1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
|
/*
* Codec driver for ST STA32x 2.1-channel high-efficiency digital audio system
*
* Copyright: 2011 Raumfeld GmbH
* Author: Johannes Stezenbach <js@sig21.net>
*
* based on code from:
* Wolfson Microelectronics PLC.
* Mark Brown <broonie@opensource.wolfsonmicro.com>
* Freescale Semiconductor, Inc.
* Timur Tabi <timur@freescale.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/gpio/consumer.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include <sound/sta32x.h>
#include "sta32x.h"
#define STA32X_RATES (SNDRV_PCM_RATE_32000 | \
SNDRV_PCM_RATE_44100 | \
SNDRV_PCM_RATE_48000 | \
SNDRV_PCM_RATE_88200 | \
SNDRV_PCM_RATE_96000 | \
SNDRV_PCM_RATE_176400 | \
SNDRV_PCM_RATE_192000)
#define STA32X_FORMATS \
(SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE | \
SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE | \
SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE)
/* Power-up register defaults */
static const struct reg_default sta32x_regs[] = {
{ 0x0, 0x63 },
{ 0x1, 0x80 },
{ 0x2, 0xc2 },
{ 0x3, 0x40 },
{ 0x4, 0xc2 },
{ 0x5, 0x5c },
{ 0x6, 0x10 },
{ 0x7, 0xff },
{ 0x8, 0x60 },
{ 0x9, 0x60 },
{ 0xa, 0x60 },
{ 0xb, 0x80 },
{ 0xc, 0x00 },
{ 0xd, 0x00 },
{ 0xe, 0x00 },
{ 0xf, 0x40 },
{ 0x10, 0x80 },
{ 0x11, 0x77 },
{ 0x12, 0x6a },
{ 0x13, 0x69 },
{ 0x14, 0x6a },
{ 0x15, 0x69 },
{ 0x16, 0x00 },
{ 0x17, 0x00 },
{ 0x18, 0x00 },
{ 0x19, 0x00 },
{ 0x1a, 0x00 },
{ 0x1b, 0x00 },
{ 0x1c, 0x00 },
{ 0x1d, 0x00 },
{ 0x1e, 0x00 },
{ 0x1f, 0x00 },
{ 0x20, 0x00 },
{ 0x21, 0x00 },
{ 0x22, 0x00 },
{ 0x23, 0x00 },
{ 0x24, 0x00 },
{ 0x25, 0x00 },
{ 0x26, 0x00 },
{ 0x27, 0x2d },
{ 0x28, 0xc0 },
{ 0x2b, 0x00 },
{ 0x2c, 0x0c },
};
static const struct regmap_range sta32x_write_regs_range[] = {
regmap_reg_range(STA32X_CONFA, STA32X_FDRC2),
};
static const struct regmap_range sta32x_read_regs_range[] = {
regmap_reg_range(STA32X_CONFA, STA32X_FDRC2),
};
static const struct regmap_range sta32x_volatile_regs_range[] = {
regmap_reg_range(STA32X_CFADDR2, STA32X_CFUD),
};
static const struct regmap_access_table sta32x_write_regs = {
.yes_ranges = sta32x_write_regs_range,
.n_yes_ranges = ARRAY_SIZE(sta32x_write_regs_range),
};
static const struct regmap_access_table sta32x_read_regs = {
.yes_ranges = sta32x_read_regs_range,
.n_yes_ranges = ARRAY_SIZE(sta32x_read_regs_range),
};
static const struct regmap_access_table sta32x_volatile_regs = {
.yes_ranges = sta32x_volatile_regs_range,
.n_yes_ranges = ARRAY_SIZE(sta32x_volatile_regs_range),
};
/* regulator power supply names */
static const char *sta32x_supply_names[] = {
"Vdda", /* analog supply, 3.3VV */
"Vdd3", /* digital supply, 3.3V */
"Vcc" /* power amp spply, 10V - 36V */
};
/* codec private data */
struct sta32x_priv {
struct regmap *regmap;
struct clk *xti_clk;
struct regulator_bulk_data supplies[ARRAY_SIZE(sta32x_supply_names)];
struct snd_soc_component *component;
struct sta32x_platform_data *pdata;
unsigned int mclk;
unsigned int format;
u32 coef_shadow[STA32X_COEF_COUNT];
struct delayed_work watchdog_work;
int shutdown;
struct gpio_desc *gpiod_nreset;
struct mutex coeff_lock;
};
static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12700, 50, 1);
static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
static const DECLARE_TLV_DB_SCALE(tone_tlv, -120, 200, 0);
static const char *sta32x_drc_ac[] = {
"Anti-Clipping", "Dynamic Range Compression" };
static const char *sta32x_auto_eq_mode[] = {
"User", "Preset", "Loudness" };
static const char *sta32x_auto_gc_mode[] = {
"User", "AC no clipping", "AC limited clipping (10%)",
"DRC nighttime listening mode" };
static const char *sta32x_auto_xo_mode[] = {
"User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", "200Hz",
"220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", "340Hz", "360Hz" };
static const char *sta32x_preset_eq_mode[] = {
"Flat", "Rock", "Soft Rock", "Jazz", "Classical", "Dance", "Pop", "Soft",
"Hard", "Party", "Vocal", "Hip-Hop", "Dialog", "Bass-boost #1",
"Bass-boost #2", "Bass-boost #3", "Loudness 1", "Loudness 2",
"Loudness 3", "Loudness 4", "Loudness 5", "Loudness 6", "Loudness 7",
"Loudness 8", "Loudness 9", "Loudness 10", "Loudness 11", "Loudness 12",
"Loudness 13", "Loudness 14", "Loudness 15", "Loudness 16" };
static const char *sta32x_limiter_select[] = {
"Limiter Disabled", "Limiter #1", "Limiter #2" };
static const char *sta32x_limiter_attack_rate[] = {
"3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
"0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
"0.0645", "0.0564", "0.0501", "0.0451" };
static const char *sta32x_limiter_release_rate[] = {
"0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
"0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
"0.0134", "0.0117", "0.0110", "0.0104" };
static DECLARE_TLV_DB_RANGE(sta32x_limiter_ac_attack_tlv,
0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
);
static DECLARE_TLV_DB_RANGE(sta32x_limiter_ac_release_tlv,
0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
);
static DECLARE_TLV_DB_RANGE(sta32x_limiter_drc_attack_tlv,
0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
);
static DECLARE_TLV_DB_RANGE(sta32x_limiter_drc_release_tlv,
0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
);
static SOC_ENUM_SINGLE_DECL(sta32x_drc_ac_enum,
STA32X_CONFD, STA32X_CONFD_DRC_SHIFT,
sta32x_drc_ac);
static SOC_ENUM_SINGLE_DECL(sta32x_auto_eq_enum,
STA32X_AUTO1, STA32X_AUTO1_AMEQ_SHIFT,
sta32x_auto_eq_mode);
static SOC_ENUM_SINGLE_DECL(sta32x_auto_gc_enum,
STA32X_AUTO1, STA32X_AUTO1_AMGC_SHIFT,
sta32x_auto_gc_mode);
static SOC_ENUM_SINGLE_DECL(sta32x_auto_xo_enum,
STA32X_AUTO2, STA32X_AUTO2_XO_SHIFT,
sta32x_auto_xo_mode);
static SOC_ENUM_SINGLE_DECL(sta32x_preset_eq_enum,
STA32X_AUTO3, STA32X_AUTO3_PEQ_SHIFT,
sta32x_preset_eq_mode);
static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch1_enum,
STA32X_C1CFG, STA32X_CxCFG_LS_SHIFT,
sta32x_limiter_select);
static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch2_enum,
STA32X_C2CFG, STA32X_CxCFG_LS_SHIFT,
sta32x_limiter_select);
static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch3_enum,
STA32X_C3CFG, STA32X_CxCFG_LS_SHIFT,
sta32x_limiter_select);
static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_attack_rate_enum,
STA32X_L1AR, STA32X_LxA_SHIFT,
sta32x_limiter_attack_rate);
static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_attack_rate_enum,
STA32X_L2AR, STA32X_LxA_SHIFT,
sta32x_limiter_attack_rate);
static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_release_rate_enum,
STA32X_L1AR, STA32X_LxR_SHIFT,
sta32x_limiter_release_rate);
static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_release_rate_enum,
STA32X_L2AR, STA32X_LxR_SHIFT,
sta32x_limiter_release_rate);
/* byte array controls for setting biquad, mixer, scaling coefficients;
* for biquads all five coefficients need to be set in one go,
* mixer and pre/postscale coefs can be set individually;
* each coef is 24bit, the bytes are ordered in the same way
* as given in the STA32x data sheet (big endian; b1, b2, a1, a2, b0)
*/
static int sta32x_coefficient_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
int numcoef = kcontrol->private_value >> 16;
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
uinfo->count = 3 * numcoef;
return 0;
}
static int sta32x_coefficient_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
int numcoef = kcontrol->private_value >> 16;
int index = kcontrol->private_value & 0xffff;
unsigned int cfud, val;
int i, ret = 0;
mutex_lock(&sta32x->coeff_lock);
/* preserve reserved bits in STA32X_CFUD */
regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
cfud &= 0xf0;
/*
* chip documentation does not say if the bits are self clearing,
* so do it explicitly
*/
regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
regmap_write(sta32x->regmap, STA32X_CFADDR2, index);
if (numcoef == 1) {
regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x04);
} else if (numcoef == 5) {
regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x08);
} else {
ret = -EINVAL;
goto exit_unlock;
}
for (i = 0; i < 3 * numcoef; i++) {
regmap_read(sta32x->regmap, STA32X_B1CF1 + i, &val);
ucontrol->value.bytes.data[i] = val;
}
exit_unlock:
mutex_unlock(&sta32x->coeff_lock);
return ret;
}
static int sta32x_coefficient_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
int numcoef = kcontrol->private_value >> 16;
int index = kcontrol->private_value & 0xffff;
unsigned int cfud;
int i;
/* preserve reserved bits in STA32X_CFUD */
regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
cfud &= 0xf0;
/*
* chip documentation does not say if the bits are self clearing,
* so do it explicitly
*/
regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
regmap_write(sta32x->regmap, STA32X_CFADDR2, index);
for (i = 0; i < numcoef && (index + i < STA32X_COEF_COUNT); i++)
sta32x->coef_shadow[index + i] =
(ucontrol->value.bytes.data[3 * i] << 16)
| (ucontrol->value.bytes.data[3 * i + 1] << 8)
| (ucontrol->value.bytes.data[3 * i + 2]);
for (i = 0; i < 3 * numcoef; i++)
regmap_write(sta32x->regmap, STA32X_B1CF1 + i,
ucontrol->value.bytes.data[i]);
if (numcoef == 1)
regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x01);
else if (numcoef == 5)
regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x02);
else
return -EINVAL;
return 0;
}
static int sta32x_sync_coef_shadow(struct snd_soc_component *component)
{
struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
unsigned int cfud;
int i;
/* preserve reserved bits in STA32X_CFUD */
regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
cfud &= 0xf0;
for (i = 0; i < STA32X_COEF_COUNT; i++) {
regmap_write(sta32x->regmap, STA32X_CFADDR2, i);
regmap_write(sta32x->regmap, STA32X_B1CF1,
(sta32x->coef_shadow[i] >> 16) & 0xff);
regmap_write(sta32x->regmap, STA32X_B1CF2,
(sta32x->coef_shadow[i] >> 8) & 0xff);
regmap_write(sta32x->regmap, STA32X_B1CF3,
(sta32x->coef_shadow[i]) & 0xff);
/*
* chip documentation does not say if the bits are
* self-clearing, so do it explicitly
*/
regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x01);
}
return 0;
}
static int sta32x_cache_sync(struct snd_soc_component *component)
{
struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
unsigned int mute;
int rc;
/* mute during register sync */
regmap_read(sta32x->regmap, STA32X_MMUTE, &mute);
regmap_write(sta32x->regmap, STA32X_MMUTE, mute | STA32X_MMUTE_MMUTE);
sta32x_sync_coef_shadow(component);
rc = regcache_sync(sta32x->regmap);
regmap_write(sta32x->regmap, STA32X_MMUTE, mute);
return rc;
}
/* work around ESD issue where sta32x resets and loses all configuration */
static void sta32x_watchdog(struct work_struct *work)
{
struct sta32x_priv *sta32x = container_of(work, struct sta32x_priv,
watchdog_work.work);
struct snd_soc_component *component = sta32x->component;
unsigned int confa, confa_cached;
/* check if sta32x has reset itself */
confa_cached = snd_soc_component_read32(component, STA32X_CONFA);
regcache_cache_bypass(sta32x->regmap, true);
confa = snd_soc_component_read32(component, STA32X_CONFA);
regcache_cache_bypass(sta32x->regmap, false);
if (confa != confa_cached) {
regcache_mark_dirty(sta32x->regmap);
sta32x_cache_sync(component);
}
if (!sta32x->shutdown)
queue_delayed_work(system_power_efficient_wq,
&sta32x->watchdog_work,
round_jiffies_relative(HZ));
}
static void sta32x_watchdog_start(struct sta32x_priv *sta32x)
{
if (sta32x->pdata->needs_esd_watchdog) {
sta32x->shutdown = 0;
queue_delayed_work(system_power_efficient_wq,
&sta32x->watchdog_work,
round_jiffies_relative(HZ));
}
}
static void sta32x_watchdog_stop(struct sta32x_priv *sta32x)
{
if (sta32x->pdata->needs_esd_watchdog) {
sta32x->shutdown = 1;
cancel_delayed_work_sync(&sta32x->watchdog_work);
}
}
#define SINGLE_COEF(xname, index) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = sta32x_coefficient_info, \
.get = sta32x_coefficient_get,\
.put = sta32x_coefficient_put, \
.private_value = index | (1 << 16) }
#define BIQUAD_COEFS(xname, index) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = sta32x_coefficient_info, \
.get = sta32x_coefficient_get,\
.put = sta32x_coefficient_put, \
.private_value = index | (5 << 16) }
static const struct snd_kcontrol_new sta32x_snd_controls[] = {
SOC_SINGLE_TLV("Master Volume", STA32X_MVOL, 0, 0xff, 1, mvol_tlv),
SOC_SINGLE("Master Switch", STA32X_MMUTE, 0, 1, 1),
SOC_SINGLE("Ch1 Switch", STA32X_MMUTE, 1, 1, 1),
SOC_SINGLE("Ch2 Switch", STA32X_MMUTE, 2, 1, 1),
SOC_SINGLE("Ch3 Switch", STA32X_MMUTE, 3, 1, 1),
SOC_SINGLE_TLV("Ch1 Volume", STA32X_C1VOL, 0, 0xff, 1, chvol_tlv),
SOC_SINGLE_TLV("Ch2 Volume", STA32X_C2VOL, 0, 0xff, 1, chvol_tlv),
SOC_SINGLE_TLV("Ch3 Volume", STA32X_C3VOL, 0, 0xff, 1, chvol_tlv),
SOC_SINGLE("De-emphasis Filter Switch", STA32X_CONFD, STA32X_CONFD_DEMP_SHIFT, 1, 0),
SOC_ENUM("Compressor/Limiter Switch", sta32x_drc_ac_enum),
SOC_SINGLE("Miami Mode Switch", STA32X_CONFD, STA32X_CONFD_MME_SHIFT, 1, 0),
SOC_SINGLE("Zero Cross Switch", STA32X_CONFE, STA32X_CONFE_ZCE_SHIFT, 1, 0),
SOC_SINGLE("Soft Ramp Switch", STA32X_CONFE, STA32X_CONFE_SVE_SHIFT, 1, 0),
SOC_SINGLE("Auto-Mute Switch", STA32X_CONFF, STA32X_CONFF_IDE_SHIFT, 1, 0),
SOC_ENUM("Automode EQ", sta32x_auto_eq_enum),
SOC_ENUM("Automode GC", sta32x_auto_gc_enum),
SOC_ENUM("Automode XO", sta32x_auto_xo_enum),
SOC_ENUM("Preset EQ", sta32x_preset_eq_enum),
SOC_SINGLE("Ch1 Tone Control Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
SOC_SINGLE("Ch2 Tone Control Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
SOC_SINGLE("Ch1 EQ Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
SOC_SINGLE("Ch2 EQ Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
SOC_SINGLE("Ch1 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
SOC_SINGLE("Ch2 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
SOC_SINGLE("Ch3 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
SOC_ENUM("Ch1 Limiter Select", sta32x_limiter_ch1_enum),
SOC_ENUM("Ch2 Limiter Select", sta32x_limiter_ch2_enum),
SOC_ENUM("Ch3 Limiter Select", sta32x_limiter_ch3_enum),
SOC_SINGLE_TLV("Bass Tone Control", STA32X_TONE, STA32X_TONE_BTC_SHIFT, 15, 0, tone_tlv),
SOC_SINGLE_TLV("Treble Tone Control", STA32X_TONE, STA32X_TONE_TTC_SHIFT, 15, 0, tone_tlv),
SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta32x_limiter1_attack_rate_enum),
SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta32x_limiter2_attack_rate_enum),
SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),
SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta32x_limiter2_release_rate_enum),
/* depending on mode, the attack/release thresholds have
* two different enum definitions; provide both
*/
SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
16, 0, sta32x_limiter_ac_attack_tlv),
SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
16, 0, sta32x_limiter_ac_attack_tlv),
SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
16, 0, sta32x_limiter_ac_release_tlv),
SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
16, 0, sta32x_limiter_ac_release_tlv),
SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
16, 0, sta32x_limiter_drc_attack_tlv),
SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
16, 0, sta32x_limiter_drc_attack_tlv),
SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
16, 0, sta32x_limiter_drc_release_tlv),
SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
16, 0, sta32x_limiter_drc_release_tlv),
BIQUAD_COEFS("Ch1 - Biquad 1", 0),
BIQUAD_COEFS("Ch1 - Biquad 2", 5),
BIQUAD_COEFS("Ch1 - Biquad 3", 10),
BIQUAD_COEFS("Ch1 - Biquad 4", 15),
BIQUAD_COEFS("Ch2 - Biquad 1", 20),
BIQUAD_COEFS("Ch2 - Biquad 2", 25),
BIQUAD_COEFS("Ch2 - Biquad 3", 30),
BIQUAD_COEFS("Ch2 - Biquad 4", 35),
BIQUAD_COEFS("High-pass", 40),
BIQUAD_COEFS("Low-pass", 45),
SINGLE_COEF("Ch1 - Prescale", 50),
SINGLE_COEF("Ch2 - Prescale", 51),
SINGLE_COEF("Ch1 - Postscale", 52),
SINGLE_COEF("Ch2 - Postscale", 53),
SINGLE_COEF("Ch3 - Postscale", 54),
SINGLE_COEF("Thermal warning - Postscale", 55),
SINGLE_COEF("Ch1 - Mix 1", 56),
SINGLE_COEF("Ch1 - Mix 2", 57),
SINGLE_COEF("Ch2 - Mix 1", 58),
SINGLE_COEF("Ch2 - Mix 2", 59),
SINGLE_COEF("Ch3 - Mix 1", 60),
SINGLE_COEF("Ch3 - Mix 2", 61),
};
static const struct snd_soc_dapm_widget sta32x_dapm_widgets[] = {
SND_SOC_DAPM_DAC("DAC", "Playback", SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_OUTPUT("LEFT"),
SND_SOC_DAPM_OUTPUT("RIGHT"),
SND_SOC_DAPM_OUTPUT("SUB"),
};
static const struct snd_soc_dapm_route sta32x_dapm_routes[] = {
{ "LEFT", NULL, "DAC" },
{ "RIGHT", NULL, "DAC" },
{ "SUB", NULL, "DAC" },
};
/* MCLK interpolation ratio per fs */
static struct {
int fs;
int ir;
} interpolation_ratios[] = {
{ 32000, 0 },
{ 44100, 0 },
{ 48000, 0 },
{ 88200, 1 },
{ 96000, 1 },
{ 176400, 2 },
{ 192000, 2 },
};
/* MCLK to fs clock ratios */
static int mcs_ratio_table[3][7] = {
{ 768, 512, 384, 256, 128, 576, 0 },
{ 384, 256, 192, 128, 64, 0 },
{ 384, 256, 192, 128, 64, 0 },
};
/**
* sta32x_set_dai_sysclk - configure MCLK
* @codec_dai: the codec DAI
* @clk_id: the clock ID (ignored)
* @freq: the MCLK input frequency
* @dir: the clock direction (ignored)
*
* The value of MCLK is used to determine which sample rates are supported
* by the STA32X, based on the mclk_ratios table.
*
* This function must be called by the machine driver's 'startup' function,
* otherwise the list of supported sample rates will not be available in
* time for ALSA.
*
* For setups with variable MCLKs, pass 0 as 'freq' argument. This will cause
* theoretically possible sample rates to be enabled. Call it again with a
* proper value set one the external clock is set (most probably you would do
* that from a machine's driver 'hw_param' hook.
*/
static int sta32x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_component *component = codec_dai->component;
struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
dev_dbg(component->dev, "mclk=%u\n", freq);
sta32x->mclk = freq;
return 0;
}
/**
* sta32x_set_dai_fmt - configure the codec for the selected audio format
* @codec_dai: the codec DAI
* @fmt: a SND_SOC_DAIFMT_x value indicating the data format
*
* This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
* codec accordingly.
*/
static int sta32x_set_dai_fmt(struct snd_soc_dai *codec_dai,
unsigned int fmt)
{
struct snd_soc_component *component = codec_dai->component;
struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
u8 confb = 0;
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
case SND_SOC_DAIFMT_RIGHT_J:
case SND_SOC_DAIFMT_LEFT_J:
sta32x->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
confb |= STA32X_CONFB_C2IM;
break;
case SND_SOC_DAIFMT_NB_IF:
confb |= STA32X_CONFB_C1IM;
break;
default:
return -EINVAL;
}
return regmap_update_bits(sta32x->regmap, STA32X_CONFB,
STA32X_CONFB_C1IM | STA32X_CONFB_C2IM, confb);
}
/**
* sta32x_hw_params - program the STA32X with the given hardware parameters.
* @substream: the audio stream
* @params: the hardware parameters to set
* @dai: the SOC DAI (ignored)
*
* This function programs the hardware with the values provided.
* Specifically, the sample rate and the data format.
*/
static int sta32x_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
int i, mcs = -EINVAL, ir = -EINVAL;
unsigned int confa, confb;
unsigned int rate, ratio;
int ret;
if (!sta32x->mclk) {
dev_err(component->dev,
"sta32x->mclk is unset. Unable to determine ratio\n");
return -EIO;
}
rate = params_rate(params);
ratio = sta32x->mclk / rate;
dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio);
for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
if (interpolation_ratios[i].fs == rate) {
ir = interpolation_ratios[i].ir;
break;
}
}
if (ir < 0) {
dev_err(component->dev, "Unsupported samplerate: %u\n", rate);
return -EINVAL;
}
for (i = 0; i < 6; i++) {
if (mcs_ratio_table[ir][i] == ratio) {
mcs = i;
break;
}
}
if (mcs < 0) {
dev_err(component->dev, "Unresolvable ratio: %u\n", ratio);
return -EINVAL;
}
confa = (ir << STA32X_CONFA_IR_SHIFT) |
(mcs << STA32X_CONFA_MCS_SHIFT);
confb = 0;
switch (params_width(params)) {
case 24:
dev_dbg(component->dev, "24bit\n");
/* fall through */
case 32:
dev_dbg(component->dev, "24bit or 32bit\n");
switch (sta32x->format) {
case SND_SOC_DAIFMT_I2S:
confb |= 0x0;
break;
case SND_SOC_DAIFMT_LEFT_J:
confb |= 0x1;
break;
case SND_SOC_DAIFMT_RIGHT_J:
confb |= 0x2;
break;
}
break;
case 20:
dev_dbg(component->dev, "20bit\n");
switch (sta32x->format) {
case SND_SOC_DAIFMT_I2S:
confb |= 0x4;
break;
case SND_SOC_DAIFMT_LEFT_J:
confb |= 0x5;
break;
case SND_SOC_DAIFMT_RIGHT_J:
confb |= 0x6;
break;
}
break;
case 18:
dev_dbg(component->dev, "18bit\n");
switch (sta32x->format) {
case SND_SOC_DAIFMT_I2S:
confb |= 0x8;
break;
case SND_SOC_DAIFMT_LEFT_J:
confb |= 0x9;
break;
case SND_SOC_DAIFMT_RIGHT_J:
confb |= 0xa;
break;
}
break;
case 16:
dev_dbg(component->dev, "16bit\n");
switch (sta32x->format) {
case SND_SOC_DAIFMT_I2S:
confb |= 0x0;
break;
case SND_SOC_DAIFMT_LEFT_J:
confb |= 0xd;
break;
case SND_SOC_DAIFMT_RIGHT_J:
confb |= 0xe;
break;
}
break;
default:
return -EINVAL;
}
ret = regmap_update_bits(sta32x->regmap, STA32X_CONFA,
STA32X_CONFA_MCS_MASK | STA32X_CONFA_IR_MASK,
confa);
if (ret < 0)
return ret;
ret = regmap_update_bits(sta32x->regmap, STA32X_CONFB,
STA32X_CONFB_SAI_MASK | STA32X_CONFB_SAIFB,
confb);
if (ret < 0)
return ret;
return 0;
}
static int sta32x_startup_sequence(struct sta32x_priv *sta32x)
{
if (sta32x->gpiod_nreset) {
gpiod_set_value(sta32x->gpiod_nreset, 0);
mdelay(1);
gpiod_set_value(sta32x->gpiod_nreset, 1);
mdelay(1);
}
return 0;
}
/**
* sta32x_set_bias_level - DAPM callback
* @component: the component device
* @level: DAPM power level
*
* This is called by ALSA to put the component into low power mode
* or to wake it up. If the component is powered off completely
* all registers must be restored after power on.
*/
static int sta32x_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)
{
int ret;
struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
dev_dbg(component->dev, "level = %d\n", level);
switch (level) {
case SND_SOC_BIAS_ON:
break;
case SND_SOC_BIAS_PREPARE:
/* Full power on */
regmap_update_bits(sta32x->regmap, STA32X_CONFF,
STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
break;
case SND_SOC_BIAS_STANDBY:
if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
sta32x->supplies);
if (ret != 0) {
dev_err(component->dev,
"Failed to enable supplies: %d\n", ret);
return ret;
}
sta32x_startup_sequence(sta32x);
sta32x_cache_sync(component);
sta32x_watchdog_start(sta32x);
}
/* Power down */
regmap_update_bits(sta32x->regmap, STA32X_CONFF,
STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
0);
break;
case SND_SOC_BIAS_OFF:
/* The chip runs through the power down sequence for us. */
regmap_update_bits(sta32x->regmap, STA32X_CONFF,
STA32X_CONFF_PWDN | STA32X_CONFF_EAPD, 0);
msleep(300);
sta32x_watchdog_stop(sta32x);
gpiod_set_value(sta32x->gpiod_nreset, 0);
regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies),
sta32x->supplies);
break;
}
return 0;
}
static const struct snd_soc_dai_ops sta32x_dai_ops = {
.hw_params = sta32x_hw_params,
.set_sysclk = sta32x_set_dai_sysclk,
.set_fmt = sta32x_set_dai_fmt,
};
static struct snd_soc_dai_driver sta32x_dai = {
.name = "sta32x-hifi",
.playback = {
.stream_name = "Playback",
.channels_min = 2,
.channels_max = 2,
.rates = STA32X_RATES,
.formats = STA32X_FORMATS,
},
.ops = &sta32x_dai_ops,
};
static int sta32x_probe(struct snd_soc_component *component)
{
struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
struct sta32x_platform_data *pdata = sta32x->pdata;
int i, ret = 0, thermal = 0;
sta32x->component = component;
if (sta32x->xti_clk) {
ret = clk_prepare_enable(sta32x->xti_clk);
if (ret != 0) {
dev_err(component->dev,
"Failed to enable clock: %d\n", ret);
return ret;
}
}
ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
sta32x->supplies);
if (ret != 0) {
dev_err(component->dev, "Failed to enable supplies: %d\n", ret);
return ret;
}
ret = sta32x_startup_sequence(sta32x);
if (ret < 0) {
dev_err(component->dev, "Failed to startup device\n");
return ret;
}
/* CONFA */
if (!pdata->thermal_warning_recovery)
thermal |= STA32X_CONFA_TWAB;
if (!pdata->thermal_warning_adjustment)
thermal |= STA32X_CONFA_TWRB;
if (!pdata->fault_detect_recovery)
thermal |= STA32X_CONFA_FDRB;
regmap_update_bits(sta32x->regmap, STA32X_CONFA,
STA32X_CONFA_TWAB | STA32X_CONFA_TWRB |
STA32X_CONFA_FDRB,
thermal);
/* CONFC */
regmap_update_bits(sta32x->regmap, STA32X_CONFC,
STA32X_CONFC_CSZ_MASK,
pdata->drop_compensation_ns
<< STA32X_CONFC_CSZ_SHIFT);
/* CONFE */
regmap_update_bits(sta32x->regmap, STA32X_CONFE,
STA32X_CONFE_MPCV,
pdata->max_power_use_mpcc ?
STA32X_CONFE_MPCV : 0);
regmap_update_bits(sta32x->regmap, STA32X_CONFE,
STA32X_CONFE_MPC,
pdata->max_power_correction ?
STA32X_CONFE_MPC : 0);
regmap_update_bits(sta32x->regmap, STA32X_CONFE,
STA32X_CONFE_AME,
pdata->am_reduction_mode ?
STA32X_CONFE_AME : 0);
regmap_update_bits(sta32x->regmap, STA32X_CONFE,
STA32X_CONFE_PWMS,
pdata->odd_pwm_speed_mode ?
STA32X_CONFE_PWMS : 0);
/* CONFF */
regmap_update_bits(sta32x->regmap, STA32X_CONFF,
STA32X_CONFF_IDE,
pdata->invalid_input_detect_mute ?
STA32X_CONFF_IDE : 0);
/* select output configuration */
regmap_update_bits(sta32x->regmap, STA32X_CONFF,
STA32X_CONFF_OCFG_MASK,
pdata->output_conf
<< STA32X_CONFF_OCFG_SHIFT);
/* channel to output mapping */
regmap_update_bits(sta32x->regmap, STA32X_C1CFG,
STA32X_CxCFG_OM_MASK,
pdata->ch1_output_mapping
<< STA32X_CxCFG_OM_SHIFT);
regmap_update_bits(sta32x->regmap, STA32X_C2CFG,
STA32X_CxCFG_OM_MASK,
pdata->ch2_output_mapping
<< STA32X_CxCFG_OM_SHIFT);
regmap_update_bits(sta32x->regmap, STA32X_C3CFG,
STA32X_CxCFG_OM_MASK,
pdata->ch3_output_mapping
<< STA32X_CxCFG_OM_SHIFT);
/* initialize coefficient shadow RAM with reset values */
for (i = 4; i <= 49; i += 5)
sta32x->coef_shadow[i] = 0x400000;
for (i = 50; i <= 54; i++)
sta32x->coef_shadow[i] = 0x7fffff;
sta32x->coef_shadow[55] = 0x5a9df7;
sta32x->coef_shadow[56] = 0x7fffff;
sta32x->coef_shadow[59] = 0x7fffff;
sta32x->coef_shadow[60] = 0x400000;
sta32x->coef_shadow[61] = 0x400000;
if (sta32x->pdata->needs_esd_watchdog)
INIT_DELAYED_WORK(&sta32x->watchdog_work, sta32x_watchdog);
snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY);
/* Bias level configuration will have done an extra enable */
regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
return 0;
}
static void sta32x_remove(struct snd_soc_component *component)
{
struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
sta32x_watchdog_stop(sta32x);
regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
if (sta32x->xti_clk)
clk_disable_unprepare(sta32x->xti_clk);
}
static const struct snd_soc_component_driver sta32x_component = {
.probe = sta32x_probe,
.remove = sta32x_remove,
.set_bias_level = sta32x_set_bias_level,
.controls = sta32x_snd_controls,
.num_controls = ARRAY_SIZE(sta32x_snd_controls),
.dapm_widgets = sta32x_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(sta32x_dapm_widgets),
.dapm_routes = sta32x_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(sta32x_dapm_routes),
.suspend_bias_off = 1,
.idle_bias_on = 1,
.use_pmdown_time = 1,
.endianness = 1,
.non_legacy_dai_naming = 1,
};
static const struct regmap_config sta32x_regmap = {
.reg_bits = 8,
.val_bits = 8,
.max_register = STA32X_FDRC2,
.reg_defaults = sta32x_regs,
.num_reg_defaults = ARRAY_SIZE(sta32x_regs),
.cache_type = REGCACHE_RBTREE,
.wr_table = &sta32x_write_regs,
.rd_table = &sta32x_read_regs,
.volatile_table = &sta32x_volatile_regs,
};
#ifdef CONFIG_OF
static const struct of_device_id st32x_dt_ids[] = {
{ .compatible = "st,sta32x", },
{ }
};
MODULE_DEVICE_TABLE(of, st32x_dt_ids);
static int sta32x_probe_dt(struct device *dev, struct sta32x_priv *sta32x)
{
struct device_node *np = dev->of_node;
struct sta32x_platform_data *pdata;
u16 tmp;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
of_property_read_u8(np, "st,output-conf",
&pdata->output_conf);
of_property_read_u8(np, "st,ch1-output-mapping",
&pdata->ch1_output_mapping);
of_property_read_u8(np, "st,ch2-output-mapping",
&pdata->ch2_output_mapping);
of_property_read_u8(np, "st,ch3-output-mapping",
&pdata->ch3_output_mapping);
if (of_get_property(np, "st,fault-detect-recovery", NULL))
pdata->fault_detect_recovery = 1;
if (of_get_property(np, "st,thermal-warning-recovery", NULL))
pdata->thermal_warning_recovery = 1;
if (of_get_property(np, "st,thermal-warning-adjustment", NULL))
pdata->thermal_warning_adjustment = 1;
if (of_get_property(np, "st,needs_esd_watchdog", NULL))
pdata->needs_esd_watchdog = 1;
tmp = 140;
of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
/* CONFE */
if (of_get_property(np, "st,max-power-use-mpcc", NULL))
pdata->max_power_use_mpcc = 1;
if (of_get_property(np, "st,max-power-correction", NULL))
pdata->max_power_correction = 1;
if (of_get_property(np, "st,am-reduction-mode", NULL))
pdata->am_reduction_mode = 1;
if (of_get_property(np, "st,odd-pwm-speed-mode", NULL))
pdata->odd_pwm_speed_mode = 1;
/* CONFF */
if (of_get_property(np, "st,invalid-input-detect-mute", NULL))
pdata->invalid_input_detect_mute = 1;
sta32x->pdata = pdata;
return 0;
}
#endif
static int sta32x_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
struct device *dev = &i2c->dev;
struct sta32x_priv *sta32x;
int ret, i;
sta32x = devm_kzalloc(&i2c->dev, sizeof(struct sta32x_priv),
GFP_KERNEL);
if (!sta32x)
return -ENOMEM;
mutex_init(&sta32x->coeff_lock);
sta32x->pdata = dev_get_platdata(dev);
#ifdef CONFIG_OF
if (dev->of_node) {
ret = sta32x_probe_dt(dev, sta32x);
if (ret < 0)
return ret;
}
#endif
/* Clock */
sta32x->xti_clk = devm_clk_get(dev, "xti");
if (IS_ERR(sta32x->xti_clk)) {
ret = PTR_ERR(sta32x->xti_clk);
if (ret == -EPROBE_DEFER)
return ret;
sta32x->xti_clk = NULL;
}
/* GPIOs */
sta32x->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(sta32x->gpiod_nreset))
return PTR_ERR(sta32x->gpiod_nreset);
/* regulators */
for (i = 0; i < ARRAY_SIZE(sta32x->supplies); i++)
sta32x->supplies[i].supply = sta32x_supply_names[i];
ret = devm_regulator_bulk_get(&i2c->dev, ARRAY_SIZE(sta32x->supplies),
sta32x->supplies);
if (ret != 0) {
dev_err(&i2c->dev, "Failed to request supplies: %d\n", ret);
return ret;
}
sta32x->regmap = devm_regmap_init_i2c(i2c, &sta32x_regmap);
if (IS_ERR(sta32x->regmap)) {
ret = PTR_ERR(sta32x->regmap);
dev_err(dev, "Failed to init regmap: %d\n", ret);
return ret;
}
i2c_set_clientdata(i2c, sta32x);
ret = devm_snd_soc_register_component(dev, &sta32x_component,
&sta32x_dai, 1);
if (ret < 0)
dev_err(dev, "Failed to register component (%d)\n", ret);
return ret;
}
static const struct i2c_device_id sta32x_i2c_id[] = {
{ "sta326", 0 },
{ "sta328", 0 },
{ "sta329", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, sta32x_i2c_id);
static struct i2c_driver sta32x_i2c_driver = {
.driver = {
.name = "sta32x",
.of_match_table = of_match_ptr(st32x_dt_ids),
},
.probe = sta32x_i2c_probe,
.id_table = sta32x_i2c_id,
};
module_i2c_driver(sta32x_i2c_driver);
MODULE_DESCRIPTION("ASoC STA32X driver");
MODULE_AUTHOR("Johannes Stezenbach <js@sig21.net>");
MODULE_LICENSE("GPL");
|