summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/sh_flctl.c
blob: 6fa3bcd59769946f7b342ed97eebe51e625d5b0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
/*
 * SuperH FLCTL nand controller
 *
 * Copyright (c) 2008 Renesas Solutions Corp.
 * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
 *
 * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/sh_dma.h>
#include <linux/slab.h>
#include <linux/string.h>

#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/sh_flctl.h>

static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section,
					struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = 0;
	oobregion->length = chip->ecc.bytes;

	return 0;
}

static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section,
					 struct mtd_oob_region *oobregion)
{
	if (section)
		return -ERANGE;

	oobregion->offset = 12;
	oobregion->length = 4;

	return 0;
}

static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = {
	.ecc = flctl_4secc_ooblayout_sp_ecc,
	.free = flctl_4secc_ooblayout_sp_free,
};

static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section,
					struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section >= chip->ecc.steps)
		return -ERANGE;

	oobregion->offset = (section * 16) + 6;
	oobregion->length = chip->ecc.bytes;

	return 0;
}

static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section,
					 struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section >= chip->ecc.steps)
		return -ERANGE;

	oobregion->offset = section * 16;
	oobregion->length = 6;

	if (!section) {
		oobregion->offset += 2;
		oobregion->length -= 2;
	}

	return 0;
}

static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = {
	.ecc = flctl_4secc_ooblayout_lp_ecc,
	.free = flctl_4secc_ooblayout_lp_free,
};

static uint8_t scan_ff_pattern[] = { 0xff, 0xff };

static struct nand_bbt_descr flctl_4secc_smallpage = {
	.options = NAND_BBT_SCAN2NDPAGE,
	.offs = 11,
	.len = 1,
	.pattern = scan_ff_pattern,
};

static struct nand_bbt_descr flctl_4secc_largepage = {
	.options = NAND_BBT_SCAN2NDPAGE,
	.offs = 0,
	.len = 2,
	.pattern = scan_ff_pattern,
};

static void empty_fifo(struct sh_flctl *flctl)
{
	writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
}

static void start_translation(struct sh_flctl *flctl)
{
	writeb(TRSTRT, FLTRCR(flctl));
}

static void timeout_error(struct sh_flctl *flctl, const char *str)
{
	dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
}

static void wait_completion(struct sh_flctl *flctl)
{
	uint32_t timeout = LOOP_TIMEOUT_MAX;

	while (timeout--) {
		if (readb(FLTRCR(flctl)) & TREND) {
			writeb(0x0, FLTRCR(flctl));
			return;
		}
		udelay(1);
	}

	timeout_error(flctl, __func__);
	writeb(0x0, FLTRCR(flctl));
}

static void flctl_dma_complete(void *param)
{
	struct sh_flctl *flctl = param;

	complete(&flctl->dma_complete);
}

static void flctl_release_dma(struct sh_flctl *flctl)
{
	if (flctl->chan_fifo0_rx) {
		dma_release_channel(flctl->chan_fifo0_rx);
		flctl->chan_fifo0_rx = NULL;
	}
	if (flctl->chan_fifo0_tx) {
		dma_release_channel(flctl->chan_fifo0_tx);
		flctl->chan_fifo0_tx = NULL;
	}
}

static void flctl_setup_dma(struct sh_flctl *flctl)
{
	dma_cap_mask_t mask;
	struct dma_slave_config cfg;
	struct platform_device *pdev = flctl->pdev;
	struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
	int ret;

	if (!pdata)
		return;

	if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
		return;

	/* We can only either use DMA for both Tx and Rx or not use it at all */
	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);

	flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
				(void *)(uintptr_t)pdata->slave_id_fifo0_tx);
	dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
		flctl->chan_fifo0_tx);

	if (!flctl->chan_fifo0_tx)
		return;

	memset(&cfg, 0, sizeof(cfg));
	cfg.direction = DMA_MEM_TO_DEV;
	cfg.dst_addr = flctl->fifo;
	cfg.src_addr = 0;
	ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
	if (ret < 0)
		goto err;

	flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
				(void *)(uintptr_t)pdata->slave_id_fifo0_rx);
	dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
		flctl->chan_fifo0_rx);

	if (!flctl->chan_fifo0_rx)
		goto err;

	cfg.direction = DMA_DEV_TO_MEM;
	cfg.dst_addr = 0;
	cfg.src_addr = flctl->fifo;
	ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
	if (ret < 0)
		goto err;

	init_completion(&flctl->dma_complete);

	return;

err:
	flctl_release_dma(flctl);
}

static void set_addr(struct mtd_info *mtd, int column, int page_addr)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	uint32_t addr = 0;

	if (column == -1) {
		addr = page_addr;	/* ERASE1 */
	} else if (page_addr != -1) {
		/* SEQIN, READ0, etc.. */
		if (flctl->chip.options & NAND_BUSWIDTH_16)
			column >>= 1;
		if (flctl->page_size) {
			addr = column & 0x0FFF;
			addr |= (page_addr & 0xff) << 16;
			addr |= ((page_addr >> 8) & 0xff) << 24;
			/* big than 128MB */
			if (flctl->rw_ADRCNT == ADRCNT2_E) {
				uint32_t 	addr2;
				addr2 = (page_addr >> 16) & 0xff;
				writel(addr2, FLADR2(flctl));
			}
		} else {
			addr = column;
			addr |= (page_addr & 0xff) << 8;
			addr |= ((page_addr >> 8) & 0xff) << 16;
			addr |= ((page_addr >> 16) & 0xff) << 24;
		}
	}
	writel(addr, FLADR(flctl));
}

static void wait_rfifo_ready(struct sh_flctl *flctl)
{
	uint32_t timeout = LOOP_TIMEOUT_MAX;

	while (timeout--) {
		uint32_t val;
		/* check FIFO */
		val = readl(FLDTCNTR(flctl)) >> 16;
		if (val & 0xFF)
			return;
		udelay(1);
	}
	timeout_error(flctl, __func__);
}

static void wait_wfifo_ready(struct sh_flctl *flctl)
{
	uint32_t len, timeout = LOOP_TIMEOUT_MAX;

	while (timeout--) {
		/* check FIFO */
		len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
		if (len >= 4)
			return;
		udelay(1);
	}
	timeout_error(flctl, __func__);
}

static enum flctl_ecc_res_t wait_recfifo_ready
		(struct sh_flctl *flctl, int sector_number)
{
	uint32_t timeout = LOOP_TIMEOUT_MAX;
	void __iomem *ecc_reg[4];
	int i;
	int state = FL_SUCCESS;
	uint32_t data, size;

	/*
	 * First this loops checks in FLDTCNTR if we are ready to read out the
	 * oob data. This is the case if either all went fine without errors or
	 * if the bottom part of the loop corrected the errors or marked them as
	 * uncorrectable and the controller is given time to push the data into
	 * the FIFO.
	 */
	while (timeout--) {
		/* check if all is ok and we can read out the OOB */
		size = readl(FLDTCNTR(flctl)) >> 24;
		if ((size & 0xFF) == 4)
			return state;

		/* check if a correction code has been calculated */
		if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
			/*
			 * either we wait for the fifo to be filled or a
			 * correction pattern is being generated
			 */
			udelay(1);
			continue;
		}

		/* check for an uncorrectable error */
		if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
			/* check if we face a non-empty page */
			for (i = 0; i < 512; i++) {
				if (flctl->done_buff[i] != 0xff) {
					state = FL_ERROR; /* can't correct */
					break;
				}
			}

			if (state == FL_SUCCESS)
				dev_dbg(&flctl->pdev->dev,
				"reading empty sector %d, ecc error ignored\n",
				sector_number);

			writel(0, FL4ECCCR(flctl));
			continue;
		}

		/* start error correction */
		ecc_reg[0] = FL4ECCRESULT0(flctl);
		ecc_reg[1] = FL4ECCRESULT1(flctl);
		ecc_reg[2] = FL4ECCRESULT2(flctl);
		ecc_reg[3] = FL4ECCRESULT3(flctl);

		for (i = 0; i < 3; i++) {
			uint8_t org;
			unsigned int index;

			data = readl(ecc_reg[i]);

			if (flctl->page_size)
				index = (512 * sector_number) +
					(data >> 16);
			else
				index = data >> 16;

			org = flctl->done_buff[index];
			flctl->done_buff[index] = org ^ (data & 0xFF);
		}
		state = FL_REPAIRABLE;
		writel(0, FL4ECCCR(flctl));
	}

	timeout_error(flctl, __func__);
	return FL_TIMEOUT;	/* timeout */
}

static void wait_wecfifo_ready(struct sh_flctl *flctl)
{
	uint32_t timeout = LOOP_TIMEOUT_MAX;
	uint32_t len;

	while (timeout--) {
		/* check FLECFIFO */
		len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
		if (len >= 4)
			return;
		udelay(1);
	}
	timeout_error(flctl, __func__);
}

static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
					int len, enum dma_data_direction dir)
{
	struct dma_async_tx_descriptor *desc = NULL;
	struct dma_chan *chan;
	enum dma_transfer_direction tr_dir;
	dma_addr_t dma_addr;
	dma_cookie_t cookie = -EINVAL;
	uint32_t reg;
	int ret;

	if (dir == DMA_FROM_DEVICE) {
		chan = flctl->chan_fifo0_rx;
		tr_dir = DMA_DEV_TO_MEM;
	} else {
		chan = flctl->chan_fifo0_tx;
		tr_dir = DMA_MEM_TO_DEV;
	}

	dma_addr = dma_map_single(chan->device->dev, buf, len, dir);

	if (dma_addr)
		desc = dmaengine_prep_slave_single(chan, dma_addr, len,
			tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);

	if (desc) {
		reg = readl(FLINTDMACR(flctl));
		reg |= DREQ0EN;
		writel(reg, FLINTDMACR(flctl));

		desc->callback = flctl_dma_complete;
		desc->callback_param = flctl;
		cookie = dmaengine_submit(desc);

		dma_async_issue_pending(chan);
	} else {
		/* DMA failed, fall back to PIO */
		flctl_release_dma(flctl);
		dev_warn(&flctl->pdev->dev,
			 "DMA failed, falling back to PIO\n");
		ret = -EIO;
		goto out;
	}

	ret =
	wait_for_completion_timeout(&flctl->dma_complete,
				msecs_to_jiffies(3000));

	if (ret <= 0) {
		dmaengine_terminate_all(chan);
		dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
	}

out:
	reg = readl(FLINTDMACR(flctl));
	reg &= ~DREQ0EN;
	writel(reg, FLINTDMACR(flctl));

	dma_unmap_single(chan->device->dev, dma_addr, len, dir);

	/* ret > 0 is success */
	return ret;
}

static void read_datareg(struct sh_flctl *flctl, int offset)
{
	unsigned long data;
	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];

	wait_completion(flctl);

	data = readl(FLDATAR(flctl));
	*buf = le32_to_cpu(data);
}

static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
{
	int i, len_4align;
	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];

	len_4align = (rlen + 3) / 4;

	/* initiate DMA transfer */
	if (flctl->chan_fifo0_rx && rlen >= 32 &&
		flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_DEV_TO_MEM) > 0)
			goto convert;	/* DMA success */

	/* do polling transfer */
	for (i = 0; i < len_4align; i++) {
		wait_rfifo_ready(flctl);
		buf[i] = readl(FLDTFIFO(flctl));
	}

convert:
	for (i = 0; i < len_4align; i++)
		buf[i] = be32_to_cpu(buf[i]);
}

static enum flctl_ecc_res_t read_ecfiforeg
		(struct sh_flctl *flctl, uint8_t *buff, int sector)
{
	int i;
	enum flctl_ecc_res_t res;
	unsigned long *ecc_buf = (unsigned long *)buff;

	res = wait_recfifo_ready(flctl , sector);

	if (res != FL_ERROR) {
		for (i = 0; i < 4; i++) {
			ecc_buf[i] = readl(FLECFIFO(flctl));
			ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
		}
	}

	return res;
}

static void write_fiforeg(struct sh_flctl *flctl, int rlen,
						unsigned int offset)
{
	int i, len_4align;
	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];

	len_4align = (rlen + 3) / 4;
	for (i = 0; i < len_4align; i++) {
		wait_wfifo_ready(flctl);
		writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
	}
}

static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
						unsigned int offset)
{
	int i, len_4align;
	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];

	len_4align = (rlen + 3) / 4;

	for (i = 0; i < len_4align; i++)
		buf[i] = cpu_to_be32(buf[i]);

	/* initiate DMA transfer */
	if (flctl->chan_fifo0_tx && rlen >= 32 &&
		flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_MEM_TO_DEV) > 0)
			return;	/* DMA success */

	/* do polling transfer */
	for (i = 0; i < len_4align; i++) {
		wait_wecfifo_ready(flctl);
		writel(buf[i], FLECFIFO(flctl));
	}
}

static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
	uint32_t flcmdcr_val, addr_len_bytes = 0;

	/* Set SNAND bit if page size is 2048byte */
	if (flctl->page_size)
		flcmncr_val |= SNAND_E;
	else
		flcmncr_val &= ~SNAND_E;

	/* default FLCMDCR val */
	flcmdcr_val = DOCMD1_E | DOADR_E;

	/* Set for FLCMDCR */
	switch (cmd) {
	case NAND_CMD_ERASE1:
		addr_len_bytes = flctl->erase_ADRCNT;
		flcmdcr_val |= DOCMD2_E;
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_READOOB:
	case NAND_CMD_RNDOUT:
		addr_len_bytes = flctl->rw_ADRCNT;
		flcmdcr_val |= CDSRC_E;
		if (flctl->chip.options & NAND_BUSWIDTH_16)
			flcmncr_val |= SEL_16BIT;
		break;
	case NAND_CMD_SEQIN:
		/* This case is that cmd is READ0 or READ1 or READ00 */
		flcmdcr_val &= ~DOADR_E;	/* ONLY execute 1st cmd */
		break;
	case NAND_CMD_PAGEPROG:
		addr_len_bytes = flctl->rw_ADRCNT;
		flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
		if (flctl->chip.options & NAND_BUSWIDTH_16)
			flcmncr_val |= SEL_16BIT;
		break;
	case NAND_CMD_READID:
		flcmncr_val &= ~SNAND_E;
		flcmdcr_val |= CDSRC_E;
		addr_len_bytes = ADRCNT_1;
		break;
	case NAND_CMD_STATUS:
	case NAND_CMD_RESET:
		flcmncr_val &= ~SNAND_E;
		flcmdcr_val &= ~(DOADR_E | DOSR_E);
		break;
	default:
		break;
	}

	/* Set address bytes parameter */
	flcmdcr_val |= addr_len_bytes;

	/* Now actually write */
	writel(flcmncr_val, FLCMNCR(flctl));
	writel(flcmdcr_val, FLCMDCR(flctl));
	writel(flcmcdr_val, FLCMCDR(flctl));
}

static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
{
	chip->read_buf(mtd, buf, mtd->writesize);
	if (oob_required)
		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
	return 0;
}

static int flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
				  const uint8_t *buf, int oob_required,
				  int page)
{
	chip->write_buf(mtd, buf, mtd->writesize);
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
	return 0;
}

static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	int sector, page_sectors;
	enum flctl_ecc_res_t ecc_result;

	page_sectors = flctl->page_size ? 4 : 1;

	set_cmd_regs(mtd, NAND_CMD_READ0,
		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);

	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
		 FLCMNCR(flctl));
	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
	writel(page_addr << 2, FLADR(flctl));

	empty_fifo(flctl);
	start_translation(flctl);

	for (sector = 0; sector < page_sectors; sector++) {
		read_fiforeg(flctl, 512, 512 * sector);

		ecc_result = read_ecfiforeg(flctl,
			&flctl->done_buff[mtd->writesize + 16 * sector],
			sector);

		switch (ecc_result) {
		case FL_REPAIRABLE:
			dev_info(&flctl->pdev->dev,
				"applied ecc on page 0x%x", page_addr);
			mtd->ecc_stats.corrected++;
			break;
		case FL_ERROR:
			dev_warn(&flctl->pdev->dev,
				"page 0x%x contains corrupted data\n",
				page_addr);
			mtd->ecc_stats.failed++;
			break;
		default:
			;
		}
	}

	wait_completion(flctl);

	writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
			FLCMNCR(flctl));
}

static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	int page_sectors = flctl->page_size ? 4 : 1;
	int i;

	set_cmd_regs(mtd, NAND_CMD_READ0,
		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);

	empty_fifo(flctl);

	for (i = 0; i < page_sectors; i++) {
		set_addr(mtd, (512 + 16) * i + 512 , page_addr);
		writel(16, FLDTCNTR(flctl));

		start_translation(flctl);
		read_fiforeg(flctl, 16, 16 * i);
		wait_completion(flctl);
	}
}

static void execmd_write_page_sector(struct mtd_info *mtd)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	int page_addr = flctl->seqin_page_addr;
	int sector, page_sectors;

	page_sectors = flctl->page_size ? 4 : 1;

	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);

	empty_fifo(flctl);
	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
	writel(page_addr << 2, FLADR(flctl));
	start_translation(flctl);

	for (sector = 0; sector < page_sectors; sector++) {
		write_fiforeg(flctl, 512, 512 * sector);
		write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
	}

	wait_completion(flctl);
	writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
}

static void execmd_write_oob(struct mtd_info *mtd)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	int page_addr = flctl->seqin_page_addr;
	int sector, page_sectors;

	page_sectors = flctl->page_size ? 4 : 1;

	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);

	for (sector = 0; sector < page_sectors; sector++) {
		empty_fifo(flctl);
		set_addr(mtd, sector * 528 + 512, page_addr);
		writel(16, FLDTCNTR(flctl));	/* set read size */

		start_translation(flctl);
		write_fiforeg(flctl, 16, 16 * sector);
		wait_completion(flctl);
	}
}

static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
			int column, int page_addr)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	uint32_t read_cmd = 0;

	pm_runtime_get_sync(&flctl->pdev->dev);

	flctl->read_bytes = 0;
	if (command != NAND_CMD_PAGEPROG)
		flctl->index = 0;

	switch (command) {
	case NAND_CMD_READ1:
	case NAND_CMD_READ0:
		if (flctl->hwecc) {
			/* read page with hwecc */
			execmd_read_page_sector(mtd, page_addr);
			break;
		}
		if (flctl->page_size)
			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
				| command);
		else
			set_cmd_regs(mtd, command, command);

		set_addr(mtd, 0, page_addr);

		flctl->read_bytes = mtd->writesize + mtd->oobsize;
		if (flctl->chip.options & NAND_BUSWIDTH_16)
			column >>= 1;
		flctl->index += column;
		goto read_normal_exit;

	case NAND_CMD_READOOB:
		if (flctl->hwecc) {
			/* read page with hwecc */
			execmd_read_oob(mtd, page_addr);
			break;
		}

		if (flctl->page_size) {
			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
				| NAND_CMD_READ0);
			set_addr(mtd, mtd->writesize, page_addr);
		} else {
			set_cmd_regs(mtd, command, command);
			set_addr(mtd, 0, page_addr);
		}
		flctl->read_bytes = mtd->oobsize;
		goto read_normal_exit;

	case NAND_CMD_RNDOUT:
		if (flctl->hwecc)
			break;

		if (flctl->page_size)
			set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
				| command);
		else
			set_cmd_regs(mtd, command, command);

		set_addr(mtd, column, 0);

		flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
		goto read_normal_exit;

	case NAND_CMD_READID:
		set_cmd_regs(mtd, command, command);

		/* READID is always performed using an 8-bit bus */
		if (flctl->chip.options & NAND_BUSWIDTH_16)
			column <<= 1;
		set_addr(mtd, column, 0);

		flctl->read_bytes = 8;
		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
		empty_fifo(flctl);
		start_translation(flctl);
		read_fiforeg(flctl, flctl->read_bytes, 0);
		wait_completion(flctl);
		break;

	case NAND_CMD_ERASE1:
		flctl->erase1_page_addr = page_addr;
		break;

	case NAND_CMD_ERASE2:
		set_cmd_regs(mtd, NAND_CMD_ERASE1,
			(command << 8) | NAND_CMD_ERASE1);
		set_addr(mtd, -1, flctl->erase1_page_addr);
		start_translation(flctl);
		wait_completion(flctl);
		break;

	case NAND_CMD_SEQIN:
		if (!flctl->page_size) {
			/* output read command */
			if (column >= mtd->writesize) {
				column -= mtd->writesize;
				read_cmd = NAND_CMD_READOOB;
			} else if (column < 256) {
				read_cmd = NAND_CMD_READ0;
			} else {
				column -= 256;
				read_cmd = NAND_CMD_READ1;
			}
		}
		flctl->seqin_column = column;
		flctl->seqin_page_addr = page_addr;
		flctl->seqin_read_cmd = read_cmd;
		break;

	case NAND_CMD_PAGEPROG:
		empty_fifo(flctl);
		if (!flctl->page_size) {
			set_cmd_regs(mtd, NAND_CMD_SEQIN,
					flctl->seqin_read_cmd);
			set_addr(mtd, -1, -1);
			writel(0, FLDTCNTR(flctl));	/* set 0 size */
			start_translation(flctl);
			wait_completion(flctl);
		}
		if (flctl->hwecc) {
			/* write page with hwecc */
			if (flctl->seqin_column == mtd->writesize)
				execmd_write_oob(mtd);
			else if (!flctl->seqin_column)
				execmd_write_page_sector(mtd);
			else
				printk(KERN_ERR "Invalid address !?\n");
			break;
		}
		set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
		set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
		writel(flctl->index, FLDTCNTR(flctl));	/* set write size */
		start_translation(flctl);
		write_fiforeg(flctl, flctl->index, 0);
		wait_completion(flctl);
		break;

	case NAND_CMD_STATUS:
		set_cmd_regs(mtd, command, command);
		set_addr(mtd, -1, -1);

		flctl->read_bytes = 1;
		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
		start_translation(flctl);
		read_datareg(flctl, 0); /* read and end */
		break;

	case NAND_CMD_RESET:
		set_cmd_regs(mtd, command, command);
		set_addr(mtd, -1, -1);

		writel(0, FLDTCNTR(flctl));	/* set 0 size */
		start_translation(flctl);
		wait_completion(flctl);
		break;

	default:
		break;
	}
	goto runtime_exit;

read_normal_exit:
	writel(flctl->read_bytes, FLDTCNTR(flctl));	/* set read size */
	empty_fifo(flctl);
	start_translation(flctl);
	read_fiforeg(flctl, flctl->read_bytes, 0);
	wait_completion(flctl);
runtime_exit:
	pm_runtime_put_sync(&flctl->pdev->dev);
	return;
}

static void flctl_select_chip(struct mtd_info *mtd, int chipnr)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	int ret;

	switch (chipnr) {
	case -1:
		flctl->flcmncr_base &= ~CE0_ENABLE;

		pm_runtime_get_sync(&flctl->pdev->dev);
		writel(flctl->flcmncr_base, FLCMNCR(flctl));

		if (flctl->qos_request) {
			dev_pm_qos_remove_request(&flctl->pm_qos);
			flctl->qos_request = 0;
		}

		pm_runtime_put_sync(&flctl->pdev->dev);
		break;
	case 0:
		flctl->flcmncr_base |= CE0_ENABLE;

		if (!flctl->qos_request) {
			ret = dev_pm_qos_add_request(&flctl->pdev->dev,
							&flctl->pm_qos,
							DEV_PM_QOS_RESUME_LATENCY,
							100);
			if (ret < 0)
				dev_err(&flctl->pdev->dev,
					"PM QoS request failed: %d\n", ret);
			flctl->qos_request = 1;
		}

		if (flctl->holden) {
			pm_runtime_get_sync(&flctl->pdev->dev);
			writel(HOLDEN, FLHOLDCR(flctl));
			pm_runtime_put_sync(&flctl->pdev->dev);
		}
		break;
	default:
		BUG();
	}
}

static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);

	memcpy(&flctl->done_buff[flctl->index], buf, len);
	flctl->index += len;
}

static uint8_t flctl_read_byte(struct mtd_info *mtd)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	uint8_t data;

	data = flctl->done_buff[flctl->index];
	flctl->index++;
	return data;
}

static uint16_t flctl_read_word(struct mtd_info *mtd)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	uint16_t *buf = (uint16_t *)&flctl->done_buff[flctl->index];

	flctl->index += 2;
	return *buf;
}

static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);

	memcpy(buf, &flctl->done_buff[flctl->index], len);
	flctl->index += len;
}

static int flctl_chip_init_tail(struct mtd_info *mtd)
{
	struct sh_flctl *flctl = mtd_to_flctl(mtd);
	struct nand_chip *chip = &flctl->chip;

	if (mtd->writesize == 512) {
		flctl->page_size = 0;
		if (chip->chipsize > (32 << 20)) {
			/* big than 32MB */
			flctl->rw_ADRCNT = ADRCNT_4;
			flctl->erase_ADRCNT = ADRCNT_3;
		} else if (chip->chipsize > (2 << 16)) {
			/* big than 128KB */
			flctl->rw_ADRCNT = ADRCNT_3;
			flctl->erase_ADRCNT = ADRCNT_2;
		} else {
			flctl->rw_ADRCNT = ADRCNT_2;
			flctl->erase_ADRCNT = ADRCNT_1;
		}
	} else {
		flctl->page_size = 1;
		if (chip->chipsize > (128 << 20)) {
			/* big than 128MB */
			flctl->rw_ADRCNT = ADRCNT2_E;
			flctl->erase_ADRCNT = ADRCNT_3;
		} else if (chip->chipsize > (8 << 16)) {
			/* big than 512KB */
			flctl->rw_ADRCNT = ADRCNT_4;
			flctl->erase_ADRCNT = ADRCNT_2;
		} else {
			flctl->rw_ADRCNT = ADRCNT_3;
			flctl->erase_ADRCNT = ADRCNT_1;
		}
	}

	if (flctl->hwecc) {
		if (mtd->writesize == 512) {
			mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops);
			chip->badblock_pattern = &flctl_4secc_smallpage;
		} else {
			mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops);
			chip->badblock_pattern = &flctl_4secc_largepage;
		}

		chip->ecc.size = 512;
		chip->ecc.bytes = 10;
		chip->ecc.strength = 4;
		chip->ecc.read_page = flctl_read_page_hwecc;
		chip->ecc.write_page = flctl_write_page_hwecc;
		chip->ecc.mode = NAND_ECC_HW;

		/* 4 symbols ECC enabled */
		flctl->flcmncr_base |= _4ECCEN;
	} else {
		chip->ecc.mode = NAND_ECC_SOFT;
		chip->ecc.algo = NAND_ECC_HAMMING;
	}

	return 0;
}

static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
{
	struct sh_flctl *flctl = dev_id;

	dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));

	return IRQ_HANDLED;
}

struct flctl_soc_config {
	unsigned long flcmncr_val;
	unsigned has_hwecc:1;
	unsigned use_holden:1;
};

static struct flctl_soc_config flctl_sh7372_config = {
	.flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
	.has_hwecc = 1,
	.use_holden = 1,
};

static const struct of_device_id of_flctl_match[] = {
	{ .compatible = "renesas,shmobile-flctl-sh7372",
				.data = &flctl_sh7372_config },
	{},
};
MODULE_DEVICE_TABLE(of, of_flctl_match);

static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
{
	const struct of_device_id *match;
	struct flctl_soc_config *config;
	struct sh_flctl_platform_data *pdata;

	match = of_match_device(of_flctl_match, dev);
	if (match)
		config = (struct flctl_soc_config *)match->data;
	else {
		dev_err(dev, "%s: no OF configuration attached\n", __func__);
		return NULL;
	}

	pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
								GFP_KERNEL);
	if (!pdata)
		return NULL;

	/* set SoC specific options */
	pdata->flcmncr_val = config->flcmncr_val;
	pdata->has_hwecc = config->has_hwecc;
	pdata->use_holden = config->use_holden;

	return pdata;
}

static int flctl_probe(struct platform_device *pdev)
{
	struct resource *res;
	struct sh_flctl *flctl;
	struct mtd_info *flctl_mtd;
	struct nand_chip *nand;
	struct sh_flctl_platform_data *pdata;
	int ret;
	int irq;

	flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
	if (!flctl)
		return -ENOMEM;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	flctl->reg = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(flctl->reg))
		return PTR_ERR(flctl->reg);
	flctl->fifo = res->start + 0x24; /* FLDTFIFO */

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(&pdev->dev, "failed to get flste irq data\n");
		return -ENXIO;
	}

	ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
			       "flste", flctl);
	if (ret) {
		dev_err(&pdev->dev, "request interrupt failed.\n");
		return ret;
	}

	if (pdev->dev.of_node)
		pdata = flctl_parse_dt(&pdev->dev);
	else
		pdata = dev_get_platdata(&pdev->dev);

	if (!pdata) {
		dev_err(&pdev->dev, "no setup data defined\n");
		return -EINVAL;
	}

	platform_set_drvdata(pdev, flctl);
	nand = &flctl->chip;
	flctl_mtd = nand_to_mtd(nand);
	nand_set_flash_node(nand, pdev->dev.of_node);
	flctl_mtd->dev.parent = &pdev->dev;
	flctl->pdev = pdev;
	flctl->hwecc = pdata->has_hwecc;
	flctl->holden = pdata->use_holden;
	flctl->flcmncr_base = pdata->flcmncr_val;
	flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;

	/* Set address of hardware control function */
	/* 20 us command delay time */
	nand->chip_delay = 20;

	nand->read_byte = flctl_read_byte;
	nand->read_word = flctl_read_word;
	nand->write_buf = flctl_write_buf;
	nand->read_buf = flctl_read_buf;
	nand->select_chip = flctl_select_chip;
	nand->cmdfunc = flctl_cmdfunc;

	if (pdata->flcmncr_val & SEL_16BIT)
		nand->options |= NAND_BUSWIDTH_16;

	pm_runtime_enable(&pdev->dev);
	pm_runtime_resume(&pdev->dev);

	flctl_setup_dma(flctl);

	ret = nand_scan_ident(flctl_mtd, 1, NULL);
	if (ret)
		goto err_chip;

	if (nand->options & NAND_BUSWIDTH_16) {
		/*
		 * NAND_BUSWIDTH_16 may have been set by nand_scan_ident().
		 * Add the SEL_16BIT flag in pdata->flcmncr_val and re-assign
		 * flctl->flcmncr_base to pdata->flcmncr_val.
		 */
		pdata->flcmncr_val |= SEL_16BIT;
		flctl->flcmncr_base = pdata->flcmncr_val;
	}

	ret = flctl_chip_init_tail(flctl_mtd);
	if (ret)
		goto err_chip;

	ret = nand_scan_tail(flctl_mtd);
	if (ret)
		goto err_chip;

	ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);

	return 0;

err_chip:
	flctl_release_dma(flctl);
	pm_runtime_disable(&pdev->dev);
	return ret;
}

static int flctl_remove(struct platform_device *pdev)
{
	struct sh_flctl *flctl = platform_get_drvdata(pdev);

	flctl_release_dma(flctl);
	nand_release(nand_to_mtd(&flctl->chip));
	pm_runtime_disable(&pdev->dev);

	return 0;
}

static struct platform_driver flctl_driver = {
	.remove		= flctl_remove,
	.driver = {
		.name	= "sh_flctl",
		.of_match_table = of_match_ptr(of_flctl_match),
	},
};

module_platform_driver_probe(flctl_driver, flctl_probe);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Yoshihiro Shimoda");
MODULE_DESCRIPTION("SuperH FLCTL driver");
MODULE_ALIAS("platform:sh_flctl");
OpenPOWER on IntegriCloud