai->regmap, FSL_SAI_RCSR,
				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
		regmap_update_bits(sai->regmap, FSL_SAI_TCSR,
				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);

		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx),
				   FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
		break;
	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_SUSPEND:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx),
				   FSL_SAI_CSR_FRDE, 0);
		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx),
				   FSL_SAI_CSR_xIE_MASK, 0);

		/* Check if the opposite FRDE is also disabled */
		regmap_read(sai->regmap, FSL_SAI_xCSR(!tx), &xcsr);
		if (!(xcsr & FSL_SAI_CSR_FRDE)) {
			/* Disable both directions and reset their FIFOs */
			regmap_update_bits(sai->regmap, FSL_SAI_TCSR,
					   FSL_SAI_CSR_TERE, 0);
			regmap_update_bits(sai->regmap, FSL_SAI_RCSR,
					   FSL_SAI_CSR_TERE, 0);

			/* TERE will remain set till the end of current frame */
			do {
				udelay(10);
				regmap_read(sai->regmap, FSL_SAI_xCSR(tx), &xcsr);
			} while (--count && xcsr & FSL_SAI_CSR_TERE);

			regmap_update_bits(sai->regmap, FSL_SAI_TCSR,
					   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
			regmap_update_bits(sai->regmap, FSL_SAI_RCSR,
					   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
		}
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int fsl_sai_startup(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	struct device *dev = &sai->pdev->dev;
	int ret;

	ret = clk_prepare_enable(sai->bus_clk);
	if (ret) {
		dev_err(dev, "failed to enable bus clock: %d\n", ret);
		return ret;
	}

	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx), FSL_SAI_CR3_TRCE,
			   FSL_SAI_CR3_TRCE);

	ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
			SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);

	return ret;
}

static void fsl_sai_shutdown(struct snd_pcm_substream *substream,
		struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;

	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx), FSL_SAI_CR3_TRCE, 0);

	clk_disable_unprepare(sai->bus_clk);
}

static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
	.set_sysclk	= fsl_sai_set_dai_sysclk,
	.set_fmt	= fsl_sai_set_dai_fmt,
	.set_tdm_slot	= fsl_sai_set_dai_tdm_slot,
	.hw_params	= fsl_sai_hw_params,
	.hw_free	= fsl_sai_hw_free,
	.trigger	= fsl_sai_trigger,
	.startup	= fsl_sai_startup,
	.shutdown	= fsl_sai_shutdown,
};

static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
{
	struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);

	/* Software Reset for both Tx and Rx */
	regmap_write(sai->regmap, FSL_SAI_TCSR, FSL_SAI_CSR_SR);
	regmap_write(sai->regmap, FSL_SAI_RCSR, FSL_SAI_CSR_SR);
	/* Clear SR bit to finish the reset */
	regmap_write(sai->regmap, FSL_SAI_TCSR, 0);
	regmap_write(sai->regmap, FSL_SAI_RCSR, 0);

	regmap_update_bits(sai->regmap, FSL_SAI_TCR1, FSL_SAI_CR1_RFW_MASK,
			   FSL_SAI_MAXBURST_TX * 2);
	regmap_update_bits(sai->regmap, FSL_SAI_RCR1, FSL_SAI_CR1_RFW_MASK,
			   FSL_SAI_MAXBURST_RX - 1);

	snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
				&sai->dma_params_rx);

	snd_soc_dai_set_drvdata(cpu_dai, sai);

	return 0;
}

static struct snd_soc_dai_driver fsl_sai_dai = {
	.probe = fsl_sai_dai_probe,
	.playback = {
		.stream_name = "CPU-Playback",
		.channels_min = 1,
		.channels_max = 2,
		.rate_min = 8000,
		.rate_max = 192000,
		.rates = SNDRV_PCM_RATE_KNOT,
		.formats = FSL_SAI_FORMATS,
	},
	.capture = {
		.stream_name = "CPU-Capture",
		.channels_min = 1,
		.channels_max = 2,
		.rate_min = 8000,
		.rate_max = 192000,
		.rates = SNDRV_PCM_RATE_KNOT,
		.formats = FSL_SAI_FORMATS,
	},
	.ops = &fsl_sai_pcm_dai_ops,
};

static const struct snd_soc_component_driver fsl_component = {
	.name           = "fsl-sai",
};

static struct reg_default fsl_sai_reg_defaults[] = {
	{FSL_SAI_TCR1, 0},
	{FSL_SAI_TCR2, 0},
	{FSL_SAI_TCR3, 0},
	{FSL_SAI_TCR4, 0},
	{FSL_SAI_TCR5, 0},
	{FSL_SAI_TDR,  0},
	{FSL_SAI_TMR,  0},
	{FSL_SAI_RCR1, 0},
	{FSL_SAI_RCR2, 0},
	{FSL_SAI_RCR3, 0},
	{FSL_SAI_RCR4, 0},
	{FSL_SAI_RCR5, 0},
	{FSL_SAI_RMR,  0},
};

static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case FSL_SAI_TCSR:
	case FSL_SAI_TCR1:
	case FSL_SAI_TCR2:
	case FSL_SAI_TCR3:
	case FSL_SAI_TCR4:
	case FSL_SAI_TCR5:
	case FSL_SAI_TFR:
	case FSL_SAI_TMR:
	case FSL_SAI_RCSR:
	case FSL_SAI_RCR1:
	case FSL_SAI_RCR2:
	case FSL_SAI_RCR3:
	case FSL_SAI_RCR4:
	case FSL_SAI_RCR5:
	case FSL_SAI_RDR:
	case FSL_SAI_RFR:
	case FSL_SAI_RMR:
		return true;
	default:
		return false;
	}
}

static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case FSL_SAI_TCSR:
	case FSL_SAI_RCSR:
	case FSL_SAI_TFR:
	case FSL_SAI_RFR:
	case FSL_SAI_RDR:
		return true;
	default:
		return false;
	}
}

static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case FSL_SAI_TCSR:
	case FSL_SAI_TCR1:
	case FSL_SAI_TCR2:
	case FSL_SAI_TCR3:
	case FSL_SAI_TCR4:
	case FSL_SAI_TCR5:
	case FSL_SAI_TDR:
	case FSL_SAI_TMR:
	case FSL_SAI_RCSR:
	case FSL_SAI_RCR1:
	case FSL_SAI_RCR2:
	case FSL_SAI_RCR3:
	case FSL_SAI_RCR4:
	case FSL_SAI_RCR5:
	case FSL_SAI_RMR:
		return true;
	default:
		return false;
	}
}

static const struct regmap_config fsl_sai_regmap_config = {
	.reg_bits = 32,
	.reg_stride = 4,
	.val_bits = 32,

	.max_register = FSL_SAI_RMR,
	.reg_defaults = fsl_sai_reg_defaults,
	.num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults),
	.readable_reg = fsl_sai_readable_reg,
	.volatile_reg = fsl_sai_volatile_reg,
	.writeable_reg = fsl_sai_writeable_reg,
	.cache_type = REGCACHE_FLAT,
};

static int fsl_sai_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct fsl_sai *sai;
	struct resource *res;
	void __iomem *base;
	char tmp[8];
	int irq, ret, i;

	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
	if (!sai)
		return -ENOMEM;

	sai->pdev = pdev;

	if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx6sx-sai"))
		sai->sai_on_imx = true;

	sai->is_lsb_first = of_property_read_bool(np, "lsb-first");

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(base))
		return PTR_ERR(base);

	sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
			"bus", base, &fsl_sai_regmap_config);

	/* Compatible with old DTB cases */
	if (IS_ERR(sai->regmap))
		sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
				"sai", base, &fsl_sai_regmap_config);
	if (IS_ERR(sai->regmap)) {
		dev_err(&pdev->dev, "regmap init failed\n");
		return PTR_ERR(sai->regmap);
	}

	/* No error out for old DTB cases but only mark the clock NULL */
	sai->bus_clk = devm_clk_get(&pdev->dev, "bus");
	if (IS_ERR(sai->bus_clk)) {
		dev_err(&pdev->dev, "failed to get bus clock: %ld\n",
				PTR_ERR(sai->bus_clk));
		sai->bus_clk = NULL;
	}

	sai->mclk_clk[0] = sai->bus_clk;
	for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
		sprintf(tmp, "mclk%d", i);
		sai->mclk_clk[i] = devm_clk_get(&pdev->dev, tmp);
		if (IS_ERR(sai->mclk_clk[i])) {
			dev_err(&pdev->dev, "failed to get mclk%d clock: %ld\n",
					i + 1, PTR_ERR(sai->mclk_clk[i]));
			sai->mclk_clk[i] = NULL;
		}
	}

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
		return irq;
	}

	ret = devm_request_irq(&pdev->dev, irq, fsl_sai_isr, 0, np->name, sai);
	if (ret) {
		dev_err(&pdev->dev, "failed to claim irq %u\n", irq);
		return ret;
	}

	/* Sync Tx with Rx as default by following old DT binding */
	sai->synchronous[RX] = true;
	sai->synchronous[TX] = false;
	fsl_sai_dai.symmetric_rates = 1;
	fsl_sai_dai.symmetric_channels = 1;
	fsl_sai_dai.symmetric_samplebits = 1;

	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL) &&
	    of_find_property(np, "fsl,sai-asynchronous", NULL)) {
		/* error out if both synchronous and asynchronous are present */
		dev_err(&pdev->dev, "invalid binding for synchronous mode\n");
		return -EINVAL;
	}

	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL)) {
		/* Sync Rx with Tx */
		sai->synchronous[RX] = false;
		sai->synchronous[TX] = true;
	} else if (of_find_property(np, "fsl,sai-asynchronous", NULL)) {
		/* Discard all settings for asynchronous mode */
		sai->synchronous[RX] = false;
		sai->synchronous[TX] = false;
		fsl_sai_dai.symmetric_rates = 0;
		fsl_sai_dai.symmetric_channels = 0;
		fsl_sai_dai.symmetric_samplebits = 0;
	}

	sai->dma_params_rx.addr = res->start + FSL_SAI_RDR;
	sai->dma_params_tx.addr = res->start + FSL_SAI_TDR;
	sai->dma_params_rx.maxburst = FSL_SAI_MAXBURST_RX;
	sai->dma_params_tx.maxburst = FSL_SAI_MAXBURST_TX;

	platform_set_drvdata(pdev, sai);

	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_component,
			&fsl_sai_dai, 1);
	if (ret)
		return ret;

	if (sai->sai_on_imx)
		return imx_pcm_dma_init(pdev, IMX_SAI_DMABUF_SIZE);
	else
		return devm_snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
}

static const struct of_device_id fsl_sai_ids[] = {
	{ .compatible = "fsl,vf610-sai", },
	{ .compatible = "fsl,imx6sx-sai", },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_sai_ids);

#ifdef CONFIG_PM_SLEEP
static int fsl_sai_suspend(struct device *dev)
{
	struct fsl_sai *sai = dev_get_drvdata(dev);

	regcache_cache_only(sai->regmap, true);
	regcache_mark_dirty(sai->regmap);

	return 0;
}

static int fsl_sai_resume(struct device *dev)
{
	struct fsl_sai *sai = dev_get_drvdata(dev);

	regcache_cache_only(sai->regmap, false);
	regmap_write(sai->regmap, FSL_SAI_TCSR, FSL_SAI_CSR_SR);
	regmap_write(sai->regmap, FSL_SAI_RCSR, FSL_SAI_CSR_SR);
	msleep(1);
	regmap_write(sai->regmap, FSL_SAI_TCSR, 0);
	regmap_write(sai->regmap, FSL_SAI_RCSR, 0);
	return regcache_sync(sai->regmap);
}
#endif /* CONFIG_PM_SLEEP */

static const struct dev_pm_ops fsl_sai_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(fsl_sai_suspend, fsl_sai_resume)
};

static struct platform_driver fsl_sai_driver = {
	.probe = fsl_sai_probe,
	.driver = {
		.name = "fsl-sai",
		.pm = &fsl_sai_pm_ops,
		.of_match_table = fsl_sai_ids,
	},
};
module_platform_driver(fsl_sai_driver);

MODULE_DESCRIPTION("Freescale Soc SAI Interface");
MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
MODULE_ALIAS("platform:fsl-sai");
MODULE_LICENSE("GPL");
OpenPOWER on IntegriCloud